
Linear Options

Jonathan Sorg
Computer Science & Engineering

University of Michigan
jdsorg@umich.edu

Satinder Singh
Computer Science & Engineering

University of Michigan
baveja@umich.edu

ABSTRACT
Learning, planning, and representing knowledge in large state
spaces at multiple levels of temporal abstraction are key,
long-standing challenges for building flexible autonomous
agents. The options framework provides a formal mecha-
nism for specifying and learning temporally-extended skills.
Although past work has demonstrated the benefit of acting
according to options in continuous state spaces, one of the
central advantages of temporal abstraction—the ability to
plan using a temporally abstract model—remains a challeng-
ing problem when the number of environment states is large
or infinite. In this work, we develop a knowledge construct,
the linear option, which is capable of modeling temporally
abstract dynamics in continuous state spaces. We show that
planning with a linear expectation model of an option’s dy-
namics converges to a fixed point with low Temporal Dif-
ference (TD) error. Next, building on recent work on linear
feature selection, we show conditions under which a linear
feature set is sufficient for accurately representing the value
function of an option policy. We extend this result to show
conditions under which multiple options may be repeatedly
composed to create new options with accurate linear models.
Finally, we demonstrate linear option learning and planning
algorithms in a simulated robot environment.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning

General Terms
Algorithms

Keywords
Reinforcement Learning, Temporal Abstraction

1. INTRODUCTION
In the field of Reinforcement Learning (RL), agents are

placed in unknown environments and have to learn how to
act so as to maximize rewards over a horizon. In complex
environments, it is critical that an agent be able to handle
knowledge at multiple levels of abstraction. We distinguish

Cite as: Linear Options, Jonathan Sorg and Satinder Singh, Proc. of
9th Int. Conf. on Autonomous Agents and Multiagent Sys-
tems (AAMAS 2010), van der Hoek, Kaminka, Lespérance, Luck and
Sen (eds.), May, 10–14, 2010, Toronto, Canada, pp. XXX-XXX.
Copyright c© 2010, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

between two types of abstraction – state abstraction and
temporal abstraction.

State abstraction is closely related to the concept of gen-
eralization, whereby knowledge from one situation can be
used and applied in other distinct but related situations. In
addition to drastically reducing the data complexity of learn-
ing, state abstraction can reduce computational burden by
allowing planning to compute a good policy for many sit-
uations at once. In environments with continuously valued
observations or others with an large number of states, some
form of generalization is necessary.

Linear methods are perhaps the most common and best
understood class of generalization mechanisms. Linear meth-
ods encompass a wide spectrum of approaches including
look-up tables, state aggregation methods, radial basis func-
tions with fixed bases, and others. They have a long history
in the field of RL and form the basis of many methods with
strong theoretical guarantees.

Temporal abstraction also provides both sample complex-
ity and computational efficiency benefits. A model that is
incapable of temporal abstraction accounts for distal events
in time through repeated composition of short-term effects.
In contrast, an agent equipped with abstract temporal rea-
soning can account for temporally distal effects of action in
a single atomic step. This can drastically reduce the compu-
tational burden of planning for long-term goals, and it also
can improve a model’s accuracy. Errors propagate and com-
pound through repeated composition, but by representing
distant effects directly, a model can reduce error in its pre-
diction. Because temporal effects are inexorably linked to
an agent’s decisions, temporal abstraction mechanisms are
tightly coupled with control.

Based on the theory of Semi-Markov Decision Processes
(SMDPs), the options framework [10] provides a formal
method for representing temporally abstract knowledge. In
addition to providing a unified framework for specifying sub-
goals and skills, options have an associated model represen-
tation which captures the joint distribution over termination
states and time. Methods for MDP planning with models
based on primitive actions can thus be easily extended to
SMDP planning with models based on options.

The options framework does not explicitly provide a mech-
anism for state abstraction. However, the notion of a skill
often refers to abstraction of both kinds. For skill learning to
be most useful, a skill ought to be reusable in many contexts.
For example, once an agent learns the skill of opening a door,
ideally that agent would then have mastered the ability to
open many doors. This requires the ability to generalize the

skill across doors.
There have been a number of approaches combining state

and temporal extraction. In MAXQ [4], the two are coupled
in a hierarchical decomposition of the state space. Konidaris
and Barto [5] define an explicit abstract state space which
is shared across related environments. The relational RL
community has combined options with relational abstrac-
tions [3]. Most closely related to our work are applications of
options to continuous state spaces [6, 9]. These works tackle
the problems of representing policies at different levels of ab-
straction. However, the ability to plan using a temporally
abstract model—one of the central advantages of temporal
abstraction—remains a challenging problem when the num-
ber of states is large.

Our main contributions in this paper are a knowledge
structure called the linear option which provides a general
mechanism for providing both state and temporal abstrac-
tion capabilities, proofs that learning and planning with lin-
ear options and their models produces sensible behavior,
conditions on feature representations under which compo-
sitions of linear option models are accurate, and finally a
simple empirical verification of the feasibility and advan-
tages of linear options.

