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Abstract

Designing the dialogue policy of a spoken dialogue system involves many nontrivial
choices. This paper presents a reinforcement learning approach for automatically optimiz-
ing a dialogue policy, which addresses the technical challenges in applying reinforcement
learning to a working dialogue system with human users. We report on the design, con-
struction and empirical evaluation of NJFun, an experimental spoken dialogue system that
provides users with access to information about fun things to do in New Jersey. Our results
show that by optimizing its performance via reinforcement learning, NJFun measurably im-
proves system performance.

1. Introduction

Recent advances in spoken language understanding have made it possible to develop dialogue
systems for many applications. The role of the dialogue manager in such systems is to
interact in a natural way to help the user complete the tasks that the system is designed to
support. Typically, an expert designs a dialogue management policy by hand, and has to
make many nontrivial design choices. It is often di�cult to assess the rami�cations of these
choices because the performance of a dialogue policy depends on many other factors, such
as the user population, the robustness of the automatic speech recognizer (ASR), and task
di�culty (Kamm, Litman, & Walker, 1998; Danieli & Gerbino, 1995). This paper applies
reinforcement learning (RL) to automatically learn design choices that optimize system
performance for a chosen performance measure (Levin, Pieraccini, & Eckert, 2000; Walker,
Fromer, & Narayanan, 1998a).

Consider the spoken dialogue system named NJFun, which we implemented to provide
telephone access to a database of activities in New Jersey. A sample dialogue with NJFun
is shown in Figure 1, with system utterances labeled Si and user utterances labeled Ui.
In this dialogue, by starting with the open-ended greeting \How may I help you?", the
system lets the user take the initiative in providing information about the activity they are
interested in. User responses in such cases may be relatively unconstrained. In contrast,
the system could take the initiative by saying the more restrictive phrase \Please tell me
the location you are interested in", thus constraining the user to provide information about
the location of the activity. Which of these contrasting choices of user or system initiative is
superior may depend strongly on the properties of the underlying and imperfect ASR, the
population of users, as well as the dialogue so far. This choice of initiative occurs repeatedly
throughout a dialogue, and is but one example of a class of di�cult design decisions.
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S1: Welcome to NJFun. How may I help you?
U1: I'd like to �nd um winetasting in Lambertville in the morning.

(ASR: I'd like to �nd out wineries the in the Lambertville in the morning.)
S2: Did you say you are interested in Lambertville?
U2: Yes.
S3: Did you say you want to go in the morning?
U3: Yes.
S4: I found a winery near Lambertville that is open in the morning.

It is the Poor Richard's Winery in Lambertville.
Thank you for using the system.
Please give me feedback by saying `good', `so-so', or `bad'.

U4: Good.
S5: Goodbye and have a nice day!

Figure 1: An example dialogue with NJFun.

In the main, previous research has treated the speci�cation of the dialogue management
policy as an iterative design problem: several versions of a system are created (where each
version uses a single dialogue policy, intuitively designed by an expert), dialogue corpora are
collected with human users interacting with di�erent versions of the system, a number of
evaluation metrics are collected for each dialogue, and the di�erent versions are statistically
compared (Danieli & Gerbino, 1995; Sanderman, Sturm, den Os, Boves, & Cremers, 1998;
Kamm, 1995; Walker, Litman, Kamm, & Abella, 1998b). Due to the costs of experimen-
tation, only a handful of policies are usually explored in any one experiment. Yet, many
thousands of reasonable dialogue policies are typically possible. In NJFun, for example,
there is a search space of 242 potential dialogue polices, as will be detailed below.

Recent work has suggested that a dialogue policy can be designed using the formalisms
of Markov decision processes (MDPs) and reinforcement learning (RL) (Biermann & Long,
1996; Levin et al., 2000; Walker et al., 1998a; Singh, Kearns, Litman, & Walker, 1999;
Walker, 2000), which have become a standard approach to many AI problems that involve
an agent learning to improve performance by interaction with its environment (Sutton &
Barto, 1998; Kaelbling, Littman, & Moore, 1996). More speci�cally, the MDP and RL
formalisms suggest a method for optimizing dialogue policies from sample dialogue data,
and have many features well-suited to the problem of dialogue design. These features
include the fact that RL is designed to cope gracefully with noisy sensors (such as the
ASR), stochastic behavior in the environment (which in this case is the user population),
and delayed rewards (which are typical in spoken dialogue systems). The main advantage
of this approach is the potential for computing an optimal dialogue policy within a much
larger search space, using a relatively small number of training dialogues. The RL approach
is more data-e�cient because it evaluates actions as a function of state, while the traditional
iterative method evaluates entire policies.

