As appeared in the Proceedings of the Eighth Yale Workshop on Adaptive and Learning Systems, pp. 91-96. Center for
Systems Science, Yale University, 1994.

On Step-Size and Bias in Temporal-Difference Learning

Richard S. Sutton

sutton@gte.com

Abstract

We present results for three new algorithms for set-
ting the step-size parameters, o and A, of temporal-
difference learning methods such as TD(A). The over-
all task is that of learning to predict the outcome of
an unknown Markov chain based on repeated obser-
vations of its state trajectories. The new algorithms
select step-size parameters online in such a way as
to eliminate the bias normally inherent in temporal-
difference methods. We compare our algorithms with
conventional Monte Carlo methods. Monte Carlo
methods have a natural way of setting the step size:
for each state s they use a step size of 1/n;, where
ny 1s the number of times state s has been visited.
We seek and come close to achieving comparable step-
size algorithms for TD(A). One new algorithm uses a
A = 1/n; schedule to achieve the same effect as pro-
cessing a state backwards with TD(0), but remains
completely incremental. Another algorithm uses a A
at each time equal to the estimated transition proba-
bility of the current transition. We present empirical
results showing improvement in convergence rate over
Monte Carlo methods and conventional TD(A). A lim-
itation of our results at present is that they apply only
to tasks whose state trajectories do not contain cycles.

1 Introduction

The defining feature of temporal-difference (TD)
learning (Sutton, 1988) is that it involves learning pre-
dictions on the basis of other predictions. Suppose you
are using observations of an absorbing Markov process
to predict where it will absorb as a function of its cur-
rent state. The process 1s currently in state s; and you
wish to update your prediction for s; based on the cur-
rent trajectory. A conventional Monte Carlo method
would wait to see where the process absorbs and then
shift the prediction for s; toward that outcome. A
temporal-difference method, on the other hand, would
wait just one step, until s;31 was known, and then
shift the prediction for s; toward the prediction for
s¢t41. The new prediction is used as the target for
adapting the prediction at s;. This kind of learning
1s widely used in reinforcement learning because it can
be implemented incrementally and online, because it
can learn from incomplete sequences, and because it
often converges more rapidly than conventional meth-
ods, particularly for nonstationary tasks.

Satinder P. Singh
Brain & Cognitive Sciences Dept. (E10)
Massachusetts Institute of Technology
Cambridge, MA 02139
singh@psyche.mit.edu

Building predictions upon other predictions brings
up special problems relating to step size. First, how
does the process start? Initially all predictions may be
arbitrary, independent of any data.! How can these
be used as the targets for learning? If they are used,
they would seem to inherently introduce bias into the
learning procedure. In conventional learning proce-
dures it is possible to eliminate the potential bias due
to the initial predictions by an appropriate choice of
the step-size parameter. The first time a state is vis-
ited, for example, the step-size parameter is 1, causing
the old estimate to be completely replaced by the first
target—a real, unbiased, data point. In the case of
temporal-difference learning it is not this easy, because
the first target is itself a prediction and potentially bi-
ased. Eliminating the effect of initial bias is a special
problem for temporal-difference learning.

A solution may lie in part with the eligibility trace
(A) mechanism (Klopf, 1982; Sutton, 1988; Watkins,
1989; Dayan, 1992) used in methods such as TD(A).
These methods shift the prediction for s; not just to-
ward the prediction for s;41, but to a mixture of the
predictions for s¢41, St42, St+3, etc., up to and includ-
ing the real final outcome. How should these various
predictions best be combined? Should it depend on
their bias, their variance, or on how much prior ex-
perience there has been with them? For example, ini-
tially one might want a mixture that puts all its weight
on the final outcome, so as not to be influenced by the
bias in the initial predictions. Later, as the predictions
become more informed and meaningful, they could be
given greater emphasis. In general, a single trajectory
may pass through states some of which are highly ex-
perienced and some of which are totally naive. How
can this be taken in account in combining their pre-
dictions into overall targets? If this could be done
properly, it might not only reduce bias, but also result
in a significantly more efficient learning procedure.