2. BACKGROUND
An MDP is a tuple 〈S,A, P,R, γ〉 consisting of a state set

S, action set A, transition function P : S × A × S → [0, 1],
an expected reward function R : S×A→ R, and a discount
factor γ ∈ [0, 1). Every MDP time step t, the agent takes
an action at in state st, and the environment responds with
a reward rt and resulting next state s′t = st+1. A policy π :
S → A is a mapping from states to actions. An action-value
function or Q-function, Qπ(s, a) is the expected discounted
reward obtained by taking action a in state s and following
π thereafter. The Bellman equation defining the optimal
Q-function is: ∀s ∈ S, a ∈ A,

Q∗(s, a) = R(s, a) + γ
X
s′∈S

P (s′|s, a) max
b∈A

Q∗(s′, b). (1)

A policy that is greedy with respect to a given Q-function
maps each state to arg maxaQ(s, a). The value function
V (s) corresponding to a given Q-function is the value of
the greedy action from each state: V (s) = maxaQ(s, a).
A policy that is greedy with respect to the optimal value
function is an optimal policy.

2.1 Linear Methods for MDPs
In the reinforcement learning literature, linear methods

have long been used for value function approximation. In-
stead of using the state as an index into a table, general lin-
ear methods map each state s to a corresponding n-dimensional
feature vector φ(s) ∈ Rn. The value of a policy π is approx-

imated using V π(s) ≈ φ(s)Tθπ, where θπ is the parameter
vector to be learned.

Linear Temporal Difference (TD) learning evaluates a pol-
icy π through repeated applications of an incremental gradient-
descent-like update rule. A t-length sequence of experience
is in the form (φ1, a1, r1, φ2, a2, r2, . . . , φt, at, rt, φt+1). We
translate this into a sequence of start-state feature vectors
(φ1, φ2, . . . , φt), a corresponding sequence of resulting-state
feature vectors (φ′1, φ

′
2, . . . , φ

′
t) = (φ2, φ3, . . . , φt+1), and a

sequence of rewards (r1, r2, . . . , rt), all generated by follow-

ing policy π. TD learning updates the value function pa-
rameters θπ at each time step according to

θπt+1 = θπt + αtφt(rt + γφ′t
T
θπt − φtTθπt), (2)

where αt is a schedule of learning-rate step sizes. Linear TD
learning has been shown [13] to converge to an approxima-
tion of V π, assuming a suitably decreasing schedule of step
sizes (αt) for the incremental updates in Equation (2).

Least-Squares TD: Linear Least-Squares Temporal Dif-
ference learning for Markov decision processes [2, 1]—which
we denote MDP-LSTD—achieves a lower sample complex-
ity than TD learning by exploiting the following observation:
given a fixed setting of the value function parameters θπ, we
can explicitly represent the sum of TD updates that would
have occurred to θπ using all of the experience up to time t
as

ut = α

tX
k=1

φk(rk + γ(φ′k)
T
θπ − φkTθπ).

MDP-LSTD estimates θπ as the value for which ut is 0.
Algebraically, this is

θπ =

"
tX

k=1

φk(φk − γφ′k)
T

#−1 "
tX

k=1

φkrk

#
.

It is known that MDP-LSTD and standard TD learning con-
verge to the same fixed point [1].

2.2 Options and SMDPs
An option can be thought of as a subroutine or skill that

an agent can invoke in certain states. Formally, an option,
o, in an MDP is defined by the tuple 〈Io, µo, βo〉. The set
Io ⊆ S is the set of states in which the option can be invoked,
the option policy µo : S → A maps each state to an action,
and βo : S → [0, 1] specifies the probability of termination in
each state s. A primitive action a ∈ A can be thought of as
a special case of an option that terminates with probability
one in every state and so lasts exactly one time step, and is
available everywhere action a is available. A set of options
O can thus contain multi-step options as well as primitive
actions defined as one-step options.

MDP + Options = SMDP. An MDP on which op-
tions are defined can be viewed as a Semi-Markov Decision
Process (SMDP). In short, an SMDP is quite like an MDP,
except we allow options to take varying amounts of time, de-
pending on state. Each SMDP time step, the agent selects
an option and follows that option’s policy until termina-
tion. The option is run until it terminates, lasting a random
number of MDP time steps, which we refer to as the option’s
duration d. Unless otherwise specified, “time step” hereafter
refers to an SMDP time step.

More precisely, an SMDP consists of a state space S, an
option set O, a discount parameter, γ ∈ [0, 1), and for each
state and option, a reward function R(s, o), defined as the
expected cumulative discounted reward obtained until the
option terminates, and a joint distribution P (s′, d|s, o) over
termination state s′ and duration d.

Option Models. An option model must specify the dis-
tribution over option duration in addition to the usual dis-
tribution over termination states. Fortunately, for the pur-
poses of planning, we can use a simple trick to fold the dura-
tion neatly within the typical transition model parametriza-

tion. Define

P (s′|s, o) =

∞X
d=1

γdP (s′, d|s, o),

where P (s′, d|s, o) is the joint distribution over termination
state s′ and option duration d. We will refer to P (s′|s, o)
as option o’s transition model. An option’s reward model
computes the expected discounted reward obtained during
the execution of the option:

R(s, o) = E
n
rt + · · ·+ γd−1rt+d−1|st = s, ot = o

o
,

where subscripts denote time and d is the duration of the
option. Using these definitions, the Bellman equation for
the SMDP can be expressed succinctly as follows:

Q∗(s, o) = E
n
rt + · · ·+ γd−1rt+d−1 + γdV ∗(st+d)

o
= R(s, o) +

X
s′∈S

P (s′|s, o) max
o′∈O

Q∗(s′, o′).