Unfortunately, the practical application of RL to the area of spoken dialogue manage-
ment presents many technical challenges. While the theory of RL is quite advanced, ap-
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plications have been limited almost exclusively to problems in control, operations research,
or game-playing (e.g., (Crites & Barto, 1996; Tesauro, 1995)). Dialogue management rep-
resents a rather di�erent type of problem, in which the MDP models a working system's
interaction with a population of human users, and RL is used to optimize the system's
performance. For this type of application, it is di�cult to obtain large amounts of training
data, and the need for exploratory data must be balanced with the need for a functioning
system.

This paper presents a detailed methodology for using RL to optimize the design of a
dialogue management policy based on limited interactions with human users, and experi-
mentally demonstrates the utility of the approach in the context of the NJFun system. At
a high level, our RL methodology involves the choice of appropriate performance criteria
(i.e., reward measures) and estimates for dialogue state, the deployment of an initial train-
ing system that generates deliberately exploratory dialogue data, the construction of an
MDP model of user population reactions to di�erent action choices, and the redeployment
of the system using the optimal dialogue policy according to this model.

Section 2 describes some of the dialogue policy choices that a dialogue manager must
make. Section 3 explains how reinforcement learning can be used to optimize such choices
in a �elded dialogue system with human users. Section 4 describes the architecture of
the NJFun system, while Section 5 describes how NJFun optimizes its dialogue policy
from experimentally obtained dialogue data. Section 6 reports empirical results evaluating
the performance of NJFun's learned dialogue policy, and demonstrates that our approach
improves NJFun's task completion rate (our chosen measure for performance optimization).
Section 6 also presents results establishing the veracity of the learned MDP, and compares
the performance of the learned policy to the performance of standard hand-designed policies
in the literature. Our results provide empirical evidence that, when properly applied, RL
can quantitatively and substantially improve the performance of a spoken dialogue system.

2. Dialogue Management in Spoken Dialogue Systems

In a typical spoken dialogue system (shown in block-diagram form in Figure 2), the user
speaks to the system in real time through a telephone or microphone, using free-form natural
language, in order to retrieve desired information from a back-end such as a database. The
user's speech is interpreted through an automatic speech recognizer (ASR), and the system's
natural language responses are conveyed to the user via a text-to-speech (TTS) component.
The dialogue manager of the system uses a dialogue policy to decide what the system should
say (or in RL terminology, which action it should take) at each point in the dialogue.

For our purposes, an ASR can be viewed as an imperfect, noisy sensor with an adjustable
\parameter" (the language model or grammar) that can be tuned to inuence the types of
speech recognition mistakes made. In addition to any perceived matches in the utterance,
the ASR also returns a score (typically related to log-likelihood under a hidden Markov
model) giving a subjective estimate of con�dence in the matches found. This score is
important in interpreting the ASR results.

Our work concentrates on automating two important types of decisions faced in dialogue
policy design, both of which are heavily colored by the ASR facts above. The �rst type
of decisions, of which we have already seen an example, is how much initiative the system
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Figure 2: A block diagram representation of a spoken dialogue system. The user gains
access to a database by speaking to the system in natural language through the
automatic speech recognition system (ASR). The system talks back to the user
through a text to speech (TTS) system.

should allow the user | namely, whether the system at any given point should prompt the
user in a relatively open-ended manner (often referred to as user initiative) or a relatively
restrictive manner (system initiative).

The second type of choice we investigate is how conservative the system should be in
con�rming its understanding of the user. After it has applied the ASR to a user utterance,
and obtained a value for some attribute of interest (for instance, town = Lambertville), the
system must decide whether to con�rm the perceived utterance with the user. After the
user's response U1 in Figure 1, for example, NJFun must decide whether it should explicitly
con�rm its understanding, as in utterances S2 and S3. NJFun can also simply continue on
with the dialogue, as when it does not explicitly con�rm that the user wants to �nd out
about wineries. While we might posit that con�rmation is unnecessary for high values of the
ASR con�dence, and necessary for low values, the proper de�nitions of \high" and \low"
would ideally be determined empirically for the current state (for instance, depending on
whether there has been di�culty on previous exchanges), and might depend on our measure
of system success.

As will be detailed below, in the NJFun system, we identi�ed many di�erent dialogue
states for which we wanted to learn whether to take user or system initiative for the next
prompt. Similarly, we identi�ed many di�erent dialogue states in which we wanted to
learn whether to con�rm the ASR-perceived user utterance, or not to con�rm.1 We note
that there is genuine and spirited debate over choices of initiative and con�rmation among
dialogue system designers (Walker & Whittaker, 1990; Danieli & Gerbino, 1995; Haller &
McRoy, 1998, 1999; Smith, 1998; Walker et al., 1998a). As a simple example, some users
enjoy systems that con�rm frequently, even if unnecessarily, since it provides con�dence
that the system is understanding the user. These are not well-understood choices on which
there is a prevailing consensus, which is precisely why we wish to automate, in a principled
way, the process of making such choices on the basis of empirical data.

