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Abstract

Recent work has demonstrated that when artificial agents are limited in their
ability to achieve their goals, the agent designer can benefit by making the agent’s
goals different from the designer’s. This gives rise to the optimization problem of
designing the artificial agent’s goals—in the RL framework, designing the agent’s
reward function. Existing attempts at solving this optimal reward problem do not
leverage experience gained online during the agent’s lifetime nor do they take
advantage of knowledge about the agent’s structure. In this work, we develop a
gradient ascent approach with formal convergence guarantees for approximately
solving the optimal reward problem online during an agent’s lifetime. We show that
our method generalizes a standard policy gradient approach, and we demonstrate
its ability to improve reward functions in agents with various forms of limitations.

1 The Optimal Reward Problem

In this work, we consider the scenario of an agent designer building an autonomous agent. The
designer has his or her own goals which must be translated into goals for the autonomous agent.
We represent goals using the Reinforcement Learning (RL) formalism of the reward function. This
leads to the optimal reward problem of designing the agent’s reward function so as to maximize the
objective reward received by the agent designer.

Typically, the designer assigns his or her own reward to the agent. However, there is ample work
which demonstrates the benefit of assigning reward which does not match the designer’s. For example,
work on reward shaping [11] has shown how to modify rewards to accelerate learning without altering
the optimal policy, and PAC-MDP methods [5, 20] including approximate Bayesian methods [7, 19]
add bonuses to the objective reward to achieve optimism under uncertainty. These approaches
explicitly or implicitly assume that the asymptotic behavior of the agent should be the same as that
which would occur using the objective reward function. These methods do not explicitly consider the
optimal reward problem; however, they do show improved performance through reward modification.
In our recent work that does explicitly consider the optimal reward problem [18], we analyzed an
explicit hypothesis about the benefit of reward design—that it helps mitigate the performance loss
caused by computational constraints (bounds) on agent architectures. We considered various types of
agent limitations—limits on planning depth, failure to account for partial observability, and other
erroneous modeling assumptions—and demonstrated the benefits of good reward functions in each
case empirically. Crucially, in bounded agents, the optimal reward function often leads to behavior
that is different from the asymptotic behavior achieved with the objective reward function.

In this work, we develop an algorithm, Policy Gradient for Reward Design (PGRD), for improving
reward functions for a family of bounded agents that behave according to repeated local (from
the current state) model-based planning. We show that this algorithm is capable of improving
the reward functions in agents with computational limitations necessitating small bounds on the
depth of planning, and also from the use of an inaccurate model (which may be inaccurate due
to computationally-motivated approximations). PGRD has few parameters, improves the reward
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function online during an agent’s lifetime, takes advantage of knowledge about the agent’s structure
(through the gradient computation), and is linear in the number of reward function parameters.

Notation. Formally, we consider discrete-time partially-observable environments with a finite number
of hidden states s ∈ S, actions a ∈ A, and observations o ∈ O; these finite set assumptions are useful
for our theorems, but our algorithm can handle infinite sets in practice. Its dynamics are governed
by a state-transition function P (s′|s, a) that defines a distribution over next-states s′ conditioned
on current state s and action a, and an observation function Ω(o|s) that defines a distribution over
observations o conditioned on current state s.

The agent designer’s goals are specified via the objective reward function RO. At each time step, the
designer receives reward RO(st) ∈ [0, 1] based on the current state st of the environment, where
the subscript denotes time. The designer’s objective return is the expected mean objective reward
obtained over an infinite horizon, i.e., limN→∞ E

[
1
N

∑N
t=0RO(st)

]
. In the standard view of RL,

the agent uses the same reward function as the designer to align the interests of the agent and the
designer. Here we allow for a separate agent reward function R(· ). An agent’s reward function can in
general be defined in terms of the history of actions and observations, but is often more pragmatically
defined in terms of some abstraction of history. We define the agent’s reward function precisely in
Section 2.