The problems of bias and of appropriately mixing
predictions into a target for TD methods are closely
related. Within existing methods such as TD(A) they
both hinge on the choice of the step-size, «, and the
trace factor, A. Ideally, these parameters ought not
simply be fixed or reduced according to a fixed sched-

1Of course in practical applications one will want to
“load” them with any available prior knowledge. In this
paper we instead explore a mathematical perspective in
which we strive to eliminate all prior bias. This is done for
simplicity only; ultimately the two perspectives should be
integrated.

ule, as in prior work. Instead, we seek a way of setting
them as a function of state and of a state’s experience
that will eliminate bias and support rapid convergence.
What we seek ideally is something like what already
exists for conventional Monte Carlo methods. These
methods use, for each state, a step size of 1/n,, where
ny 1s the number of times s has been visited. This
removes initial bias, because the step size is 1 on the
first visit, and converges nicely, because each outcome
that follows s is given equal weight. It 1s unlikely that
there exists any solution for TD methods of quite this
simplicity, but some of the new algorithms we present
here approach it.

2 The Problem

Consider the problem of predicting the terminal out-
come of a Markov chain from knowledge of the current
state, on the basis of experience with past state tra-
jectories and outcomes. An individual trajectory is a
sequence of states followed by a numerical outcome

51~ §9 s Sy~ 2 (1)

where z € R and the transitions are generated by a
Markov chain.? Without loss of generality the initial
state s; can be taken to be a particular fixed state,
and the last transition can be taken to be into a single
terminal state, with the expected value of the outcome
depending on the final nonterminal state, s,,. For each
nonterminal state, s, our task is to maintain an esti-
mate (or prediction) V; of the expected value of the
outcome once state s has been entered:

In one sense, the ideal solution is to construct a model
of the underlying Markov chain and then compute
this expected value assuming that the model was ex-
actly correct. We will rule out this certainty equivalent
(CFE) solution because of its prodigious requirements
for memory and computation.?

The conventional Monte Carlo (MC) predictions
(e.g., see Barto & Duff, 1994) are the average of the
actual outcomes that have followed visits to the state:

%:Zﬁ%% (2)

where s is a nonterminal state, S; is the set of all
previously observed sequences that contain s, and ||
is the number of such sequences. If we assume that

2All of our algorithms extend trivially to the case in
which payoffs occur on every time step and the objective is
to predict their expected (possibly discounted) cumulative
sum.

®This method is approximately O(N?) in memory and
O(N?) in computation, where N is the number of states.
Most of the methods we consider here are only O(N) in
memory and computation, though we will stray upwards
from there in some cases.

the state sequences do not contain any cycles (state
repetitions such that s, = s, for @ # b), then it is
natural to implement this method incrementally. Each
time a sequence completes, then for each state s visited
during the sequence we update

n.=ng+1,

so that n! = |S;| is the number of times state s has
been visited, and
s 1
V= SVt
ns 5
1

= Vet L-w)

5

which has a natural interpretation as an error-
correction learning rule with an error of z — V; and
a step size of & = n% If this update rule is followed,

then (2) will hold at each step. Thus, the estimates
will be unbiased and their variance will decrease in the
usual way according to the law of large numbers.

We call this algorithm the Monte Carlo (MC) rule.
Tt is well known (Sutton, 1988) that TD(1), the TD(})
algorithm with A = 1, can achieve an overall effect
similar to that of an error correction rule such as (3).
In fact, for the case without cycles, TD(1) with a step
size of a0 = nL, results in exactly the same estimates at

the end of each state trajectory as the MC rule, as we
confirm empirically in Section 5.

3 A TD Analog of the MC Rule

Just as the MC rule maintains each state’s estimate
as the average of the actual outcomes that follow the
state, a TD analog would maintain its estimates as the
average of the estimates that follow the state. Thus,
if you have visited s twice, passing next to states ¢
and j, where you found estimates v; and wv;, then

Ve = %vi + %vj (we distinguish v; and v;, the esti-
mates for ¢ and j at the time those states were en-
tered from s, from the current estimates V; and V; for
those states). The problem with this idea as stated
is that the first time a state is entered its estimate is
not based on any prior data. Its value is completely
biased and “contentless”. It is not clear how to av-
erage in these contentless initial estimates with later
ones. One solution might be to ignore transitions to
contentless states, learning nothing from them and not
counting them as visits to the source state. This would
enable us to keep all the estimates unbiased, but obvi-
ously would also throw away useful information. For
long sequences, we would be reduced to propagating
information back only one state per pass through the
sequence (as is done by the original TD(0) algorithm).