1. Although not learned in our work, there are obviously many other types of dialogue policy decisions that
the system made, e.g., how to present results of database queries (Litman, Pan, & Walker, 1998).
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3. Reinforcement Learning for Dialogue Policy Design

In this section, we describe the abstract methodology we propose to apply RL to dia-
logue policy design. In the next section, we will describe in detail the instantiation of this
methodology in the NJFun system.

In order to apply RL to the design of dialogue policy, it is necessary to de�ne a state-based
representation for dialogues. By this we simply mean that all or most of the information
about the dialogue so far that is relevant for deciding what action the system should take
next is contained in a single summarizing entity called the state. One obvious but imprac-
tical choice for this state is a transcript or system log of the entire dialogue, which would
include the audio so far, the utterances matched by the ASR, the language models used,
the con�dence scores returned by the ASR, and perhaps many other quantities. In practice,
we need to compress this state as much as possible | representing states by the values of
a small set of features | without losing information necessary for making good decisions.
We view the design of an appropriate state space as application-dependent , and a task for
a skilled system designer.

Given choices for the state features, the system designer can think in terms of the state
space, and appropriate actions to take in each state. We de�ne a dialogue policy to be a
mapping from the set of states in the state space to a set of actions. For some states, the
proper action to take may be clear (for instance, greeting the user in the start state, or
querying the database when all informational attributes are instantiated). For other states,
called choice-states, there may be multiple reasonable action choices (such as choices of
initiative and con�rmation). Each mapping from such choice-states to a particular action
is a distinct dialogue policy. Typically the system designer uses intuition to choose the best
action to take in each choice-state. Our RL-based approach is to instead make these choices
by learning .

In particular, a dialogue system that explores action choices in a systematic way can
learn to optimize its behavior by interacting with representative human users. The system
converses with human users to perform a set of representative tasks in the dialogue domain.
For each dialogue interaction, a scalar performance measure, called a reward, is calculated.2

The resulting dialogue corpus is used to construct a Markov decision process (MDP) which
models the users' interaction with the system. With this approach, the problem of learning
a good dialogue policy is thus reduced to computing the optimal policy for choosing actions
in an MDP| that is, the system's goal is to take actions so as to maximize expected reward.
The computation of the optimal policy given the MDP can be done e�ciently using standard
reinforcement learning algorithms (Sutton & Barto, 1998; Bertsekas & Tsitsiklis, 1996).

Since it is di�cult to predict next actions, states, and rewards in advance, we build
the desired MDP from sample dialogues. Following Singh et al. (1999), we can view a
dialogue as a trajectory in the chosen state space determined by the system actions and
user responses:

s1 !a1;r1 s2 !a2;r2 s3 !a3;r3 � � �

Here si !ai;ri si+1 indicates that at the ith exchange, the system was in state si, executed
action ai, received reward ri, and then the state changed to si+1. In our experiments only

2. We discuss various choices for this reward measure later, but in our experiments the reward is always a
quantity directly obtainable from the experimental set-up, such as user-satisfaction or task completion.
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terminal dialogue states have nonzero rewards. Dialogue sequences obtained from training
data can be used to empirically estimate the transition probabilities P (s0js; a) (denoting
the probability of a transition to state s0, given that the system was in state s and took
action a), and the reward function R(s; a) (denoting the expected reward obtained, given
that the system was in state s and took action a). For example, our estimate of the
transition probability is simply the number of times, in all of the dialogues, that the system
was in s, took a, and arrived in s0, divided by the number of times the system was in s

and took a (regardless of next state). The estimated transition probabilities and reward
function constitute an MDP model of the user population's interaction with the system. It
(hopefully) captures the stochastic behavior of the users when interacting with the system.

Note that in order to have any con�dence in this model, in the sample dialogues the sys-
tem must have tried many possible actions from many possible states, and preferably many
times. In other words, the training data must be exploratory with respect to the chosen
states and actions. If we never try an allowed action from some state, we cannot expect to
know the value of taking that action in that state. Perhaps the most straightforward way of
ensuring exploratory training data is to take actions randomly3. While this is the approach
we will take in NJFun, it requires that we be exceptionally careful in designing the actions
allowed at each choice-state, in order to guarantee that the random choices made always
result in a dialogue sensible to human users. (Keep in mind that there is no exploration in
non choice-states where the appropriate action is already known and �xed by the system
designer.) Other approaches to generating exploratory data are possible.