Optimal Reward Problem. An RL agent attempts to act so as to maximize its own cumulative
reward, or return. Crucially, as a result, the sequence of environment-states {st}∞t=0 is affected by
the choice of reward function; therefore, the agent designer’s return is affected as well. The optimal
reward problem arises from the fact that while the objective reward function is fixed as part of the
problem description, the reward function is a choice to be made by the designer. We capture this
choice abstractly by letting the reward be parameterized by some vector of parameters θ chosen from
space of parameters Θ. Each θ ∈ Θ specifies a reward function R(· ; θ) which in turn produces a
distribution over environment state sequences via whatever RL method the agent uses. The expected
return obtained by the designer for choice θ is U(θ) = limN→∞ E

[
1
N

∑N
t=0RO(st)

∣∣∣R(·; θ)
]
. The

optimal reward parameters are given by the solution to the optimal reward problem [16, 17, 18]:

θ∗ = arg max
θ∈Θ
U(θ) = arg max

θ∈Θ
lim
N→∞

E

[
1

N

N∑
t=0

RO(st)

∣∣∣∣∣R(·; θ)

]
. (1)

Our previous research on solving the optimal reward problem has focused primarily on the properties
of the optimal reward function and its correspondence to the agent architecture and the environ-
ment [16, 17, 18]. This work has used inefficient exhaustive search methods for finding good
approximations to θ∗ (though there is recent work on using genetic algorithms to do this [6, 9, 12]).
Our primary contribution in this paper is a new convergent online stochastic gradient method for
finding approximately optimal reward functions. To our knowledge, this is the first algorithm that
improves reward functions in an online setting—during a single agent’s lifetime.

In Section 2, we present the PGRD algorithm, prove its convergence, and relate it to OLPOMDP [2],
a policy gradient algorithm. In Section 3, we present experiments demonstrating PGRD’s ability to
approximately solve the optimal reward problem online.

2 PGRD: Policy Gradient for Reward Design

PGRD builds on the following insight: the agent’s planning algorithm procedurally converts the
reward function into behavior; thus, the reward function can be viewed as a specific parameterization
of the agent’s policy. Using this insight, PGRD updates the reward parameters by estimating the
gradient of the objective return with respect to the reward parameters,∇θU(θ), from experience, using
standard policy gradient techniques. In fact, we show that PGRD can be viewed as an (independently
interesting) generalization of the policy gradient method OLPOMDP [2]. Specifically, we show that
OLPOMDP is special case of PGRD when the planning depth d is zero. In this section, we first
present the family of local planning agents for which PGRD improves the reward function. Next, we
develop PGRD and prove its convergence. Finally, we show that PGRD generalizes OLPOMDP and
discuss how adding planning to OLPOMDP affects the space of policies available to the optimization
method.
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Input: T , θ0, {αt}∞t=0, β, γ
o0, i0 = initializeStart();1
for t = 0, 1, 2, 3, . . . do2
∀aQt(a; θt) = plan(it, ot, T,R(it, ·, ·; θt), d,γ);3
at ∼ µ(a|it;Qt);4
rt+1, ot+1 = takeAction(at);5

zt+1 = βzt +
∇θtµ(at|it;Qt)
µ(at|it;Qt) ;6

θt+1 = θt + αt(rt+1zt+1 − λθt) ;7
it+1 = updateInternalState(it, at, ot+1);8

end9

Figure 1: PGRD (Policy Gradient for Reward Design) Algorithm

A Family of Limited Agents with Internal State. Given a Markov model T defined over the
observation space O and action space A, denote T (o′|o, a) the probability of next observation o′
given that the agent takes action a after observing o. Our agents use the model T to plan. We do not
assume that the model T is an accurate model of the environment. The use of an incorrect model is
one type of agent limitation we examine in our experiments. In general, agents can use non-Markov
models defined in terms of the history of observations and actions; we leave this for future work.