The key idea to a better solution is to think of work-
ing backwards along the sequence, from its termination
toward the current transition. If one were somehow
able to look ahead to the end and update backwards,

then the estimate at the next state would never be
“contentless” because it would always contain at least
one real outcome (that from the current sequence).
Moreover, one would always be using the information
from the completion of the current sequence, so one’s
estimate will always be more up to date. Can this be
done incrementally? Surprisingly, the answer is Yes,
by the use of an eligibility trace of a particular form.

First we define the backwards computation. Let
V! denote the estimate after it has been updated by
working backwards. For any transition ¢ ~ j we can
see that

n; 1

Vi = n—;Vi + n—;Vj/ (4)

1 /
= Vit (- V) 6

2

where Vj’ is defined to be z if j is the terminal state,
and of course n; = n; + 1. Clearly, this is a TD rule,
because the error in (5) is the temporal difference be-
tween two successive predictions, Vj’ — V;. But it 1s
also of the same form as the MC rule (3) in the way in
which it incrementally maintains the sample average.
Here we maintain the sample average of the (back-
wards computed) estimates at the following states.
This is a backwards computation because the TD tar-
gets are the primed estimates, the estimates after they
have been updated. Thus, to implement (5) one would
have to work backwards, first computing Vj’ and then

v

. and so on.

Let us examine the backwards rule (5) further, as it
is in some sense an ideal TD rule. A simple inductive
proof shows that all the estimates are unbiased because
they are averages (in the sense of (4)) of other unbiased
estimates. Note that (5) clearly does achieve some of
our goals. For example, the predictions formed by this
rule will be independent of the initial estimates. If this
is the first time that state ¢ has been visited, then n}
will be 1, and the rule reduces to V/ = V. The effect

2
is as if the A of TD(X) were held at 1 while passing
through never experienced states. When we do reach
states with some experience (or a final outcome) that
experience is passed all the way back through all the
inexperienced states, updating them all fully in one
pass.

Now we return to the question of implementing (5)
in a forward and incremental way, through the use of
eligibility traces. Without loss of generality we can
simplify notation by numbering the states in the se-
quence in numerical order

1~2~ 3~ s m~s 2. (6)

Then we can expand our ideal TD rule (5) as

1
v/ = VH—E(o — Vi)

1 1
Vit = Virr + —— (Vi = Vi) = Vi

[OFN]

1 1 1
= Vit S(Vip = Vi) + (Vi = Vin1)

i ;g
= Vit (Vi = Vi) + = (Vs — Vi)
n; ng i,y
i%%(fha = Visa)
m i 1
= W+Z<vj+1—vj>H@ (7)
=i k=i

where Vi,41 is defined to be z, as usual. This is of
the form of TD(A), where A varies over time accord-
ing to Ay = n% Thus, we can implement the ideal

“backwards” rule (5) by the following incremental al-
gorithm. At the beginning of each sequence we set the
eligibility trace e; for each state to 0. Then, on each
transition 7 ~ j we update, in order:

n;i=n; +1
e; =1

Vi =V + ni(V] - Vz)ek Vk
er = eg i Vik.
ng
This algorithm achieves exactly (5) for the case in
which their are no cycles in the sequence. Let us call
this algorithm TD(1/n), because it is like TD(X) with
a=1/ns; and A = 1/n,. As we confirm empirically in
Section 5, this algorithm produces exactly the same es-
timates (at the end of each state trajectory)1 as TD(0)

applied backwards with a step size of o = -.

