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Abstract— Humans frequently engage in activities for their
own sake rather than as a step towards solving a specific task.
During such behavior, which psychologists refer to as being
intrinsically motivated, we often develop skills that allow us
to exercise mastery over our environment. Reference [7] have
recently proposed an algorithm for intrinsically motivated re-
inforcement learning (IMRL) aimed at constructing hierarchies
of skills through self-motivated interaction of an agent with its
environment. While they were able to successfully demonstrate
the utility of IMRL in simulation, we present the first realization
of this approach on a real robot. To this end, we implemented
a control architecture for the Sony-AIBO robot that extends
the IMRL algorithm to this platform. Through experiments,
we examine whether the Aibo is indeed able to learn useful
skill hierarchies.

Index Terms— Reinforcement Learning, Self-Motivated
Learning, Options

I. I NTRODUCTION

Reinforcement learning [8] has made great strides in
building agents that are able to learn to solvesinglecomplex
sequential decision-making tasks. Recently, there has been
some interest within the reinforcement learning (RL) com-
munity to develop learning agents that are able to achieve
the sort of broad competence and mastery that most animals
have over their environment ([3], [5], [7]). Such a broadly
competent agent will possess a variety of skills and will
be able to accomplish many tasks. Amongst the challenges
in building such agents is the need to rethink how reward
functions get defined. In most control problems from en-
gineering, operations research or robotics, reward functions
are defined quite naturally by the domain expert. For the
agent the reward is then some extrinsic signal it needs to
optimize. But how does one define a reward function that
leads to broad competence? A significant body of work in
psychology shows that humans and animals have a number
of intrinsic motivations or reward signals that could form
the basis for learning a variety of useful skills (see [1]
for a discussion of this work). Building on this work in
psychology as well as on some more recent computational
models ([2]) of intrinsic reward, [7] have recently provided
an initial algorithm for intrinsically motivated reinforcement
learning (IMRL). They demonstrated that their algorithm,

henceforth the IMRL algorithm, is able to learn a hierarchy
of useful skills in a simple simulation environment. The main
contribution of this paper is an empirical evaluation of the
IMRL algorithm on a physical robot (the Sony-Aibo). We
introduce several augmentations to the IMRL algorithm to
meet the challenges posed by working in a complex and real-
world domain. We show that our augmented IMRL algorithm
lets the Aibo learn a hierarchy of useful skills.

The rest of this paper is organized as follows. We first
present the IMRL algorithm, then describe our implemen-
tation of it on the Aibo robot, and finally we present our
results.

II. I NTRINSICALLY MOTIVATED REINFORCEMENT

LEARNING

The IMRL algorithm builds on two key concepts: areward
mechanisminternal to the agent, and theoptions framework
for representing temporally abstract skills in RL developed
by [9]. Lets consider each concept in turn.

In the IMRL view of an agent, its environment is factored
into an external environment and an internal environment.
The critic is part of the internal environment and determines
the reward. Typically in RL the reward is a function of ex-
ternal stimuli and is specifically tailored to solving the single
task at hand. In IMRL, the internal environment also contains
the agent’s intrinsic motivational system which should be
general enough that it does not have to be redesigned for
different problems. While there are several possibilities for
what an agent might consider intrinsically motivating or
rewarding, the current instantiation of the IMRL algorithm
designs intrinsic rewards around novelty, i.e., around unpre-
dicted but salient events. We give a more precise description
of novelty as used in IMRL when we describe our algorithm.

An option (in RL) can be thought of as a temporally
extended action or skill that accomplishes some subgoal. An
option is defined by three quantities: a policy that directs the
agent’s behavior when executing the option, a set of initiation
states in which the option can be invoked, and termination
conditions that define when the option terminates (Figure 1).
Since an option-policy can be comprised not only of primitive
actions but also of other options, this framework allows for



Option Definition :

• Initiation SetI ⊆ S which specifies the states
in which the option is available.

• Option Policy π : I × A → {0, 1} which
specifies the probability of taking actiona in
states for all a ∈ A, s ∈ I.

• Termination conditionβ : S → {0, 1} which
specifies the probability of the option terminating
in states for all s ∈ S.