The agent maintains an internal state feature vector it that is updated at each time step using it+1 =
updateInternalState(it, at, ot+1). The internal state allows the agent to use reward functions
that depend on the agent’s history. We consider rewards of the form R(it, o, a; θt) = θTt φ(it, o, a),
where θt is the reward parameter vector at time t, and φ(it, o, a) is a vector of features based on
internal state it, planning state o, and action a. Note that if φ is a vector of binary indicator features,
this representation allows for arbitrary reward functions and thus the representation is completely
general. Many existing methods use reward functions that depend on history. Reward functions based
on empirical counts of observations, as in PAC-MDP approaches [5, 20], provide some examples;
see [14, 15, 13] for others. We present a concrete example in our empirical section.

At each time step t, the agent’s planning algorithm, plan, performs depth-d planning using the model
T and reward function R(it, o, a; θt) with current internal state it and reward parameters θt. Specifi-
cally, the agent computes a d-step Q-value function Qd(it, ot, a; θt)∀a ∈ A, where Qd(it, o, a; θt) =
R(it, o, a; θt) +γ

∑
o′∈O T (o′|o, a) maxb∈AQ

d−1(it, o
′, b; θt) and Q0(it, o, a; θt) = R(it, o, a; θt).

We emphasize that the internal state it and reward parameters θt are held invariant while planning.
Note that the d-step Q-values are only computed for the current observation ot, in effect by building
a depth-d tree rooted at ot. In the d = 0 special case, the planning procedure completely ignores the
model T and returns Q0(it, ot, a; θt) = R(it, ot, a; θt). Regardless of the value of d, we treat the
end result of planning as providing a scoring function Qt(a; θt) where the dependence on d, it and
ot is dropped from the notation. To allow for gradient calculations, our agents act according to the
Boltzmann (soft-max) stochastic policy parameterized by Q: µ(a|it;Qt)

def
= eτQt(a;θt)∑

b e
τQt(b;θt)

, where τ
is a temperature parameter that determines how stochastically the agent selects the action with the
highest score. When the planning depth d is small due to computational limitations, the agent cannot
account for events beyond the planning depth. We examine this limitation in our experiments.

Gradient Ascent. To develop a gradient algorithm for improving the reward function, we need
to compute the gradient of the objective return with respect to θ: ∇θU(θ). The main insight is to
break the gradient calculation into the calculation of two gradients. The first is the gradient of the
objective return with respect to the policy µ, and the second is the gradient of the policy with respect
to the reward function parameters θ. The first gradient is exactly what is computed in standard
policy gradient approaches [2]. The second gradient is challenging because the transformation from
reward parameters to policy involves a model-based planning procedure. We draw from the work of
Neu and Szepesvári [10] which shows that this gradient computation resembles planning itself. We
develop PGRD, presented in Figure 1, explicitly as a generalization of OLPOMDP, a policy gradient
algorithm developed by Bartlett and Baxter [2], because of its foundational simplicity relative to
other policy-gradient algorithms such as those based on actor-critic methods (e.g., [4]). Notably, the
reward parameters are the only parameters being learned in PGRD.
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PGRD follows the form of OLPOMDP (Algorithm 1 in Bartlett and Baxter [2]) but generalizes it
in three places. In Figure 1 line 3, the agent plans to compute the policy, rather than storing the
policy directly. In line 6, the gradient of the policy with respect to the parameters accounts for the
planning procedure. In line 8, the agent maintains a general notion of internal state that allows for
richer parameterization of policies than typically considered (similar to Aberdeen and Baxter [1]).
The algorithm takes as parameters a sequence of learning rates {αk}, a decaying-average parameter
β, and regularization parameter λ > 0 which keeps the the reward parameters θ bounded throughout
learning. Given a sequence of calculations of the gradient of the policy with respect to the parameters,
∇θtµ(at|it;Qt), the remainder of the algorithm climbs the gradient of objective return∇θU(θ) using
OLPOMDP machinery. In the next subsection, we discuss how to compute∇θtµ(at|it;Qt).