Next, given our MDP, the expected cumulative reward (or Q-value) Q(s; a) of taking
action a from state s can be calculated in terms of the Q-values of successor states via the
following recursive equation (Sutton & Barto, 1998):

Q(s; a) = R(s; a) + 
X

s0

P (s0js; a)max
a0

Q(s0; a0): (1)

where P (s0js; a) is our estimated transition model and R(s; a) our estimated reward model.
Here 0 �  � 1 is a discount factor that if set to a value less than one would discount
rewards obtained later in time. We found that for NJFun the policy learned was insensitive
to reasonable choices of  and therefore we used no discounting, or  = 1, for the experiments
reported here. The Q-values de�ned by Equation 1 can be estimated to within a desired
threshold using the Q-value version of the standard value iteration algorithm (Sutton &
Barto, 1998), which iteratively updates the estimate of Q(s; a) based on the current Q-
values of neighboring states and stops when the update yields a di�erence that is below a
threshold. Once value iteration is completed, the optimal dialogue policy (according to our
estimated model) is obtained by selecting the action with the maximum Q-value at each
dialogue state. To the extent that the estimated MDP is an accurate model of the user
population, this optimized policy should maximize the reward obtained from future users.

While this approach is theoretically appealing, the cost of obtaining sample human
dialogues makes it crucial to limit the size of the state space, to minimize data sparsity

3. Of course, even with random exploration, it is not possible in practice to explore all states equally often.
Some states will occur more often than others. The net e�ect is that states that occur often will have
their actions tried more often than states that occur rarely, and thus the transition probabilities for
frequent, and hence potentially important, state-action pairs will be more accurate than the transition
probabilities of infrequent state-action pairs.
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Figure 3: A dialogue system viewed as an MDP. The population of users correspond to
the environment whose state is among other things de�ned by the outputs of the
automatic speech recognition (ASR) system and the database (DB). The dialogue
policy de�nes the agent, the state-estimator de�nes the agent's sensors, and the
database actions as well as the possible set of TTS utterances de�ne the agent's
action set.

problems, while retaining enough information in the state to learn an accurate model. If
sample data were in�nite, the idealized state might include not only the dialogue so far,
but also any derived features (e.g. ASR results, log-likelihood scores representing ASR
con�dence, semantic analysis, the results of database queries, etc.). Yet even a state based
on only a small number of features can yield an enormous state space. While others have
proposed simulating the user interactions to obtain enough training data (Levin et al.,
2000; Young, 2000), our approach is to work directly in a small but carefully designed
estimated state space (Singh et al., 1999), as shown in Figure 3. By using a minimal state
representation to approximate the true state, the amount of data required to learn the
optimal dialogue policy using value iteration can be greatly reduced.

The contribution of this paper is to empirically validate this practical methodology for
using reinforcement learning to build a dialogue system that optimizes its behavior from
human-computer training dialogue data. In a nutshell, our proposed approach is:

1. Choose an appropriate reward measure for dialogues, an appropriate representation
for dialogue states, and design a dialogue policy that maps each state to a set of
reasonable actions.

2. Build an initial state-based training system that creates an exploratory data set (one
that tries, many times from each choice-state, each of the actions we would like to
choose among). Despite being exploratory, this system should still provide the desired
basic functionality.

3. Use these training dialogues to build an empirical MDP model on the state space. The
transitions of this MDP will be modeling the user population's reactions and rewards
for the various system actions.

4. Compute the optimal dialogue policy according to this MDP.

5. Reimplement the system using the learned dialogue policy.
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The next section details the use of this methodology to design the NJFun system.

4. The NJFun System

NJFun is a real-time spoken dialogue system that provides users with information about
things to do in New Jersey. NJFun is built using a general purpose platform for spoken di-
alogue systems (Levin, Pieraccini, Eckert, Fabbrizio, & Narayanan, 1999), with support for
modules for automatic speech recognition (ASR), spoken language understanding, text-to-
speech (TTS), database access, and dialogue management. NJFun uses the Watson speech
recognizer with stochastic language and understanding models trained from example user
utterances (Levin et al., 1999; Levin & Pieraccini, 1995), a TTS system based on concatena-
tive diphone synthesis (Sproat & Olive, 1995), and a mixed-initiative dialogue manager built
using the DMD scripting language (Levin et al., 1999). The NJFun database is populated
from the nj.online webpage to contain information about the following activity types:
amusement parks, aquariums, cruises, historic sites, museums, parks, theaters, wineries,
and zoos. NJFun indexes this database using three attributes: activity type, location, and
time of day (which can assume values morning, afternoon, or evening).

