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Abstract. Many reinforcement learning approaches can be formulated using the theory of Markov decision
processes and the associated method of dynamic programming (DP). The value of this theoretical understanding,
however, is tempered by many practical concerns. One important question is whether DP-based approaches that
use function approximation rather than lookup tables can avoid catastrophic effects on performance. This note
presents a result of Bertsekas (1987) which guarantees that small errors in the approximation of a task's optimal
value function cannot produce arbitrarily bad performance when actions are selected by a greedy policy. We
derive an upper bound on performance loss that is slightly tighter than that in Bertsekas (1987), and we show the
extension of the bound to Q-leaming (Watkins, 1989). These results provide a partial theoretical rationale for the
approximation of value functions, an issue of great practical importance in reinforcement learning.
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1. Introduction

Recent progress in reinforcement learning has been made by forming connections to the
theory of Markov decision processes (MDPs) and the associated optimization method of
dynamic programming (DP) (Barto et al., 1990; Barto et al., 1991; Sutton, 1988; Watkins,
1989; Sutton, 1990; Werbos, 1987). Theoretical results guarantee that many DP-based
learning methods will find optimal solutions for a wide variety of search, planning, and
control problems. Unfortunately, such results often fail to assume practical limitations
on the computational resources required. In particular, DP-based methods form value
functions which assign numeric estimates of utility to task states. A common theoretical
assumption is that such functions are implemented as lookup tables, i.e., that all elements
of the function's domain are individually represented and updated (e.g., Sutton, 1988;
Watkins & Dayan, 1992; Barto et al. 1991; however, see Bertsekas, 1987, and Bradtke,
1993, for approximation results for restricted classes of MDPs). If practical concerns
dictate that value functions must be approximated, how might performance be affected? Is
it possible that, despite some empirical evidence to the contrary (e.g., Barto et al., 1983;
Anderson, 1986; Tesauro, 1992), small errors in approximations could result in arbitrarily
bad performance? If so, this could raise significant concerns about the use of function
approximation in DP-based learning.
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This note presents to the machine learning community a result of Bertsekas (1987) which
guarantees that a good approximation of a task's optimal value function will yield reasonable
performance when actions are selected according to a greedy policy. Using a natural
definition of the loss in performance due to approximation, we derive an upper bound
on the loss which is slightly tighter than the one indicated in Bertsekas (1987). We also
show the corresponding extension to Q-learning (Watkins, 1989). Although these results
do not address the issue of converging to good approximations, they show that if good
approximations of values are achieved, then reasonable performance can be guaranteed.

2. Problem statement and theorem

We consider stationary Markovian decision processes (MDPs, henceforth also called tasks)
that have finite state and action sets (e.g., see Bertsekas, 1987; Barto et al., 1990). Let X
be the state set, A(x) be the action set for state x 6 X, and Pxy(a) be the probability of a
transition from state x to state y, given the execution of action a e A(x). Let R(x, a) be
the expected payoff received on executing action a in state x. We consider only stationary
deterministic policies, T: X —> A, and infinite-horizon tasks with geometrically discounted
payoffs, 7 £ [0,1). A value function is any real-valued function of states, V: X —> 5ft. In
particular, value function Vv measures policy T''S performance if, for all x £ X,

where xt and rt respectively denote the state and payoff received at time t, and En is the
expectation given that actions are selected according to policy T. The determination of Vn

for a given TT is called policy evaluation.
The value function for an optimal policy is greater than or equal to that of any other

policy, i.e., if T* is an optimal policy and V* is its value function, then for all policies
T, V*(x) > TT(X), for all x £ X. V* is the optimal value function, and it is unique for

this class of MDPs.
Value functions can also give rise to policies in a straightforward fashion. Given value

function V, a greedy policy Ty can be defined by selecting for each state the action that
maximizes the state's value, i.e.,

where ties for the maximum action are broken arbitrarily. Evaluating a greedy policy
Ky yields a new value function VVf, which we abbreviate as Vv. Figure 1 illustrates the
relationship between the derivation of greedy policies and policy evaluation. Value function
V gives rise to greedy policy pr^ which, when evaluated, yields Vv. In general, V ^= Vv.
Equality occurs if and only if V — V, in which case any greedy policy will be optimal.
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Figure 1. Loss from approximate optimal-value functions. Given V, an approximation within e > 0 of V*, derive
the corresponding greedy policy ity. The resulting loss in value, V — Vy, is bounded above by (27t)/(l —7).