Fig. 1. Option Definition. See text for details.

the development of hierarchical skills. The following two
components of the overall option framework are particularly
relevant to understanding IMRL:

• Option models:An option model predicts the probabilis-
tic consequences of executing the option. As a function
of the states in which the optiono is initiated, the model
gives the (discounted) probability,P o(s′|s), for all s′

that the option terminates in states′, and the total ex-
pected (discounted) rewardRo(s) expected over the op-
tion’s execution. Option models can usually be learned
(approximately) from experience with the environment
as follows:∀x ∈ S, current statest, next statest+1

P o(x|st)
α← [γ(1− βo(st+1)P o(x|st+1)

+γβo(st+1)δst+1x]

Ro(st)
α← [re

t + γ(1− βo(st+1))Ro(st+1)]

where andα is the learning rate,βo is the termination
condition for optiono, γ is the discount factor,δ is the
Kronecker delta, andre

t is the extrinsic reward. Note
that equations of the formx

α← [y] are short forx ←
(1− α)x + α[y].

• Intra-option learning methods: These methods allow for
all options consistent with a current primitive action
to be updated simultaneously in addition to the option
that is being currently executed. This greatly speeds
up learning of options. Specifically, ifat is the action
executed at timet in statest, the option Q-values for
option o are updated according to:∀optionso, st ∈ Io

Qo(st, at)
α← [re

t + γ (βo(st+1)× λo)
+γ(1− βo(st+1))× max

a∈A∪O
Qo(st+1, a)]

∀optionso′, st ∈ Io′
, o 6= o′

Qo(st, o
′) α← Ro′

(st) +
∑
x∈S

P o′
(x|st)[βo(x)× λo

+((1− βo(x))× max
a∈A∪O

Qo(x, a))]

whereλo is the terminal value for optiono.
Next we describe the IMRL algorithm. The agent con-

tinually acts according theε-greedy policy with respect to
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Fig. 2. The IMRL algorithm.

a evolving behavior Q-value function. The agent starts with
an initial set of primitive actions (some of which may be
options). The agent also starts with a hardwired notion of
salient or interesting events in its environment. The first
time a salient event is experienced the agent initiates in its
knowledge base an option for learning to accomplish that
salient event. As it learns the option for a salient event it
also updates the option-model for that option. Each time a
salient event is encountered, the agent gets an internal reward
in proportion to the error in the prediction of the salient event
from the associated option model. Early encounters with the
salient event generate a lot of reward because the associated
option model is wrong. This leads the agent’s behavior Q-
value function to learn to accomplish the salient event which
in turn improves both the option for achieving the salient
event as well as its option model. As the option model
improves the reward for the associated salient event decreases



and the agent’s action-value function no longer takes the
agent there. The agent, in effect, gets “bored” and moves on
to other interesting events. Once an option or equivalently
skill has been learned and is in the knowledge base of the
agent, it becomes available as an action to the agent. This
in turn enables more sophisticated behaviors on the part of
the agent and leads to the discovery of more challenges to
achieve salient events. Over time this builds up a hierarchy
of skills. The details of the IMRL algorithm are presented in
Figure 2 in a more structured manner.

One way to view IMRL is as a means of semi-
automatically discovering options. There have been other
approaches for discovering options, e.g., [4]. The advantage
of the IMRL approach is that, unlike previous approaches, it
learns options outside the context of any externally specified
learning problem and that there is a kind of self-regulation
built into it so that once an option is learned the agent
automatically focuses its attention on things not yet learned.

As stated in the Introduction, thus far IMRL has been
tested on a simple simulated world. Our goal here is to extend
IMRL to a complex robot in the real world. To this end, we
constructed a simple 4 feet x 4 feet play environment for
our Sony-Aibo robot containing 3 objects: a pink ball, an
audio speaker that plays pure tones and a person that can also
make sounds by clapping or whistling or just talking. The
experiments will have the robot learn skills such as acquire
the ball, approach the sound, and the putting the two together
to fetch the ball to the sound or perhaps to the person, and so
on. Before presenting our results, we describe some details
of our IMRL implementation on the Aibo robot.