Computing the Gradient of the Policy with respect to Reward. For the Boltzmann distribu-
tion, the gradient of the policy with respect to the reward parameters is given by the equation
∇θtµ(a|it;Qt) = τ ·µ(a|Qt)[∇θtQt(a|it; θt) −

∑
b∈A∇θtQt(b; θt)], where τ is the Boltzmann

temperature (see [10]). Thus, computing∇θtµ(a|it;Qt) reduces to computing ∇θtQt(a; θt).

The value of Qt depends on the reward parameters θt, the model, and the planning depth. However,
as we present below, the process of computing the gradient closely resembles the process of planning
itself, and the two computations can be interleaved. Theorem 1 presented below is an adaptation
of Proposition 4 from Neu and Szepesvári [10]. It presents the gradient computation for depth-d
planning as well as for infinite-depth discounted planning. We assume that the gradient of the reward
function with respect to the parameters is bounded: supθ,o,i,a ‖∇θR(i, o, a, θ)‖ <∞. The proof of
the theorem follows directly from Proposition 4 of Neu and Szepesvári [10].
Theorem 1. Except on a set of measure zero, for any depth d, the gradient ∇θQd(o, a; θ) exists and
is given by the recursion (where we have dropped the dependence on i for simplicity)

∇θQd(o, a; θ) = ∇θR(o, a; θ) + γ
∑
o′∈O

T (o′|o, a)
∑
b∈A

πd−1(b|o′)∇θQd−1(o′, b; θ), (2)

where ∇θQ0(o, a; θ) = ∇θR(o, a; θ) and πd(a|o) ∈ arg maxaQ
d(o, a; θ) is any policy that is

greedy with respect to Qd. The result also holds for∇θQ∗(o, a; θ) = ∇θ limd→∞Qd(o, a; θ).

The Q-function will not be differentiable when there are multiple optimal policies. This is re-
flected in the arbitrary choice of π in the gradient calculation. However, it was shown by Neu and
Szepesvári [10] that even for values of θ which are not differentiable, the above computation produces
a valid calculation of a subgradient; we discuss this below in our proof of convergence of PGRD.

Convergence of PGRD (Figure 1). Given a particular fixed reward function R(·; θ), transition
model T , and planning depth, there is a corresponding fixed randomized policy µ(a|i; θ)—where
we have explicitly represented the reward’s dependence on the internal state vector i in the policy
parameterization and dropped Q from the notation as it is redundant given that everything else is
fixed. Denote the agent’s internal-state update as a (usually deterministic) distribution ψ(i′|i, a, o).
Given a fixed reward parameter vector θ, the joint environment-state–internal-state transitions can be
modeled as a Markov chain with a |S||I| × |S||I| transition matrix M(θ) whose entries are given by
M〈s,i〉,〈s′,i′〉(θ) = p(〈s′, i′〉|〈s, i〉; θ) =

∑
o,a ψ(i′|i, a, o)Ω(o|s′)P (s′|s, a)µ(a|i; θ). We make the

following assumptions about the agent and the environment:
Assumption 1. The transition matrix M(θ) of the joint environment-state–internal-state Markov
chain has a unique stationary distribution π(θ) = [πs1,i1(θ), πs2,i2(θ), . . . , πs|S|,i|I|(θ)] satisfying
the balance equations π(θ)M(θ) = π(θ), for all θ ∈ Θ.
Assumption 2. During its execution, PGRD (Figure 1) does not reach a value of it, and θt at which
µ(at|it, Qt) is not differentiable with respect to θt.