For a greedy policy KV derived from V define the loss function Lv such that for all
x £ x,

Ly (x) is the expected loss in the value of state x resulting from the use of policy p\v instead
of an optimal policy. The following theorem gives an upper bound on the loss Ly.

THEOREM. Let V* be the optimal value function for a discrete-time MDP having finite
state and action sets and an infinite horizon with geometric discounting: 7 G [0,1). If V
is a function such that for all x £ X, \V*(x) — V(x)\ < e, and-nv is a greedy policy for
V, then for all x,

(Cf. Bertsekas, 1987, p. 236, #14(c): the preceding bound is tighter by a factor of '7.)

Proof: There exists a state that achieves the maximum loss. Call this state z. Then for all
x £ X,Ly(z) > Lv(x). For state z consider an optimal action, o = T*(Z), and the action
specified by KV, b = KV(Z). Because KV is a greedy policy for V, b must appear at least
as good as a:

Because for all y € X, V*(y) - e < V(y) < V(y) + e,
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Therefore, we have that

The maximal loss is

Substituting from (2) gives

Because, by assumption, Lv(z) > Lv(y), for all y 6 X, we have

Simplifying yields

This result extends to a number of related cases.

Approximate payoffs. The theorem assumes that the expected payoffs are known exactly.
If the true expected payoff R(x, a) is approximated by R(x, a), for MX 6 X and a € A(x),
then the upper bound on the loss is as follows.

COROLLARY 1. lfforall\V*(x)-V(x)\ < t, for all x 6 X,and\R(x,a)-R(x,a)\ < a,
for all a G A(x), then

for all x 6 X, where -Ky is the greedy policy for V.

Proof: Inequality (1) becomes
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and (2) becomes

Substitution into (3) yields the bound.                                                                                           .

Q-learning. If neither the payoffs nor the state-transition probabilities are known,
then the analogous bound for Q-learning (Watkins, 1989) is as follows. Evaluations are
defined by

where Vv(x) — maxa Qv(x, a). Given function Q, the greedy policy TQ is given by

The loss is then expressed as

Proof: Inequality (1) becomes Q(z, a) < Q(z, b), which gives

Substitution into (3) yields the bound.                                                                                              .

Bounding e. As Williams and Baird have pointed out, the bounds of the preceding
theorem and corollaries cannot be computed in practice because the determination of e
requires knowledge of the optimal value function, V*. Nevertheless, upper bounds on
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approximation losses can be computed from the following upper bound on t (Porteus,
1971). Let

and let 6 = maxx€x C(x)\ then e < y^. Replacing e by ^—^ in the bounds of the
theorem and corollaries yields new bounds expressed in terms of a quantity, S, that can be
computed from successive value function approximations, V and V of Equation (4), which
arise naturally in DP algorithms such as value iteration. In model-free algorithms such as
Q-learning, 8 can be stochastically approximated. See Williams and Baird (1993) for the
derivation of tighter bounds of this type.

3. Discussion

The theorem and its corollaries guarantee that the infinite-horizon sum of discounted payoffs
accumulated by DP-based learning approaches will not be far from optimal if (a) good
approximations to optimal value functions are achieved, (b) a corresponding greedy policy
is followed, and (c) the discount factor, 7, is not too close to 1.0. More specifically,
the bounds can be interpreted as showing that greedy policies based on approximations
can do no worse than policies whose expected loss at each time step is about twice the
approximation error.

It should be pointed out that incurring only "small losses" in the sum of discounted payoffs
need not always correspond to the intuitive notion of "near success" in a task. For example,
if a task's sole objective is to reach a goal state, then a sufficiently small discount factor
might yield only a small difference between a state's value under a policy that would lead
optimally to the goal and the state's value under a policy that would never lead to the goal.
In such cases, care must be taken in formulating tasks, e.g., in choosing the magnitudes
of payoffs and discount factors. One must try to ensure that policies meeting important
performance criteria will be learned robustly in the face of small numerical errors.

Although the above bounds on the loss function can help to justify DP-based learning
approaches that do not implement value functions as lookup tables, there are currently
few theoretical guarantees that such approaches will, in fact, obtain good approximations to
optimal-value functions (i.e., small values of e, or 6). Indeed, informal reports by researchers
indicate that it can be quite difficult to achieve success with DP-based approaches that
incorporate common function approximation methods. Thus, the theoretical and empirical
investigation of function approximation and DP-based learning remains an active area
of research.
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