One might hope that the estimates of TD(1/n)
would be more accurate than those of the MC algo-
rithm. Unfortunately, this is not always the case. For
example, consider TD(1/n) receiving two estimates vy
and vy at two times from downstream states. The es-
timate formed, %vl + %vz, 1s an excellent one if v; and
vo are from two different downstream states, but what
if they are from the same state? In this case, a sim-
ple average puts too much weight on vy, the earlier
estimate, because the outcomes that went into form-
ing it also went into forming va. What we would re-
ally prefer to do i1s replace vi with vs, but to do that
requires keeping track of which estimates are due to
which downstream states. This is what the algorithm
described in the next section does.

4 A Corrected TD Algorithm

We now introduce our second new algorithm, the Cor-
rected TD (TDC) algorithm. This algorithm maintains
a record of n;;, the number of times the ¢ ~ j transi-
tion has occurred, and of v;;, the most recently known
value of V;. The objective of the TDC algorithm is to

maintaln nos
k3
J

If j is the terminal state, then the corresponding wv;;
is the current estimate of the expected outcome when
an outcome is received immediately following state .
Achieving (8) is really a general goal for all TD al-
gorithms. Suppose we have an ¢ ~+ j transition. V;
should be updated as

/

n.
v/ = ik, /
i E o Uik

k 2

1

/
K3

/ !
g Nikvik + N4 Vj
k#j

n,
because n;k = n;x and ng = Uik for k ;é j, and U;j =

Vj’. This can be rewritten in a TD-like form as follows

/ /
g Nk Vik + M55 Vi3 — M55 Vij + n”V]
k)

K3

R
n

n; Nk T,
= _/E Uik+?[nzjvj — nijvij]
2

n, 1
L
1 1)
= (= —=WVid — [y (V] = vij) +]
1
= Vit = [V/ = Vit ni (V] = wij)] 9)
or
AV = V-
1
- [V Vi+ ”ZJ(V vl])]
1
= Vi = Vit AV +n5(V; — vy + AV])]
1
= = Vi = Vit (V; —vij) + AV/(1 + nij)]
/
= Avi+ LAy (10)
where
1
AVi=— Vi = Vit (Vi =)l (1)

i
When j is the outcome state, then we define V; = v;;

n (11) and, in (10), we define AV} by

1
AV]'/:V]'/_VJ = n—ij(z—vij). (12)
This arranges for V’ = v” to be the average of the out-
comes received from state ¢, as in the MC algorithm.

Now we are ready to write a recursive equation like
(7). Switch to the notation in which the states in the
sequence are in numerical order, 1 ~» 2 ~» -+
z. Then we have

RV N # I aNtd

Vo= Vi AVi+ ISy,
n;

K3
K3

”z’,z’+1
= Vi+AV+ AV,

)

z z+1 nz+1 i+2

+ R A -
ni z+1
”2’,i+1 ;n,m-l—l
+ L LAY
2 m
m+1

= V—l—ZAVH ’”““ (13)

And there is a correspondmg algorithm. Initialize
n; = ng; = 0,Ve, 5 and, at the start of each sequence,
set e; := 0,Vi. Then, on each transition, ¢ ~ j, up-
date, in order:

ng; = ng; + 1; n; :=n; +1

e; =1
1
AVi = = [V = Vit (ng = D(V; = vy)]
Vi i= Vi + AViey k
€L = 6k— Vk

In addition, for the final transition ¢ ~ j of the se-
quence, where j is the outcome state, update

1
V=V, + —(Z — U”) k Yk

45
and then go back and set
vij =V

for all nonterminal transitions ¢ ~ j in the sequence.
(This can also be done incrementally, if desired.) This
completes the specification of the TDC algorithm.

Note that the TDC algorithm uses significantly
longer traces than does TD(1/n). The new traces
fall with nj ., /nj rather than with 1/n}. This may
be a better trace decay to use even if one uses the
first rule for AV rather than the corrected one given
here. Let us call that algorithm TD(n/n), because it
is like TD(1/n) except it uses A = n;;/n; rather than
A= 1/”2

5 Empirical Results on Acyclic
Tasks

To test the new algorithms (and our analyses of them),
we applied them to two kinds of randomly constructed
test problems: pyramid tasks and random acyclic
tasks. Both kinds of problems were constructed so
that their state trajectories would contain no cycles.