It follows from Assumption 1 that the objective return, U(θ), is independent of the start state. The
original OLPOMDP convergence proof [2] has a similar condition that only considers environment
states. Intuitively, this condition allows PGRD to handle history-dependence of a reward function in
the same manner that it handles partial observability in an environment. Assumption 2 accounts for
the fact that a planning algorithm may not be fully differentiable everywhere. However, Theorem 1
showed that infinite and bounded-depth planning is differentiable almost everywhere (in a measure
theoretic sense). Furthermore, this assumption is perhaps stronger than necessary, as stochastic
approximation algorithms, which provide the theory upon which OLPOMDP is based, have been
shown to converge using subgradients [8].
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In order to state the convergence theorem, we must define the approximate gradient which OLPOMDP
calculates. Let the approximate gradient estimate be ∇̃βθU(θ)

def
= limT→∞

∑T
t=1 rtzt for a fixed θ and

PGRD parameter β, where zt (in Figure 1) represents a time-decaying average of the∇θtµ(at|it, Qt)
calculations. It was shown by Bartlett and Baxter [2] that ∇̃βθU(θ) is close to the true value∇θU(θ)
for large values of β. Theorem 2 proves that PGRD converges to a stable equilibrium point based on
this approximate gradient measure. This equilibrium point will typically correspond to some local
optimum in the return function U(θ). Given our development and assumptions, the theorem is a
straightforward extension of Theorem 6 from Bartlett and Baxter [2] (proof omitted).

Theorem 2. Given β ∈ [0, 1), λ > 0, and a sequence of step sizes αt satisfying
∑∞
t=0 αt =∞ and∑∞

t=0(αt)
2 <∞, PGRD produces a sequence of reward parameters θt such that θt → L as t→∞

a.s., where L is the set of stable equilibrium points of the differential equation ∂θ
∂t = ∇̃βθU(θ)− λθ.

PGRD generalizes OLPOMDP. As stated above, OLPOMDP, when it uses a Boltzmann distribution
in its policy representation (a common case), is a special case of PGRD when the planning depth
is zero. First, notice that in the case of depth-0 planning, Q0(i, o, a; θ) = R(i, o, a, θ), regard-
less of the transition model and reward parameterization. We can also see from Theorem 1 that
∇θQ0(i, o, a; θ) = ∇θR(i, o, a; θ). Because R(i, o, a; θ) can be parameterized arbitrarily, PGRD
can be configured to match standard OLPOMDP with any policy parameterization that also computes
a score function for the Boltzmann distribution.

In our experiments, we demonstrate that choosing a planning depth d > 0 can be beneficial over using
OLPOMDP (d = 0). In the remainder of this section, we show theoretically that choosing d > 0
does not hurt in the sense that it does not reduce the space of policies available to the policy gradient
method. Specifically, we show that when using an expressive enough reward parameterization,
PGRD’s space of policies is not restricted relative to OLPOMDP’s space of policies. We prove the
result for infinite planning, but the extension to depth-limited planning is straightforward.

Theorem 3. There exists a reward parameterization such that, for an arbitrary transition model
T , the space of policies representable by PGRD with infinite planning is identical to the space of
policies representable by PGRD with depth 0 planning.

Proof. Ignoring internal state for now (holding it constant), let C(o, a) be an arbitrary reward
function used by PGRD with depth 0 planning. Let R(o, a; θ) be a reward function for PGRD with
infinite (d =∞) planning. The depth-∞ agent uses the planning result Q∗(o, a; θ) to act, while the
depth-0 agent uses the function C(o, a) to act. Therefore, it suffices to show that one can always
choose θ such that the planning solution Q∗(o, a; θ) equals C(o, a). For all o ∈ O, a ∈ A, set
R(o, a; θ) = C(o, a)− γ

∑
o′ T (o′|o, a) maxa′ C(o′, a′). Substituting Q∗ for C, this is the Bellman

optimality equation [22] for infinite-horizon planning. Setting R(o, a; θ) as above is possible if it is
parameterized by a table with an entry for each observation–action pair.

Theorem 3 also shows that the effect of an arbitrarily poor model can be overcome with a good choice
of reward function. This is because a Boltzmann distribution can, allowing for an arbitrary scoring
function C, represent any policy. We demonstrate this ability of PGRD in our experiments.