Behavior Policy: When choosing how to act, an agent
will select among the options whose initiation set includes
the current state. We will refer to the policy followed by the
agent, π, as the behavior policy, where π : S → O denotes
that the agent selects option o in state s if the previously ex-
ecuting option has just terminated. Instead of maintaining
Q-function estimates for each action, a learning/planning
agent will maintain estimates of the Q-function Q∗(s, o), for
each option o ∈ O. We will refer to these estimates as the
behavior value function.

3. LINEAR OPTIONS
As the name suggests, a linear option is a direct extension

of the options framework from the tabular representation to
the more general linear representation. The basic definition
of an option remains the same; however, the quantities are
defined over the n-dimensional feature space instead of being
defined directly over states. A linear option is a tuple o =
〈Io, µo, βo〉, where Io ⊆ Rn is the initiation set, µo : Rn → A
is the option policy, and βo : Rn → [0, 1] is the probability of
termination given a feature vector. To simplify the theorems
that follow, we consider options which are available in all
states (Io = Rn).

Note that since linear options use feature based represen-
tations of state, they apply just as well to continuous state
MDPs as to discrete state MDPs (we do, however, need the
discrete time assumption). Indeed, most of the discussion
that follows applies equally to discrete and continuous state
MDPs. In particular, our empirical result will involve a con-
tinuous domain.

3.1 Evaluation of a Behavior Policy
Although our eventual goal is to present the form of a

linear option model, in order to prove that planning with
such a model converges to a good result, it is useful to pro-
vide a good basis for comparison. It was recently shown
by both Parr et al. [7] and Sutton et al. [12] that policy
evaluation with a primitive-action linear expectation model
converges to the the same solution as does MDP-LSTD. Be-
cause MDP-LSTD is only defined for primitive actions, in
this section, we define SMDP Least-Squares Temporal Dif-
ference learning (SMDP-LSTD), a straightforward extension
of MDP-LSTD to the SMDP setting.

The development of SMDP-LSTD is similar to the devel-
opment of MDP-LSTD. While following behavior policy π,
if an option is initiated at time t, the resulting experience
is in the form of a 4-tuple 〈φt, dt, rt, φ′t〉, where φt and φ′t
are the feature representations of the start and termination
states, rt is the discounted sum of rewards from start until
termination, and dt is the option’s duration. We also define
the effective discount factor γt = γdt .

The sole difference between SMDP-LSTD and its primitive-
action counterpart is the fact that the effective discount fac-
tor is different for each observed transition. Otherwise, we
can define the sum of TD updates and set this equation to 0
as was done for a primitive-action policy in standard LSTD.
This gives the solution

0 =

tX
k=1

φk(rk + γk(φ′k)
T
θπ − φkTθπ) (3)

θπ =

"
tX

k=1

φk(φk − γkφ′k)
T

#−1 "
tX

k=1

φkrk

#
. (4)

We will refer to these equations in the next section, which
develops the linear-option expectation model.

3.2 Linear Model of a Behavior Policy
A linear-option expectation model of a behavior policy’s

dynamics, denoted (Fπ,bπ) will attempt to satisfy, for all
time steps t,

Fπφt ≈ E[γtφ
′
t|φt]

bT
πφt ≈ E[rt|φt].

A learning and planning agent will need to estimate Fπ
and bπ from data. While following policy π, at SMDP time
step t, the agent will have gathered a dataset of experience
as a set of tuples of the above form. To more compactly
represent the theorems that follow, we will represent this
dataset in the form of matrices. Let Φt be a matrix repre-
senting the sequence of starting feature vectors, let matrix
Φ′t represent the sequence of termination-state feature vec-
tors, let rt be a vector of observed SMDP rewards, and let
Γt be a vector of effective discount factors:

Φt =

26664
φ1

T

φ2
T

...
φt

T

37775 ,Φ′t =

266664
φ′1

T

φ′2
T

...

φ′t
T

377775 , rt =

26664
r1
r2
...
rt

37775 ,Γt =

26664
γ1

γ2

...
γt

37775 .
We will drop the subscript t from the notation of these ma-
trices hereafter. In Definition 1, we present the least-squares
solution of the model parameters given this dataset.

Definition 1. Given a dataset (Φ,Φ′,Γ, r) generated by
following behavior policy π, the linear-option expectation-
model (LOEM) for behavior policy π, denoted (Fπ,bπ), is
given by

Fπ
T = (Φ′Φ)−1ΦT diag(Γ)Φ′ (5)

bπ = (Φ′Φ)−1ΦTr, (6)

where diag(Γ) is the diagonal matrix with the elements of Γ
ordered along the diagonal. Notice that the discount factors

fold into the transition expectation model Fπ just as they
did in the discrete definition of an SMDP transition model.

This expectation model can be used for behavior pol-
icy evaluation. Given an initial feature vector φ, we can
compute the expected discounted termination feature vector
Fπφ as well as the expected discounted reward until termi-
nation bT

πφ. Using the values of this expected experience,
we can improve the estimate of the value function parame-
ters using a TD update. We will refer to this operation as a
LOEM policy evaluation update.