In the pyramid tasks, the states were organized in
a pyramid, as shown in Figure 1. All state trajecto-
ries started at the top of the pyramid and ended after
exiting from the base. At each step, a transition oc-
curred from the current state to one of the four (or
less, if there were less than four states in the level
below) nearest states in the level below it. The transi-
tion probabilities were selected randomly as a uniform,

random partition of the unit interval. After reaching
the base of the pyramid, the next transition was to
the terminal state. The outcome was a deterministic
function of the base state, varying linearly from 0 at
the far left to 1 at the far right.

Start

5 NN AT
VoY Ye e % Y

KK P
RAKALERERIL

ieis'e's's's
\'»\"‘X"‘X"‘k'f/‘:%

0

1

Figure 1: A pyramid task. All state trajectories pro-
gressed downward, along one of the transitions shown
as solid lines. The transition probabilities were se-
lected randomly. This is a pyramid of height 11,
whereas the experiment used a pyramid of height 15.

Figure 1 shows a pyramid of height 11. In our ex-
periment we used a pyramid of height 15. Each trip
from peak to base of the pyramid was called a trial,
and 1000 trials made up a complete run. The results
we show are averages over 50 runs, each with a dif-
ferent randomly constructed pyramid task. After each
trial, we measured the predictions made by the various
algorithms at each of the 10 states in the 10th level in
the pyramid. Figure 2 shows the root-mean-squared
error (RMSE) between these predictions and the true
expected outcomes, which we computed analytically
from knowledge of the task. In computing the RMSE
we took into account the probability p; of visiting each
state during a trial, which we also computed analyti-
cally. In addition, we excluded states that had never
been visited. That 1s, we used

ZieS pi(Vi — Vz*)z
ZiES pi

where V;* is the correct prediction for state ¢ and S
is the set of 10th level states that have been visited
at least once. This measure of squared error was then
averaged over the 50 different runs, and the square
root taken, to obtain the RMSE. Figure 2 is a plot of
this RMSE after every 10 trials, starting after trial 1.

Squared Error =

Results are shown for all the algorithms discussed
above, including MC, TD(1/n), TD(n/n), and TDC.
The lowest (best) learning curve, labeled “CE” is the
performance level of the certainty equivalent predictor
(see Section 2). Also shown are results for conventional
TD(A) at A’s of 0 and 1, each with an appropriate

RMSE

0.18

0.16 - :

0.12l

ol __ TDO)[1/n] |
‘ TD(0)[25]
0.08 1 y
0.06 y
C=TD([1/n] ‘ TD(1)[.025]
004 BTD(O)[.25] >+~~~ -, 7]
) D(1/n)=BTD(0)[1/n]
002 o TDmm) ..]
0 I I I I
0 200 400 600 800 1000
Trials

Figure 2: Results on the Pyramid Task. Numbers
in brackets are « values. For example, TD(0)[.25] is

TD(0) with a = 0.25.

a value, and for backwards TD(0), the TD(0) algo-
rithm applied backwards along a trial’s state trajec-
tory. The highest (worst) learning curve is for TD(0)
with a step size of o = nl—s The backwards version
of this algorithm produced exactly the same estimates
as TD(1/n), confirming the analysis of Section 3, and
thus only one learning curve is shown for these two al-
gorithms. Similarly, TD(1) with a step size of o« = nl—s
performed identically to MC, and only one learning
curve is shown. The backwards version of this algo-
rithm should also perform identically to MC, but this

was not explicitly tested.

The conventional TD algorithms, TD(0), TD(1),
and BTD(0), are all biased, and so their predictions
at each time depend on how they were initialized. In
this case we initialized the predictions all to 0.5. This
is in fact a pretty good initial prediction for this task,
and for the first few trials these methods performed
better than the unbiased methods. However, within
5-10 trials all the unbiased algorithms caught up and
then performed much better. The biased algorithms
appear to actually get worse for the first 50 trials or
so, but this is an artifact of our performance measure.
If we include all states, not just those in .S, then this
temporary increase disappears. The most interesting
results on this task are the relative performance of the
unbiased algorithms. On this task, TD(n/n) and TDC
perform better than MC. TDC even approaches the
performance of CE near the end of the run. TD(1/n)
initially performs better than MC, but then loses its
advantage after about 300 trials. It is not clear which

RMSE

of these two does better in the long run.