Informally, the NJFun dialogue manager sequentially queries the user regarding the
activity, location and time attributes, respectively. NJFun �rst asks the user for the current
attribute (and possibly the other attributes, depending on the initiative). If the current
attribute's value is not obtained, NJFun asks for the attribute (and possibly the later
attributes) again. If NJFun still does not obtain a value, NJFun moves on to the next
attribute(s). Whenever NJFun successfully obtains a value, it can con�rm the value, or
move on to the next attribute(s). When NJFun has �nished acquiring attributes, it queries
the database (using a wildcard for each unobtained attribute value). For any given binding
of the three attributes, there may be multiple database matches, which will all be returned
to the user. The length of NJFun dialogues ranges from 1 to 12 user utterances before
the database query. Although the NJFun dialogues are fairly short (since NJFun only asks
for an attribute twice), the information acquisition part of the dialogue is similar to more
complex tasks.4

As discussed above, our methodology for using reinforcement learning to optimize di-
alogue policy requires that all potential actions for each state be speci�ed. Recall that at
some states it is easy for a human to make the correct action choice (e.g., we don't want
the system to be able to say \goodbye" in the initial state, as in the simulations of Levin
et al. (2000)). We made obvious dialogue policy choices in advance, and used learning only
to optimize the di�cult choices (Walker et al., 1998a). In NJFun, we restricted the action
choices to 1) the type of initiative to use when asking or reasking for an attribute, and
2) whether to con�rm an attribute value once obtained. The optimal actions may vary
with dialogue state, and are subject to active debate in the literature. The action choices
available to NJFun are shown in Figures 4 and 5.

The examples in Figure 4 show that NJFun can ask the user about the �rst two
attributes5 using three types of initiative, based on the combination of the wording of the

4. To support continuous use, the system's functionality could be extended in a number of ways such as a
larger live database and support for followup questions by the users.

5. \Greet" is equivalent to asking for the �rst attribute.
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Action Prompt

GreetS Welcome to NJFun. Please say an activity name or say `list activities'
for a list of activities I know about.

n GreetU Welcome to NJFun. How may I help you?

ReAsk1S I know about amusement parks, aquariums, cruises, historic sites,
museums, parks, theaters, wineries and zoos. Please say an activity
name from this list.

ReAsk1M Please tell me the activity type. You can also tell me the location
and time.

Ask2S Please say the name of the town or city that you are interested in.
Ask2U Please give me more information.

ReAsk2S Please tell me the name of the town or city that you are interested
in.

ReAsk2M Please tell me the location that you are interested in. You can also
tell me the time.

Ask3S What time of the day do you want to go?

ReAsk3S Do you want to go in the morning, in the afternoon, or in the evening?

Figure 4: Initiative choices available to NJFun. The left-hand column speci�es the names
of the actions corresponding to the prompts in the right-hand column.

system prompt (open versus directive), and the type of grammar NJFun uses during ASR
(restrictive versus non-restrictive). If NJFun uses an open question with a non-restrictive
grammar, it is using user initiative (e.g., GreetU). The non-restrictive grammar is always
used with a user initiative prompt, because the choice of the restrictive grammar does not
make sense in that case. If NJFun instead uses a directive prompt with a restricted gram-
mar, the system is using system initiative (e.g., GreetS). Here the system calls ASR on the
user utterance using a grammar that recognizes only the particular attribute mentioned
in the prompt. If NJFun uses a directive question with a non-restrictive grammar, it is
using mixed initiative, because it allows the user to take the initiative by supplying extra
information (e.g., ReAsk1M). The non-restrictive grammar is designed to recognize both
the attribute explicitly mentioned in the directive prompt, as well as information o�ered on
the other attributes. The last two rows of the �gure show that NJFun always uses system
initiative for the third attribute, because at that point the user can only provide the time
of day.

NJFun can also vary the actions for con�rming each attribute, as shown in Figure 5. If
NJFun asks the user to explicitly verify an attribute, it is using explicit con�rmation (e.g.,
ExpConf2 for the location, exempli�ed by S2 in Figure 1). All explicit con�rmations are
system initiative, as a restrictive yes/no grammar is used, and are generated from templates.
For example, the prompt to con�rm the time attribute is \Did you say you want to go in
the < time >?", where < time > is replaced by the perceived value of the time attribute
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Action Prompt Template

ExpConf1 Did you say you are interested in going to < activity >?
NoConf -

ExpConf2 Did you say you are interested in < location > ?
NoConf -

ExpConf3 Did you say you want to go in the < time >?
NoConf -

Figure 5: Con�rmation choices available to NJFun. The left-hand column speci�es the
names of the actions corresponding to the prompts in the right-hand column.
The prompt for the NoConf (no-con�rmation) action is empty.