3 Experiments

The primary objective of our experiments is to demonstrate that PGRD is able to use experience
online to improve the reward function parameters, thereby improving the agent’s obtained objective
return. Specifically, we compare the objective return achieved by PGRD to the objective return
achieved by PGRD with the reward adaptation turned off. In both cases, the reward function is
initialized to the objective reward function. A secondary objective is to demonstrate that when a good
model is available, adding the ability to plan—even for small depths—improves performance relative
to the baseline algorithm of OLPOMDP (or equivalently PGRD with depth d = 0).

Foraging Domain for Experiments 1 to 3: The foraging environment illustrated in Figure 2(a) is a
3×3 grid world with 3 dead-end corridors (rows) separated by impassable walls. The agent (bird) has
four available actions corresponding to each cardinal direction. Movement in the intended direction
fails with probability 0.1, resulting in movement in a random direction. If the resulting direction is
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Figure 2: A) Foraging Domain, B) Performance of PGRD with observation-action reward features,
C) Performance of PGRD with recency reward features

blocked by a wall or the boundary, the action results in no movement. There is a food source (worm)
located in one of the three right-most locations at the end of each corridor. The agent has an eat
action, which consumes the worm when the agent is at the worm’s location. After the agent consumes
the worm, a new worm appears randomly in one of the other two potential worm locations.
Objective Reward for the Foraging Domain: The designer’s goal is to maximize the average number
of worms eaten per time step. Thus, the objective reward function RO provides a reward of 1.0 when
the agent eats a worm, and a reward of 0 otherwise. The objective return is defined as in Equation (1).

Experimental Methodology: We tested PGRD for depth-limited planning agents of depths 0–6. Recall
that PGRD for the agent with planning depth 0 is the OLPOMDP algorithm. For each depth, we
jointly optimized over the PGRD algorithm parameters, α and β (we use a fixed α throughout
learning). We tested values for α on an approximate logarithmic scale in the range (10−6, 10−2) as
well as the special value of α = 0, which corresponds to an agent that does not adapt its reward
function. We tested β values in the set 0, 0.4, 0.7, 0.9, 0.95, 0.99. Following common practice [3],
we set the λ parameter to 0. We explicitly bound the reward parameters and capped the reward
function output both to the range [−1, 1]. We used a Boltzmann temperature parameter of τ = 100
and planning discount factor γ = 0.95. Because we initialized θ so that the initial reward function
was the objective reward function, PGRD with α = 0 was equivalent to a standard depth-limited
planning agent.

Experiment 1: A fully observable environment with a correct model learned online. In this
experiment, we improve the reward function in an agent whose only limitation is planning depth,
using (1) a general reward parameterization based on the current observation and (2) a more compact
reward parameterization which also depends on the history of observations.

Observation: The agent observes the full state, which is given by the pair o = (l, w), where l is the
agent’s location and w is the worm’s location.
Learning a Correct Model: Although the theorem of convergence of PGRD relies on the agent having
a fixed model, the algorithm itself is readily applied to the case of learning a model online. In this
experiment, the agent’s model T is learned online based on empirical transition probabilities between
observations (recall this is a fully observable environment). Let no,a,o′ be the number of times that o′
was reached after taking action a after observing o. The agent models the probability of seeing o′ as
T (o′|o, a) =

no,a,o′∑
o′ no,a,o′

.