The random acyclic tasks were constructed as fol-
lows. There were 16 states in total, numbered from
1 to 16. All trajectories started in state 1 and pro-
gressed always to higher numbered states. States 15
and 16 were terminal states. Ending in 15 yielded an
outcome of 0, whereas ending in 16 yielded an outcome
of 1. The possible successors of each nonterminal state
were selected randomly from all the higher numbered
states. Up to 3 possible successors were selected in
this way, and were then given random probabilities by
uniformly partitioning the unit interval. After a task
was constructed it was checked for ergodicity (to make
sure all states could be reached with nonzero proba-
bility). If it was not ergodic, it was discarded and a
new task was constructed. Only the 5 unbiased algo-
rithms were run on this task, each for 100 runs (with a
different randomly generated task) of 200 trials each.
Figure 3 shows the RMSE after every trial. On this
task, TD(n/n) and TDC perform better than MC, but
TD(1/n) performs worse.

0.2

0.18

0.16 -

0.14+

012+

0.1+

0.08 -

0.06 T rD@/m).]

0.04 . . .
50 100 150 200

Trials

Figure 3: Results on Random Acyclic Task.

6 Conclusions

What general conclusions can we draw from these re-
sults? The new algorithms do indeed perform strik-
ingly better than conventional, biased TD methods
such as TD(A) on these problems, and much better
than the naive idea of simply using « = 1/n;. In
many cases the new algorithms perform better than
conventional Monte Carlo methods, but the only al-
gorithms that do this consistently are TD(n/n) and

TDC. These algorithms may be of limited practical
interest because they are computationally expensive,
at least O(N?), where N is the number of states.

Perhaps the biggest question about the new meth-
ods 1s how they might be extended beyond acyclic
tasks. We have been looking into this extensively, but
have not yet found completely satisfactory generaliza-
tions to the cyclic case. In particular, the TDC algo-
rithm probably has no cyclic analog.

These results shed some light on longstanding ques-
tions about temporal-difference learning. One is
the tradeoff between bias and variance. Temporal-
difference learning is sometimes thought of as inher-
ently biased, as if its sometimes speedy convergence
was at the cost of introducing bias. Here we have ex-
hibited several temporal-difference learning methods
that are unbiased, and which still converge faster, at
least in some cases, than conventional Monte Carlo
learning methods.

The second general issue that these results shed
light on is the choice of the trace parameter, A. The
excellent performance of the TDC and TD(n/n) algo-
rithms strongly suggests that A should be chosen at
each time step approximately equal to the transition
probability of the immediately preceding transition. In
many applications this can probably be used as a rule
of thumb to provide guidance in selecting a fixed A for

TD(N).

Acknowledgments

The authors are grateful to Mike Duff, Ron Williams,
Shaijan Mahamud, and Andy Barto for discussions
and ideas which improved our understanding of step-
size and trace-length issues. Satinder P. Singh was
supported by grants to Michael I. Jordan (Brain and
Cognitive Sciences, MIT) from the McDonnell-Pew
Foundation, from ATR Human Information Process-
ing Research Laboratories, and from Siemens Corpo-
ration.

References

Barto, A., Duff, M. (1994) Monte Carlo Matrix Inver-
sion and Reinforcement Learning. Advances in Neural
Information Processing Systems 6.

Dayan, P. (1992) The Convergence of TD(A) for Gen-
eral A\. Machine Learning 8, 341-362.

Klopf, A.H. (1982) The Hedonistic Neuron: A The-
ory of Memory, Learning, and Intelligence, Washing-
ton DC: Hemisphere/Harper & Row.

Sutton, R.S. (1988) Learning to Predict by the Meth-
ods of Temporal Differences. Machine Learning 3, 9—
44.

Watkins, C.J.C.H. (1989) Learning From Delayed Re-
wards. Cambridge University PhD Thesis (Psychol-

ogy).