Feature Values Explanation

Greet (G) 0,1 Whether the system has greeted the user

Attribute (A) 1,2,3,4 Which attribute is being worked on

Con�dence/Con�rmed
(C)

0,1,2,3,4 0,1,2 for low, medium, and high ASR con�dence. 3,4
for explicitly con�rmed, and discon�rmed

Value (V) 0,1 Whether value has been obtained for current attribute

Tries (T) 0,1,2 How many times current attribute has been asked

Grammar (M) 0,1 Whether non-restrictive or restrictive grammar was
used

History (H) 0,1 Whether there was trouble on any previous attribute

Figure 6: State features and values.

(morning, afternoon, or evening). If NJFun does not generate any con�rmation prompt, it
is using no con�rmation (the NoConf action).

Solely for the purposes of controlling its operation (as opposed to the learning, which
we discuss in a moment), NJFun internally maintains a representation of the dialogue state,
using an operations vector of 14 variables. 2 variables track whether the system has greeted
the user, and which attribute the system is currently attempting to obtain. For each of the
3 attributes, 4 variables track whether the system has obtained the attribute's value and
what the value is, the system's con�dence in the value (if obtained), the number of times
the system has asked the user about the attribute, and the type of ASR grammar most
recently used to ask for the attribute.

The formal state space S maintained by NJFun for the purposes of learning is much
simpler than the operations vector, due to the data sparsity concerns already discussed.
The dialogue state space S contains only 7 variables, as summarized in Figure 6. S is
computed from the operations vector using a hand-designed algorithm. The \Greet" feature
tracks whether the system has greeted the user or not (no=0, yes=1). \Attribute" speci�es
which attribute NJFun is currently attempting to obtain or verify (activity=1, location=2,
time=3, done with attributes=4). \Con�dence/Con�rmed" represents the con�dence that
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NJFun has after obtaining a value for an attribute. The values 0, 1, and 2 represent the
lowest, middle and highest ASR con�dence values.6 The values 3 and 4 are set when
ASR hears \yes" or \no" after a con�rmation question. \Value" tracks whether NJFun
has obtained a value for the attribute (no=0, yes=1). \Tries" tracks the number of times
that NJFun has asked the user about the attribute. \Grammar" tracks the type of ASR
grammar (language model) most recently used to obtain the attribute (0=non-restrictive,
1=restrictive). Finally, \History" represents whether NJFun had trouble understanding the
user in the earlier part of the conversation (bad=0, good=1). We omit the full de�nition,
but as an example, when NJFun is working on the second attribute (location), the history
variable is set to 0 if NJFun does not have an activity, has an activity but has no con�dence
in the value, or needed two queries to obtain the activity.

We note that this state representation, in the interests of keeping the state space small,
deliberately ignores potentially helpful information about the dialogue so far. For example,
there is no state feature explicitly tracking the average ASR score over all user utterances so
far, nor do we keep information about the raw feature values for previous states.7 However,
as mentioned above, the goal is to design a small state space that makes enough critical
distinctions to support learning. The use of S reduces the number of states to only 62, and
supports the construction of an MDP model that is not sparse with respect to S, even using
limited training data.8 The state space that we utilize here, although minimal, allows us to
make initiative decisions based on the success of earlier exchanges, and con�rmation deci-
sions based on ASR con�dence scores and grammars, as suggested by earlier work (Danieli
& Gerbino, 1995; Walker et al., 1998b; Litman, Walker, & Kearns, 1999).

With the state space and action choices precisely de�ned, we can now detail the policy
class explored in our experiment, de�ned to be the set of all deterministic mappings from
the states in which the system has a choice to a particular, �xed choice. The state/action
mapping representing NJFun's dialogue policy class EIC (Exploratory for Initiative and
Con�rmation) is shown in Figure 7. For each choice-state, we list the two choices of actions
available. (The action choices in boldface are the ones eventually identi�ed as optimal by
the learning process, and are discussed in detail later.) Since there are 42 choice-states
with 2 action choices each, the total number of unique policies in this class is 242. In
keeping with the RL methodology described above, our goal is to compute and implement
an approximately optimal policy in this very large class on the basis of RL applied to
exploratory training dialogues.

The policy class in Figure 7 is obtained by allowing a choice of system or user initiative
whenever the system needs to ask or reask for an attribute, and by allowing a choice of
con�rming or simply moving on to the next attribute whenever the system has just obtained
a value for an attribute. For example, in the initial state where the user has not yet greeted

6. For each utterance, the ASR output includes not only the recognized string, but also an associated
acoustic con�dence score. Based on data obtained during system development, we de�ned a mapping
from raw con�dence values into 3 approximately equally populated partitions.