Given an input feature vector φ, the following recursion
defines a LOEM policy evaluation update to the value func-
tion parameters θk:

θk+1 = θk + αk(bT
πφ+ θT

kFπφ− θT
kφ)φ, (7)

for some step size αk.
Notice that the expected discounted termination feature

vector, Fπφ, may not correspond to the feature representa-
tion of any actual state in the MDP. Nevertheless, we show
that if the agent is committed to representing its value func-
tion linearly, value updates of the form in Equation (7) will
converge to a useful value.

The following theorem shows that LOEM policy evalua-
tion updates in Equation (7) converge to the same behavior
value function parameters as does the SMDP-LSTD algo-
rithm. In the theorem, we will require a bound on the nu-
merical radius of a matrix. This is r(A) = max‖x‖2=1 x

TAx,
for some matrix A. Essentially, this bound excludes expec-
tation models which predict that future feature vectors will
grow without bound. For a more detailed discussion of this,
see Sutton et al. [12].

Theorem 1. Consider the TD iteration using the linear-
option expectation model for behavior policy π with a non-
negative step-size sequence (αk):

θk+1 = θk + αk(bT
πφk + θT

kFπφk − θT
kφk)φk (8)

where θ0 ∈ Rd is arbitrary. Assume that (i) the step-size se-
quence satisfies

P∞
k=0 αk =∞,

P∞
k=0 α

2
k <∞, (ii) r(F) < 1,

(iii) (φk) are uniformly bounded i.i.d. random variables, and
that (iv) ΦTΦ is non-singular. Then the parameter vector
θk converges with probability one to

θπ = (I− FT
π)−1bπ, (9)

which is the same solution as that returned by SMDP-LSTD.

Proof. The proof of value function parameter conver-
gence to the solution in Equation (9) using LOEM evaluation
updates is a straightforward adaptation of the correspond-
ing theorem in Sutton et al. [12], which we do not present
here.

Here, we show that the LOEM solution (9) is equivalent to
the SMDP-LSTD solution (4). We can re-express Equation
(9) as

0 = bπ + (Fπ
T − I)θπ. (10)

Define B =
Pt
k=1 γkφk(φ′k)

T
= ΦT diag(Γ)Φ′, define C =

ΦTΦ, and define r̄ =
Pt
k=1 φkrk = ΦTr. Given these defi-

nitions, Equation (3) is equivalent to

0 = r̄ + (B−C)θπ. (11)

Equation (11) is equivalent to Equation (10) after multiply-
ing both sides by C−1. Therefore any solution of (11) is
also a solution of (10). Because all of the above steps are
reversible, the reverse statement holds as well.

3.3 Control with Linear Models
The previous sections have focused on behavior policy

evaluation. Next, we consider the control problem of finding
a good behavior policy. To do this using model-based plan-
ning, we will need more than an expectation model of a sin-
gle behavior policy. We propose learning a separate expec-
tation model for each option. A linear-option expectation
model for an option o is equivalent to a linear-option expec-
tation model for a special “single-option” behavior policy—
the policy that picks option o in every state. Thus, for any
option o ∈ O, the linear-option expectation model for that
option, (Fo,bo), can be defined and computed via Defini-
tion 1 using samples of option o executed to completion.

We represent Q-functions with a separate parameter vec-
tor θo for every option o, such that Q(s, o) = θT

oφ(s). In
our empirical results we will use two types of updates to the
Q-functions. The first is a planning update. Given a linear-
option expectation model for each option, it considers the
consequences of taking option o in state φ and updates θo
as follows:

θo = θo + α(bT
oφ+ max

o′
θT
o′Foφ− θT

oφ)φ. (12)

The second is a model-free intra-option value learning up-
date defined in the next section. In particular, we will use
two agents, one that only uses intra-option value learning
updates, and a second that combines one step of intra-option
value learning update with one step of the planning update
at each time step. The latter agent, which updates a value
function through both model-free learning and model-based
planning, was inspired by the Dyna architecture [11].

3.4 Intra-Option Learning
Traditional SMDP learning algorithms only update mod-

els and value functions when options terminate. However,
even while executing options to completion, the agent is con-
stantly executing primitive actions every MDP time step.
Here we develop more data-efficient algorithms by using in-
formation observed while the option is executing. These
methods are called intra-option learning methods. In this
section, unless otherwise noted,“time step”refers to an MDP
time step. Accordingly, rt in this section refers to the in-
stantaneous reward received every MDP time step.

Learning the Behavioral Value Function. After exe-
cuting primitive action a in state φ, intra-option value learn-
ing can update the value estimate of every option o for which
µo(φ) = a. This can be much more efficient than execute-
to-completion SMDP value learning because the agent does
not need to wait until termination to update the value of an
option and because multiple options are updated at every
time step.