III. IMRL ON A IBO

In implementing IMRL on the Aibo, we built a modular
system in which we could experiment with different kinds
of perceptual processing and different choices for primitive
actions in a relatively plug-and-play manner without intro-
ducing significant computational and communication latency
overhead. We briefly describe the modules in our system.

a) Perception Module::This module receives sensory
input from the Aibo and parses it into an observation vector
for the other modules to use. At present, our implementation
filters only simple information from the sensors (such as per-
centage of certain colors in the Aibo’s visual field, intensity of
sound, various pure tones, etc.). Work is underway to extract
more complex features from audio (eg. pitch) and visual
data (eg. shapes). Clearly the simple observation vector we
extract forms a very coarsely abstracted state representation
and hence the learning problem faced by IMRL on Aibo will
be heavily non-Markovian. This constitutes our first challenge
in moving to a real robot. Will IMRL and in particular the
option-learning algorithms within it be able to cope with the
non-Markovianness?

• Explore: Look for Pink Ball. Terminate when
Ball is in visual field.

• Approach Ball: Walk towards Ball. Terminate
when Ball is near.

• Capture Ball: Slowly try to get between between
fore limbs.

• Check Ball: Angle neck down to check if ball is
present between the fore limbs.

• Approach Sound: Walk towards sound of a spe-
cific tone. Terminate when the sound source is
near.

Fig. 3. A list of primitive options programmed on the Aibo. See text for
details.

b) Options Module::This module stores the primitive
options available to the agent. When called upon by the
Learning module to execute some option it computes what
action the option would take in the current state and calls
on the low-level motor control primitives implemented in
Carnegie Mellon University’s Robo-Soccer code with the
parameters needed to implement the action. A list of some
key options with a brief description of each is provided in
Figure 3. This brings up another challenge to IMRL. Many of
the options of Figure 3 contain parameters whose values can
have dramatic impact on the performance of those options.
For example, the option to Approach Ball has a parameter
that determines when the option terminates; it terminates
when the ball occupies a large enough fraction of the visual
field. The problem is that under different lighting conditions
the portion of the ball that looks pink will differ in size. Thus
the nearness-thresholdcannot be set a priori but must be
learned for the lighting conditions. Similarly, the Approach
Sound option has a nearness-threshold based on intensity
of sound that is dependent on details of the environment.
One way to deal with these options with parameters is to
treat each setting of the parameter as defining a distinct
option. Thus, Approach Ball with nearness-threshold 10%
is a different option than Approach Ball with nearness-
threshold of 20%. But this will explode the number of options
available to the agent and thus slow down learning. Besides,
treating each parameter setting as a distinct option ignores
the shared structure across all Approach Ball options. As one
of our augmentations to IMRL we treated the parameterized
options as a single option and learned the parameter values
using a hill-climbing approach. This use of hill-climbing to
adapt the parameters of an option while using RL to learn
the option policy and option-model is a novel approach to
extending options to a real robot. Indeed, to the best of our
knowledge there hasn’t been much work in using options on
a challenging (not lookuptable) domain.

c) Learning Module:: The Learning module imple-
ments the IMRL algorithm defined in the previous section.



• Ball Status ={lost, visible, near,captured first
time, captured, capture-unsure}

• Destinations ={near no destination,near sound
first time , near sound, near experimenter,ball
taken to sound}

Fig. 4. State variables for the play environment. Events in bold are salient.
A ball status of ’captured’ indicates that the Aibo is aware the ball is
between its fore limbs. The status ’captured first time’ indicates that ball
was previously not captured but is captured now (similarly, the value ’near
sound first time’ is set when the Aibo transitions from not being near sound
to being near it). The status of ’maybe capture’ indicates that the Aibo is
unsure whether the ball is between its limbs. If the Aibo goes for a specific
length of time without checking for the ball, the ball status transitions to
being ’capture-unsure’.

IV. EXPERIMENTS

Recall that for our experiments, we constructed a simple
4’x4’ play environment containing 3 objects: a pink ball, an
audio speaker that plays pure tones and a person that can also
make sounds by clapping or whistling or just talking. The
Explore (primitive) option turned the Aibo in place clockwise
until the ball became visible or until the Aibo had turned in
circle twice. The Approach Ball option had the Aibo walk
quickly to the ball and stop when the nearness-threshold was
exceeded. The Approach Sound option used the difference
in intensity between the two microphones in the two ears
to define a turning radius and forward motion to make the
Aibo move toward the sound until a nearness-threshold was
exceeded. Echoes of the sound from other objects in the room
as well as from the walls or the moving experimenter made
this a fairly noisy option. The Capture Ball option had the
Aibo move very slowly to get the ball between the fore limbs;
walking fast would knock the ball and often get it rolling out
of sight.