Reward Parameterizations: Recall that R(i, o, a; θ) = θTφ(i, o, a), for some φ(i, o, a). (1) In the
observation-action parameterization, φ(i, o, a) is a binary feature vector with one binary feature
for each observation-action pair—internal state is ignored. This is effectively a table representation
over all reward functions indexed by (o, a). As shown in Theorem 3, the observation-action feature
representation is capable of producing arbitrary policies over the observations. In large problems,
such a parameterization would not be feasible. (2) The recency parameterization is a more compact
representation which uses features that rely on the history of observations. The feature vector is
φ(i, o, a) = [RO(o, a), 1, φcl(l, i), φcl,a(l, a, i)], where RO(o, a) is the objective reward function
defined as above. The feature φcl(l) = 1− 1/c(l, i), where c(l, i) is the number of time steps since
the agent has visited location l, as represented in the agent’s internal state i. Its value is normalized
to the range [0, 1) and is high when the agent has not been to location l recently. The feature
φcl,a(l, a, i) = 1− 1/c(l, a, i) is similarly defined with respect to the time since the agent has taken
action a in location l. Features based on recency counts encourage persistent exploration [21, 18].
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Results & Discussion: Figure 2(b) and Figure 2(c) present results for agents that use the observation-
action parameterization and the recency parameterization of the reward function respectively. The
horizontal axis is the number of time steps of experience. The vertical axis is the objective return, i.e.,
the average objective reward per time step. Each curve is an average over 130 trials. The values of d
and the associated optimal algorithm parameters for each curve are noted in the figures. First, note
that with d = 6, the agent is unbounded, because food is never more than 6 steps away. Therefore,
the agent does not benefit from adapting the reward function parameters (given that we initialize
to the objective reward function). Indeed, the d = 6, α = 0 agent performs as well as the best
reward-optimizing agent. The performance for d = 6 improves with experience because the model
improves with experience (and thus from the curves it is seen that the model gets quite accurate in
about 1500 time steps). The largest objective return obtained for d = 6 is also the best objective
return that can be obtained for any value of d.

Several results can be observed in both Figures 2(b) and (c). 1) Each curve that uses α > 0 (solid
lines) improves with experience. This is a demonstration of our primary contribution, that PGRD is
able to effectively improve the reward function with experience. That the improvement over time is
not just due to model learning is seen in the fact that for each value of d < 6 the curve for α > 0
(solid-line) which adapts the reward parameters does significantly better than the corresponding curve
for α = 0 (dashed-line); the α = 0 agents still learn the model. 2) For both α = 0 and α > 0
agents, the objective return obtained by agents with equivalent amounts of experience increases
monotonically as d is increased (though to maintain readability we only show selected values of
d in each figure). This demonstrates our secondary contribution, that the ability to plan in PGRD
significantly improves performance over standard OLPOMDP (PGRD with d = 0).

There are also some interesting differences between the results for the two different reward function
parameterizations. With the observation-action parameterization, we noted that there always exists a
setting of θ for all d that will yield optimal objective return. This is seen in Figure 2(b) in that all
solid-line curves approach optimal objective return. In contrast, the more compact recency reward
parameterization does not afford this guarantee and indeed for small values of d (< 3), the solid-line
curves in Figure 2(c) converge to less than optimal objective return. Notably, OLPOMDP (d = 0)
does not perform well with this feature set. On the other hand, for planning depths 3 ≤ d < 6, the
PGRD agents with the recency parameterization achieve optimal objective return faster than the
corresponding PGRD agent with the observation-action parameterization. Finally, we note that this
experiment validates our claim that PGRD can improve reward functions that depend on history.

Experiment 2: A fully observable environment and poor given model. Our theoretical analysis
showed that PGRD with an incorrect model and the observation–action reward parameterization
should (modulo local maxima issues) do just as well asymptotically as it would with a correct model.
Here we illustrate this theoretical result empirically on the same foraging domain and objective
reward function used in Experiment 1. We also test our hypothesis that a poor model should slow
down the rate of learning relative to a correct model.

Poor Model: We gave the agents a fixed incorrect model of the foraging environment that assumes
there are no internal walls separating the 3 corridors.
Reward Parameterization: We used the observation–action reward parameterization. With a poor
model it is no longer interesting to initialize θ so that the initial reward function is the objective
reward function because even for d = 6 such an agent would do poorly. Furthermore, we found that
this initialization leads to excessively bad exploration and therefore poor learning of how to modify
the reward. Thus, we initialize θ to uniform random values near 0, in the range (−10−3, 10−3).