Formally, after experiencing a transition 〈φt, at, rt, φ′t〉,
the values for all options o such that µo(φt) = at are up-
dated according to

θo ← θo + α
h
rt + γU(φ′t, o)− θoTφt

i
φt, (13)

where the function U is defined as

U(φ, o) = (1− β(φ))θo
Tφ+ β(φ) max

o′:φ∈Io′
θo′

Tφ. (14)

Intuitively the function U is the value of the next state
taking into account whether or not the option terminates.
Equations (13) and (14) are a straightforward extension of
the tabular intra-option rules to the linear setting. We re-
produce it here because this method is used in the empirical
section.

Learning the Model. Intra-option model learning, ap-
plies a similar technique to accelerate the training of an op-
tion model. Recall the learning target for a linear-option
expectation transition model

E[γdφt+d|φt, ot] ≈ Foφt,

where d is the random duration of the transition. Instead of
waiting d time steps, the linear-option expectation transition
model can be updated after one MDP time step. We can
define the linear expectation model recursively as

Foφt ≈ E [γβ(φt+1)φt+1 + γ(1− β(φt+1))Foφt+1] . (15)

In words, if the option terminates in state φt+1, then the
model should predict termination in state φt+1. Otherwise,
the model should equal the discounted termination of ini-
tiating the option in state φt+1. Using the learning target
in Equation (15), we can compute a sample estimate of the
squared error of our model. Given a transition from φt to
φt+1, define the sample squared-error loss function

L(Fo) = ‖Foφt − γβ(φt+1)φt+1 − γ(1− β(φt+1))Foφt+1‖2 .

Let η = φt − γ(1 − β(φt+1))φt+1. The gradient of the
sample error with respect to the model parameters is,

5FoL(Fo) = 5Fo‖γβ(φt+1)φt+1 − Foη‖2 (16)

= −2 (γβ(φt+1)φt+1 − Foη) ηT. (17)

This leads to the intra-option model update rule:

Fo ← Fo + α (γβ(φt+1)φt+1 − Foη) ηT. (18)

Much like the intra-option value learning rule, this can be
applied to all options o for which µo(φt) = at. The intra-
option learning rule for the reward model bo can be defined
similarly.

Option Policy Learning. Finally, we note that given
a set of subgoal states, an option policy for reaching those
subgoal states can be learned. The agent defines a pseudo-
reward function specific to the subgoal states. An option
designed to reach a doorway, for example, might assign a
pseudo-reward of 1 for reaching the doorway and a small
penalty elsewhere. The agent can then maintain a pseudo-
Q-function estimating the value of the option’s policy µo
with respect to the pseudo-reward. The policy can then be
learned via an off-policy learning method such as Q-learning.
In our experiments, we represent the pseudo-Q-function us-
ing the same features as used for the behavioral value func-
tion.

4. OPTION COMPOSITION
Composing models of options is at the heart of planning

and learning with options. In this section we provide con-
ditions under which linear-option expectation models may
be accurately composed. In the process, we extend recent

results on linear feature selection in MDPs to the SMDP
case.

4.1 On Feature Representations
Previously, we defined Φ to be a time-growing data set of

the observed states. Here, we define Φ to be an |S|×nmatrix
such that Φ[i, j] = φj(si) for si ∈ S and j ∈ {1, 2, . . . , n},
where n is the number of features. In words, Φ is a ma-
trix representing feature vectors of the entire state space.
This definition allows us to express relationships between
MDPs and feature representations that are independent of
an agent’s history.

It will also help us to represent the state-based behav-
ior policy transition model as a matrix. Let Pπ be an
|S| × |S| matrix representing the discounted state transi-
tion probabilities for a given behavior policy π: Pπ[s, s′] =
P (s′|s, π(s)). Note that this matrix consists of the state–
state transition model; it is distinct from the feature-based
expectation models we have been using. The least-squares
solution for the feature-based expected transition model is
FT
π = (ΦTΦ)−1ΦTPπΦ. This is a direct analog of Equa-

tion (5).
Using the linear algebra concept of an invariant subspace,

we can express the ability of a feature set to allow for an
accurate feature-based linear expected transition model of a
given option.

Definition 2. A feature space Φ is transition accurate
with respect to behavior policy π if it is subspace invariant
with respect to Pπ, i.e., if PπΦ is in span(Φ). Mathemati-
cally, ∃Fπ such that

PπΦ = ΦFT
π. (19)

Next, we define a similar criterion for the reward func-
tion. Let rπ be the vector of rewards corresponding to
the SMDP reward function from each state while follow-
ing behavior policy π: rπ[s] = R(s, π(s)). The correspond-
ing least-squares solution for the feature-based linear reward
model is bπ = (ΦTΦ)−1ΦTrπ.

Definition 3. A feature space Φ is reward accurate with
respect to behavior policy π if rπ is in span(Φ). In other
words ∃bπ such that

rπ = Φbπ. (20)

We will refer to Definitions 2 and 3 as the accuracy con-
ditions for features Φ with respect to behavior policy π.
If these definitions hold, the feature-based linear expecta-
tion model of a behavior policy can accurately represent
the true expectation of the policy’s dynamics. These are
strong conditions; in general, linear feature sets are used
precisely because they provide a simple means of approxi-
mation. However, these conditions will allow us to motivate
and define the form of composed linear models in the next
section. First, we show that if transition and reward accu-
racy hold with respect to a given behavior policy, the above
policy evaluation methods will converge to the true value
function of that policy.