We defined an externally rewarded task in this environment
as the task of acquiring the ball, taking it to the sound
and then taking it to the experimenter in sequence. Upon
successful completion of the sequence, the experimenter
would pat the robot on the back (the Aibo has touch sensors
there), thereby rewarding it and then pick up the robot and
move it (approximately) to an initial location. The ball was
also moved to a default initial location at the end of a
successful trial. This externally rewarded task is a fairly
complex one. For example, just the part of bringing the ball
to sound involves periodically checking if the ball is still
captured, for it tends to roll away from the robot; if it is
lost then the robot has to Explore for ball and Approach
Ball and then Capture Ball again, and then repeat. Figure 9
shows this complexity visually in a sequence of images taken
from a video of the robot taking the ball to sound. In image
5 the robot has lost the ball and has to explore, approach
and capture the ball again (images 6 to 9) before proceeding
towards sound again (image 10). We report the results of

three experiments.
Experiment 1: We had the Aibo learn with just the external

reward available and no intrinsic reward. Consequently, the
Aibo did not learn any new options and performed standard
Q-learning updates of its (primitive) option Q-value func-
tions. As Figure 5(a) shows, with time the Aibo gets better
at achieving its goal and is able to do this with greater
frequency. The purpose of this experiment is to serve as
a benchmark for comparison. In the next two experiments,
we try to determine two things. (a) Does learning options
hinder learning to perform the external task when both
are performed simultaneously? And (b), How ’good’ are
the options learned? If the Aibo is bootstrapped with the
learned options, how would it perform in comparison with
the learning in Experiment 1?

0 500 1000 1500

(b) External and Internal rewards

0 200 400 600 800 1000 1200 1400 1600 1800

(a) External Reward only

0 200 400 600 800 1000 1200 1400 1600 1800

(c) External Reward, learned options available at start time

Time (in seconds)

Fig. 5. A Comparison of learning performance. Each panel depicts the
times at which the Aibo was successfully able to accomplish the externally
rewarded task. See text for details.

Experiment 2: We hardwired the Aibo with three salient
events: (a) acquiring the ball, (b) arriving at sound source,
and (c) arriving at sound source with the ball. Note that (c)
is a more complex event to achieve than (a) or (b), and also
that (c) is not the same as doing (a) and (b) in sequence
for the skill needed to approach ball without sound is much
simpler than approaching sound with ball (because of the
previously noted tendency of the ball to roll away as the
robot pushes it with its body). The Aibo is also given an
external reward if it brings the ball to the sound source and
then to the experimenter in sequence. In this experiment the
Aibo will learn new options as it performs the externally
rewarded task. The robot starts by exploring its environment
randomly. Each first encounter with a salient event initiates
the learning of an option for that event. For instance, when
the Aibo first captures the ball, it sets up the data structures
for learning the Acquire Ball option. As the Aibo explores
its environment, all the options and their models are updated
via intra-option learning.

Figure 6 presents our results from Experiment 2. Each
panel in the figure shows the evolution of the intrinsic reward
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Fig. 6. Evolution of intrinsic rewards as the Aibo learns new options. See
text for details. Solid lines depict the occurrence of salient events. The length
of these lines depicts the associated intrinsic reward.

associated with a particular salient event. Each encounter with
a salient event is denoted by a vertical bar and the height of
the bar denotes the magnitude of the intrinsic reward. We see
that in the early stages of the experiment, the event of arriving
at sound and the event of acquiring the ball tend to occur
more frequently than the more complex event of arriving at
sound with the ball. With time however, the intrinsic reward
from arriving at sound without the ball starts to diminish. The
Aibo begins to get bored with it and moves on to approaching
sound with the ball. In this manner, the Aibo learns simpler
skills before more complex ones. Note, however, that the
acquire ball event continues to occur frequently throughout
the learning experience because it is an intermediate step in
taking the ball to sound.