Results: Figure 3(a) plots the objective return as a function of number of steps of experience. Each
curve is an average over 36 trials. As hypothesized, the bad model slows learning by a factor of more
than 10 (notice the difference in the x-axis scales from those in Figure 2). Here, deeper planning
results in slower learning and indeed the d = 0 agent that does not use the model at all learns
the fastest. However, also as hypothesized, because they used the expressive observation–action
parameterization, agents of all planning depths mitigate the damage caused by the poor model and
eventually converge to the optimal objective return.

Experiment 3: Partially observable foraging world. Here we evaluate PGRD’s ability to learn in
a partially observable version of the foraging domain. In addition, the agents learn a model under the
erroneous (and computationally convenient) assumption that the domain is fully observable.
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Figure 3: A) Performance of PGRD with a poor model, B) Performance of PGRD in a partially
observable world with recency reward features, C) Performance of PGRD in Acrobot

Partial Observation: Instead of viewing the location of the worm at all times, the agent can now only
see the worm when it is colocated with it: its observation is o = (l, f), where f indicates whether the
agent is colocated with the food.
Learning an Incorrect Model: The model is learned just as in Experiment 1. Because of the erroneous
full observability assumption, the model will hallucinate about worms at all the corridor ends based
on the empirical frequency of having encountered them there.
Reward Parameterization: We used the recency parameterization; due to the partial observability,
agents with the observation–action feature set perform poorly in this environment. The parameters θ
are initialized such that the initial reward function equals the objective reward function.

Results & Discussion: Figure 3(b) plots the mean of 260 trials. As seen in the solid-line curves,
PGRD improves the objective return at all depths (only a small amount for d = 0 and significantly
more for d > 0). In fact, agents which don’t adapt the reward are hurt by planning (relative to d = 0).
This experiment demonstrates that the combination of planning and reward improvement can be
beneficial even when the model is erroneous. Because of the partial observability, optimal behavior
in this environment achieves less objective return than in Experiment 1.

Experiment 4: Acrobot. In this experiment we test PGRD in the Acrobot environment [22], a
common benchmark task in the RL literature and one that has previously been used in the testing of
policy gradient approaches [23]. This experiment demonstrates PGRD in an environment in which
an agent must be limited due to the size of the state space and further demonstrates that adding
model-based planning to policy gradient approaches can improve performance.
Domain: The version of Acrobot we use is as specified by Sutton and Barto [22]. It is a two-link
robot arm in which the position of one shoulder-joint is fixed and the agent’s control is limited to 3
actions which apply torque to the elbow-joint.
Observation: The fully-observable state space is 4 dimensional, with two joint angles ψ1 and ψ2, and
two joint velocities ψ̇1 and ψ̇2.
Objective Reward: The designer receives an objective reward of 1.0 when the tip is one arm’s length
above the fixed shoulder-joint, after which the bot is reset to its initial resting position.
Model: We provide the agent with a perfect model of the environment. Because the environment
is continuous, value iteration is intractable, and computational limitations prevent planning deep
enough to compute the optimal action in any state. The feature vector contains 13 entries. One feature
corresponds to the objective reward signal. For each action, there are 5 features corresponding to
each of the state features plus an additional feature representing the height of the tip: φ(i, o, a) =

[RO(o), {ψ1(o), ψ2(o), ψ̇1(o), ψ̇2(o), h(o)}a]. The height feature has been used in previous work as
an alternative definition of objective reward [23].

Results & Discussion: We plot the mean of 80 trials in Figure 3(c). Agents that use the fixed (α = 0)
objective reward function with bounded-depth planning perform according to the bottom two curves.
Allowing PGRD and OLPOMDP to adapt the parameters θ leads to improved objective return, as
seen in the top two curves in Figure 3(c). Finally, the PGRD d = 6 agent outperforms the standard
OLPOMDP agent (PGRD with d = 0), further demonstrating that PGRD outperforms OLPOMDP.

Overall Conclusion: We developed PGRD, a new method for approximately solving the optimal
reward problem in bounded planning agents that can be applied in an online setting. We showed that
PGRD is a generalization of OLPOMDP and demonstrated that it both improves reward functions in
limited agents and outperforms the model-free OLPOMDP approach.
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