When using an imperfect feature representation, however,
the value function of a policy cannot be exactly represented.
Specifically, it will have non-zero Bellman error after con-
vergence to the SMDP-LSTD fixed point. Theorem 2, a
straightforward extension of Theorem 4.1 from Parr et al. [7],

allows us to bound the error of the converged value function
as a function of the deviation from the above two accuracy
conditions.

Henceforth, we drop π from the notation when it is clear
from context. Define the deviation from the reward accuracy
condition ∆r = r−Φb. Similarly define the deviation from
the transition accuracy condition ∆P = PΦ − ΦFT. One
standard measure of error in a value function is Bellman
error. Define

BE(Φ) = r + PΦθ −Φθ (21)

to be the Bellman error associated with features Φ after
value function parameter convergence to the SMDP-LSTD
fixed point. The following theorem relates Bellman error to
the deviation from the accuracy conditions.

Theorem 2. Given any set of features Φ and behavior
policy model (P, r), the value function, after convergence to
θ = (I−FT)−1b, where (F,b) is a linear expectation model
of the behavior policy dynamics, will have Bellman error

BE(Φ) = ∆r + ∆Pθ. (22)

Proof. Adapted from Parr et al. [7]:

BE(Φ) = r + PΦθ −Φθ

= (∆r + Φb) + (∆P + ΦFT)θ −Φθ

= ∆r + ∆Pθ + Φb−Φ(I− FT)θ

= ∆r + ∆Pθ + Φb−Φb

= ∆r + ∆Pθ

It follows that for a feature set Φ that is transition and
reward accurate with respect to policy π, the evaluation of
that policy after convergence will have zero Bellman error.

Corollary 1. If Φ is transition accurate w.r.t. P and
reward accurate w.r.t. r, the Bellman error after parameter
convergence to θ will be zero.

Theorem 2 and Corollary 1 state conditions on a feature
set that lead to an accurate value function. This has strong
implications for feature selection methods. However, these
conditions apply only with respect to a given behavioral pol-
icy. A learning/planning agent will not know a priori what
the optimal policy is, and it is ultimately the value of the op-
timal policy that is desired. Ideally, we would like to express
conditions under which a feature set allows for good evalu-
ations of an interesting set of policies, or more generally, all
policies. In the next section, we take a step towards this goal
by expressing conditions under which options may be com-
posed to create new options for which the above conditions
hold.

4.2 Compositionality
In this section, we will refer to models of options instead

of models of behavior policies. Recall that the model of
an option is a model of a single-option behavior policy—
the policy which selects the indicated option in all states.
We denote models of options using the subscript o. When
an accuracy condition from Definitions 2 or 3 holds with
respect to a single-option policy, we say that the accuracy
condition holds with respect to the corresponding option.
In order to express how option models can be composed, we
first define the concept of an option composition.

Definition 4. A composition of options o1 and o2 is a
new option o1o2 which follows the open-loop policy, “execute
option o1 followed by option o2.” The model of the composi-
tion (Po1o2 , ro1o2) is equal to

Po1o2 = Po1Po2 (23)

ro1o2 = ro1 + Po1ro2 . (24)

As shown in this definition, composing option models is a
simple linear operation. A natural question to ask is whether
it is possible to do a similar thing with the feature-based
linear-option expectation models. We will show that if the
accuracy conditions hold for the composed options, the com-
position of feature-based models (F,b) has the same form as
the composition of state-based models (P,r) and that the ac-
curacy conditions will hold for any sequence of compositions.
We show the proof in three steps.

Lemma 1. Let Fo1 and Fo2 be the linear expectation tran-
sition models of two options and let Fo1o2 be the linear ex-
pectation transition model of their composition. If the tran-
sition accuracy property holds for Φ with respect to options
o1 and o2, then FT

o1o2 = FT
o1FT

o2 , and the transition accuracy
property holds for Φ with respect to o1o2.

Proof. By definition, Po1o2 = Po1Po2 . Then

Po1o2Φ = Po1Po2Φ = Po1ΦFT
o2 = ΦFT

o1FT
o2 = ΦFT

o1o2 .

The feature-based linear reward models of two options can
also be composed in a manner similar to state-based reward
model composition. We use Lemma 1 in the proof.

Lemma 2. Let (Fo1 , bo1) and (Fo2 , bo2) be the linear-option
expectation models of two options and let (Fo1o2 , bo1o2) be
the linear-option expectation model of their composition. If
the transition and reward accuracy properties hold for Φ with
respect to o1 and o2, then bo1o2 = bo1+FT

o1bo2 and the reward
accuracy property holds for Φ with respect to the composition
o1o2.

Proof. By definition, ro1o2 = ro1 + Po1ro2 . Then

ro1o2 = ro1 + Po1ro2

= Φbo1 + Po1Φbo2

= Φbo1 + ΦFT
o1bo2

= Φ(bo1 + FT
o1bo2)

= Φ(bo1o2).

These two lemmas can be combined in sequence to create
accurate models of arbitrarily long open-loop sequences of
composed options.

Theorem 3. If the transition and reward accuracy prop-
erties hold for Φ with respect to all options o ∈ O, then the
transition and reward accuracy properties hold with respect
to all sequences of compositions of o ∈ O.

Proof. This can be shown via a straightforward induc-
tion proof using Lemmas 1 and 2 in the inductive step.