7. As discussed above, the system uses its operations vector to store more information, such as the actual
values of previous attributes for the eventual database query. As these do not inuence future dialogue
policy in any way, they are not stored as state features.

8. 62 refers to those states that can actually occur in a dialogue. For example, greet=0 is only possible in
the initial dialogue state \0 1 0 0 0 0 0". Thus, all other states beginning with 0 (e.g. \0 1 0 0 1 0 0")
will never occur.
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Choice-States Action Choices
G A C V T M H

0 1 0 0 0 0 0 GreetS,GreetU
1 1 0 0 1 0 0 ReAsk1S,ReAsk1M
1 1 0 1 0 0 0 NoConf,ExpConf1
1 1 0 1 0 1 0 NoConf,ExpConf1
1 1 1 1 0 0 0 NoConf,ExpConf1
1 1 1 1 0 1 0 NoConf,ExpConf1
1 1 2 1 0 0 0 NoConf,ExpConf1
1 1 2 1 0 1 0 NoConf,ExpConf1
1 1 4 0 0 0 0 ReAsk1S,ReAsk1M
1 1 4 0 1 0 0 ReAsk1S,ReAsk1M

1 2 0 0 0 0 0 Ask2S,Ask2U
1 2 0 0 0 0 1 Ask2S,Ask2U
1 2 0 0 1 0 0 ReAsk2S,ReAsk2M
1 2 0 0 1 0 1 ReAsk2S,ReAsk2M
1 2 0 1 0 0 0 NoConf,ExpConf2
1 2 0 1 0 0 1 NoConf,ExpConf2
1 2 0 1 0 1 0 NoConf,ExpConf2
1 2 0 1 0 1 1 NoConf,ExpConf2
1 2 1 1 0 0 0 NoConf,ExpConf2
1 2 1 1 0 0 1 NoConf,ExpConf2
1 2 1 1 0 1 0 NoConf,ExpConf2
1 2 1 1 0 1 1 NoConf,ExpConf2
1 2 2 1 0 0 0 NoConf,ExpConf2
1 2 2 1 0 0 1 NoConf,ExpConf2
1 2 2 1 0 1 0 NoConf,ExpConf2
1 2 2 1 0 1 1 NoConf,ExpConf2
1 2 4 0 0 0 0 ReAsk2S,ReAsk2M
1 2 4 0 0 0 1 ReAsk2S,ReAsk2M
1 2 4 0 1 0 0 ReAsk2S,ReAsk2M
1 2 4 0 1 0 1 ReAsk2S,ReAsk2M

1 3 0 1 0 0 0 NoConf,ExpConf3
1 3 0 1 0 0 1 NoConf,ExpConf3
1 3 0 1 0 1 0 NoConf,ExpConf3
1 3 0 1 0 1 1 NoConf,ExpConf3
1 3 1 1 0 0 0 NoConf,ExpConf3
1 3 1 1 0 0 1 NoConf,ExpConf3
1 3 1 1 0 1 0 NoConf,ExpConf3
1 3 1 1 0 1 1 NoConf,ExpConf3
1 3 2 1 0 0 0 NoConf,ExpConf3
1 3 2 1 0 0 1 NoConf,ExpConf3
1 3 2 1 0 1 0 NoConf,ExpConf3
1 3 2 1 0 1 1 NoConf,ExpConf3

Figure 7: EIC Policy Class. De�nitions for state features are given in Figure 6.

the user (\Greet" has the value 0), the system has a choice of uttering the system initiative
prompt \Please say an activity name or say `list activities' for a list of activities I know
about." or the user initiative prompt \How may I help you?" As another example, choices
in con�rmation are available at states for which the \Value" feature is 1. In these states,

12
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the system can either con�rm the attribute value obtained from the ASR, or accept the
current binding and move on to the next attribute.

To execute a particular policy in the policy class EIC, NJFun chooses randomly between
the two actions for whatever choice-state it is in, thus maximizing exploration and minimiz-
ing data sparseness when constructing our MDP model. Note that due to the randomization
used for action choice, the prompts in Figures 4 and 5 are designed to ensure the coherence
of all possible action sequences.

State Action Turn Reward
g a c v t m h

0 1 0 0 0 0 0 GreetU S1 0
1 1 2 1 0 0 0 NoConf - 0
1 2 2 1 0 0 1 ExpConf2 S2 0
1 3 2 1 0 0 1 ExpConf3 S3 0
1 4 0 0 0 0 0 Tell S4 1

Figure 8: Generating the dialogue in Figure 1.