Figure 5(b) denotes the times in Experiment 2 at which
the Aibo successfully accomplished the externally rewarded
task while learning new options using the salient events.
Comparing this with the result from Experiment 1 (Figure
5(a)) when the Aibo did not learn any options, we see that the
additional onus of learning new options does not significantly
impede the agent from learning to perform the external task,
indicating that we do not loose much by having the Aibo
learn options using IMRL. The question that remains is, do
we gain anything? Are the learned options actually effective
in achieving the associated salient events?

Experiment 3: We had the Aibo learn, as in the Experi-
ment 1, to accomplish the externally rewarded task without
specifying any salient events. However, in addition to the
primitive options, the Aibo also had available the learned
options from Experiment 2. In Figure 7, we see that the Aibo
achieved all three salient events quite early in the learning
process. Thus the learned options did in fact accomplish the
associated salient events and furthermore these options are
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Fig. 7. Performance when the Aibo bootstrapped with the options learned
in Experiment 2. The markers indicate the times at which the Aibo was able
to achieve each event.

indeed accurate enough to be used in performing the external
task. Figure 5(c) shows the times at which the external reward
was obtained in Experiment 3. We see that the Aibo was
quickly able to determine how to achieve the external goal
and was fairly consistent thereafter in accomplishing this
task. This result is encouraging since it shows that the options
it learned enabled the Aibo to bootstrap more effectively.
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Fig. 8. A comparison of thenearness thresholdas set by the hill-
climbing component in different lighting conditions. The solid line represents
the evolution of the threshold under bright lighting, and the dashed line
represents the same under dimmer conditions. Here we see that the hill
climbing is, at the very least, able to distinguish between the lighting
conditions and tries to set a lower threshold for case with dim lighting.

Finally, we examined the effectiveness of the hill-climbing
component that determines the setting of thenearness thresh-
old for the Approach Objectoption. We ran the second
experiment, where the Aibo learns new options, in two
different lighting conditions - one with bright lighting and the
other with considerably dimmer lighting. Figure 8 presents
these results. Recall that this threshold is used to determine
when theApproach Objectoption should terminate. For a
particular lighting condition, a higher threshold means that
Approach Objectwill terminate closer since a greater number
of pink pixels are required for the ball to be assumed near



 

 

 

 

 

 

 
1) Approaching Ball 

 
2) Capturing Ball 

 
3) Ball 
Captured 

 
4) Walking 

with Ball 

 

 
5) Ball is Lost 

 
6) Looking for ball 

 
7) Looking 

for ball 

 
8) Ball Found 

 

 
9) Ball Re-captured 

 
10) Aibo and Ball 

Arrive at 

Destination 

   

 

 

 

 

 

 

Fig. 9. In these images we see the Aibo executing the learned option to take the ball to sound (the speakers). In the first four images, the Aibo endeavors
to acquire the ball. The Aibo has learned to periodically check for the ball when walking with it. So in image 5 when ball rolls away from the Aibo, it
realizes that the ball is lost. Aibo tries to find the ball again, eventually finding it and taking it to the sound.

(and thus capturable). Also, for a particular distance from the
ball, more pink pixels are detected under bright lighting than
under dim lighting. The hill-climbing algorithm was designed
to find a threshold so that the option terminates as close to
the ball as possible without losing it thereby speeding up
the average time to acquire the ball. Consequently, we would
expect that the nearness threshold should be set lower for
dimmer conditions.

V. CONCLUSIONS

In this paper we have provided the first successful appli-
cation of the IMRL algorithm to a complex robotic task.
Our experiments showed that the Aibo learned a two-level
hierarchy of skills and in turn used these learned skills in
accomplishing a more complex external task. A key factor
in our success was our use of parameterized options and the
use of the hill-climbing algorithm in parallel with IMRL to
tune the options to the environmental conditions. Our results
form a first step towards making intrinsically motivated
reinforcement learning viable on real robots. Greater eventual
success at this would allow progress on the important goal
of making broadly competent agents (see [6] for a related
effort).

As future work, we are building more functionality on
the Aibo in terms of the richness of the primitive options
available to it. We are also building an elaborate physical
playground for the Aibo in which we can explore the notion
of broad competence in a rich but controlled real-world
setting. Finally, we will explore the use of the many sources

of intrinsic reward in addition to novelty that have been
identified in the psychology literature.
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