B

G

Y

P

Y

B

P

G
B

P

G Y

Figure 1: Continuous Rooms World

In addition to defining linear option model composition
under ideal conditions, Theorem 3 has implications for the
study of feature sets in general primitive-action MDPs. Be-
cause a primitive action is a special case of an option, if
the accuracy conditions hold with respect to a set of primi-
tive actions, Theorem 3 provides an algorithm for accurately
evaluating arbitrary open-loop policies. Because options
themselves consist of closed-loop subroutines in general, this
result is broader than completely open-loop control.

5. EMPIRICAL ILLUSTRATION
Having defined linear-option expectation-models, we turn

next to an empirical illustration of their use in a domain
in which tabular representations of options are not feasible.
We developed the Continuous Rooms World in Figure 1 as
a simple extension of the discrete rooms environment from
Sutton et al. [10] to a continuous state space. The world
consists of a 20x20 unit building with 12 rooms separated
by impenetrable walls. Additionally, the floor of each room
is colored with one of 4 colors: (Y)ellow, (G)reen, (B)lue,
or (P)urple. In the figure, floor colors are indicated by first
letter and are separated by dashed lines.

The agent controls a small (1 unit diameter) circular wheeled
robot that is capable of observing its current location (x, y) ∈
[0, 20]2, and orientation ψ ∈ [0, 360]. In addition, it has a
floor sensor capable of detecting the color of the floor be-
neath it. It has 3 available primitive actions: forward, left,
and right. The forward action moves the agent’s location
1 unit in the direction of its current orientation, offset by
two-dimensional mean 0 Gaussian noise with 0.1 standard
deviation. The left and right actions turn the agent 30
degrees in the specified direction. When the robot impacts
a wall, its motion is stopped in the direction perpendicular
to the wall. The agent is given a reward of 1 for reaching
the yellow bottom-right corner room. After receiving its re-
ward, the agent is transported to the green room on the left
side of the building. At all other times, the agent receives a
small negative reward of 0.01.

We tested four agents in the continuous rooms world.
Each agent represents state using a feature vector φ of 3472
features. The first four features are binary indicator vari-
ables, one for each floor color, indicating the color of the floor
beneath the center of the agent. The remaining features are
radial basis features of the form φi = b exp(− 1

2
(s− ui)TC(s−

ui)), where s = [x, y, ψ], b = 20, C = diag(1
1.2
, 1

1.2
, 1

30
), and

the means ui are determined by placing a radial-basis func-
tion every 1 unit in the x and y dimensions and every 30
degrees. To make the feature vector sparse, which can help
computationally, any feature that would have had a value
φi < 0.1, is instead set to 0. Each agent follows an ε-greedy

policy with ε = 0.1. The learning rate is set to a constant
α = 5 × 10−4 for all updates. All initial value function pa-
rameters θ are initialized to the zero vector, 0. For agents
that learn linear models, the reward models b are initialized
to 0, and the expected transition models F are initialized
to the matrix such that all entries are 1/d, where d is the
number of features.

We test 2 linear option-based agents. One is model-free
and the other is model-based. The option-based agents were
equipped with 4 options—one for each floor color. Each
option specifies the subgoal of reaching the nearest state
in which the target color is observed, terminating when
the appropriate feature is set. The options are available
everywhere—when already in a room of the correct color,
the option’s goal is to stay there. Both agents choose op-
tions ε-greedily, running them until termination.

The first option-based agent, called the intra-option learn-
ing agent, is model-free. It simply applies linear intra-option
value learning as defined in Section 3.4 to update the be-
havioral Q-function after every step. The second option-
based agent, the LOEM planning agent mixes learning up-
dates with planning updates. After each time step, it makes
all the relevant intra-option model/value/pseudo-value up-
dates. Before choosing its next option, it makes one LOEM
planning update for each option using that option’s linear
model from the current state.

We test 2 primitive-action baseline agents. One is model-
free and the other model-based. Each is exactly like the cor-
responding option-based agent but instead only has access
to primitive actions. When the intra-option value learning
method above is applied to primitive actions, the equations
reduce to standard Q-learning. Similarly, the intra-option
model learning method reduces to the gradient update in
the original linear Dyna work [12].

5.1 Evaluation Method
Options are particularly advantageous in settings in which

they are reusable. In these settings, an agent can learn the
skills in one context and apply them in another. For ex-
ample, an agent can learn an option policy and transition
model while solving one task and keep the option available
for a later, different task in the same state space. To illus-
trate the ability to take advantage of such settings, we used
a two-phase evaluation strategy similar to the one used by
Şimşek and Barto [8]. During phase one, the exploration
phase, agents are allowed to act and learn about the world
but are not evaluated. During phase two, the test phase, the
agents are evaluated in a control task.

For our experiment, each tested agent was given an initial
exploration phase of 106 time steps, during which the tran-
sition dynamics were as described, but there was no task
specified (no reward was given), and the agents acted ran-
domly. During this time, each agent learned its option poli-
cies and/or transition models, if applicable. It is here that
the intra-option model learning and option policy improve-
ment methods described in Section 3.4 are used. Note that,
because the agent does not have access to the reward func-
tion at this phase, the model-building agents can only learn
properties of the transition function.

Next, the agent is put in a test phase of 105 time steps.
In the test phase, the agent receives reward as normal. It
is here that the intra-option value learning, reward model
learning, and linear model planning algorithms are tested.

0 2 4 6 8 10

x 10
4

0

200

400

600

800

1000

1200

Time Steps

Cu
m

ul
at

iv
e

of

 G
oa

l C
om

pl
et

io
ns

Performance in Continuous Rooms World

Primitive Actions, Model-free

Primitive Actions, Model-based

Floor-color Options, Model-free

Floor-color Options, Model-based

Figure 2: Performance in Continuous Rooms World

We plot the cumulative performance of each agent through-
out the test phase in Figure 2. Each curve was averaged
over 30 trials. Our main contribution—the linear-option
model-based agent—accumulates the most reward during
the test phase. The linear primitive-action model-based
agent vastly out-performs the the primitive-action model-
free agent, but falls short of the linear-option model-free
agent. Of course, the relative performance does depend
heavily on the amount of computation devoted to planning.
Nevertheless, the experiment reported here does serve to il-
lustrate that the combination of temporal and state abstrac-
tion achieved by the linear-option expectation models out-
performs the solely state abstraction achieved by primitive-
action linear expectation models when both are used in sim-
ilar algorithms.

6. DISCUSSION
In summary, we presented the form of a linear-option ex-

pectation model. When using such models in a policy evalu-
ation setting, we showed that TD updates lead to the same
solution as does the novel SMDP-LSTD algorithm. We de-
veloped intra-option methods for learning the linear-option
expectation models as well for value function learning with
such models. We defined control algorithms that use ei-
ther or both value function learning updates and planning
updates. We extended recent work on linear feature selec-
tion to the option policy setting, showing conditions under
which the value estimate of a behavioral policy will have
low Bellman error after convergence. We showed that under
these same conditions, when linear options are composed in
an open-loop sequence to create a new option, the compo-
nent option models can be easily and accurately combined.
Finally, we used a continuous navigation task to illustrate
the use of our linear-option expectation models and showed
that they can outperform the use of primitive-action linear
expectation models.

Acknowledgments
This work is supported by the Air Force Office of Scientific
Research under grant FA9550-08-1-0418 as well as by NSF
grant IIS 0905146. Any opinions, findings, conclusions, or
recommendations expressed here are those of the authors
and do not necessarily reflect the views of the sponsors

7. REFERENCES
[1] Justin A. Boyan. Technical update: Least-squares

temporal difference learning. Machine Learning,
49(2-3):233–246, 2002.

[2] Steven J. Bradtke and Andrew G. Barto. Linear
least-squares algorithms for temporal difference
learning. Machine Learning, 22(1-3):33–57, 1996.

[3] T. Croonenborghs, K. Driessens, and M. Bruynooghe.
Learning relational options for inductive transfer in
relational reinforcement learning. Lecture Notes in
Computer Science, 4894:88, 2008.

[4] Thomas Dietterich. Hierarchical Reinforcement
Learning with the MAXQ Value Function
Decomposition. Journal of Artificial Intelligence
Research, 13:227–303, 1998.

[5] George Konidaris and Andy Barto. Building portable
options: Skill transfer in reinforcement learning. In
Proceedings of the 20th International Joint Conference
on Artificial Intelligence, pages 895–900, 2007.

[6] George Konidaris and Andy Barto. Efficient skill
learning using abstraction selection. In Proceedings of
the Twenty First International Joint Conference on
Artificial Intelligence, pages 1107–1112, 2009.

[7] Ronald Parr, Lihong Li, Gavin Taylor, Christopher
Painter-Wakefield, and Michael L. Littman. An
analysis of linear models, linear value-function
approximation, and feature selection for reinforcement
learning. In ICML ’08: Proceedings of the 25th
international conference on Machine learning, pages
752–759, New York, NY, USA, 2008. ACM.

[8] Özgür Şimşek and Andrew G. Barto. An intrinsic
reward mechanism for efficient exploration.
Proceedings of the 23rd international conference on
Machine learning - ICML ’06, pages 833–840, 2006.

[9] Vishal Soni and Satinder Singh. Using
Homomorphisms to transfer options across continuous
reinforcement learning domains. Proceedings of the
21st National Conference on Artificial Intelligence,
2006.

[10] Richard Sutton, Doina Precup, and Satinder Singh.
Between mdps and semi-mdps: A framework for
temporal abstraction in reinforcement learning.
Artificial Intelligence, 112:181–211, 1999.

[11] Richard S. Sutton. Integrated Architectures for
Learning, Planning, and Reacting Based on
Approximating Dynamic Programming. In The
Seventh International Conference on Machine
Learning, pages 216–224, 1990.

[12] Richard S. Sutton, Csaba Szepesvari, Alborz
Geramifard, and Michael Bowling. Dyna-style
planning with linear function approximation and
prioritized sweeping. In Proceedings of the 24th
Conference on Uncertainty in Artificial Intelligence,
pages 528–536, 2008.

[13] John N. Tsitsiklis and Benjamin Van Roy. An analysis
of temporal-difference learning with function
approximation. IEEE Transactions on Automatic
Control, 42:674–690, 1997.