Figure 8 illustrates how the dialogue policy class in Figure 7 generates the dialogue in
Figure 1. Each row indicates the state that NJFun is in, the action executed in this state,
the corresponding turn in Figure 1, and the reward received. The initial state represents
that NJFun will �rst attempt to obtain attribute 1. NJFun executes GreetU (although
as shown in Figure 7, GreetS is also possible), generating the �rst utterance in Figure 1.
After the user's response, the next state represents that NJFun has now greeted the user
and obtained the activity value with high con�dence, by using a non-restrictive grammar.
NJFun then chooses the NoConf action, so it does not attempt to con�rm the activity,
which causes the state to change but no prompt to be generated. The third state represents
that NJFun is now working on the second attribute (location), that it already has this value
with high con�dence (location was obtained with activity after the user's �rst utterance),
and that the dialogue history is good.9 This time NJFun chooses the ExpConf2 action,
and con�rms the attribute with the second NJFun utterance, and the state changes again.
The processing of time is similar to that of location, which leads NJFun to the �nal state,
where it performs the action \Tell" (corresponding to querying the database, presenting
the results to the user, and asking the user to provide a reward). Note that in NJFun, the
reward is always 0 except at the terminal state, as shown in the last column of Figure 8.

Figure 9 illustrates another NJFun dialogue that was generated using the EIC policy
class. Note that the dialogues in Figures 1 and 9 instantiate two di�erent dialogue policies
in the EIC policy class. For example, although NJFun begins both dialogues in the �rst
state in Figure 7, NJFun executes GreetU in one dialogue and GreetS in the other.

9. Recall that only the current attribute's features are in the state. However, the operations vector contains
information regarding previous attributes.

13



Singh, Litman, Kearns, & Walker

S1: Welcome to NJFun. Please say an activity name or say `list activities' for a list of
activities I know about.

U1: I would like to visit a historic site in Stanhope this morning.
(ASR output: I would like to the zoo historic sites in stanhope historic)

S2: Did you say you are interested in going to a zoo?
U2: No.
S3: I know about amusement parks, aquariums, cruises, historic sites, museums, parks,

theaters, wineries, and zoos. Please say an activity name from this list.
U3: I would like to visit a historic site. (ASR output: I would like to visit historic sites)
S4: Did you say you are interested in going to a historic site?
U4: Yes.
S5: Please give me more information.
U5: (user says nothing)
S6: Please tell me the location that you are interested in. You can also tell me the time.
U6: Visit a historic. (ASR output: What historic)
S7: What time of the day do you want to go?
U7: Stanhope. (no ASR output)
S8: Do you want to go in the morning, in the afternoon, or in the evening?
U8: Morning.
S9: Did you say you want to go in the morning?
U9: Yes.
S10: I found 11 historic sites in New Jersey that are open in the morning. The �rst 3

[. . . ] Would you like to hear more?
U10:No.
S11: Thank you for using the system. Please give me feedback by saying `good', `so-so',

or `bad'.
U11:Bad.

Figure 9: Another example dialogue with NJFun.

5. Experimentally Optimizing a Policy

We collected experimental dialogues for both training and testing our system. To obtain
training dialogues, we implemented NJFun using the EIC dialogue policy class described
in Section 4. We used these dialogues to build an empirical MDP, and then computed the
optimal dialogue policy in this MDP (as described in Section 3). In this section we describe
our experimental design and the learned dialogue policy. In the next section we present
results from testing our learned policy and show that it improves task completion rates, the
performance measure we chose to optimize.

Experimental subjects were AT&T employees not associated with the NJFun project.
There were 54 subjects for training and 21 for testing. Subjects were distributed so the
training and testing pools were balanced for gender, English as a �rst language, and exper-
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tise with spoken dialogue systems.10 Training subjects were informed at the beginning of
the experiment that NJFun might change its behavior during the experiment, via a set of
web-based instructions (see Appendix A).

� Task 1. You are bored at home in Morristown on a rainy afternoon. Use NJFun to
�nd a museum to go to.

� Task 2. You live in Cape May and want to take some friends on an evening cruise.
Use NJFun to �nd out what your options are.

� Task 3. You have lived in Stanhope for many years but have never managed to visit
its historic sites. Today you are feeling virtuous. Use NJFun to �nd out what you
can see this morning.

� Task 4. You feel thirsty and want to do some winetasting in the morning. Are there
any wineries close by your house in Lambertville?

� Task 5. After a hard day of work at AT&T in Florham Park, you would like to relax
with an evening at the theatre. Use NJFun to �nd out if it is possible to see a show
near Florham Park.

� Task 6. You live in Jersey City, and want to spend the afternoon enjoying nature as
the weather is beautiful. Are there any parks nearby?

Figure 10: Task scenarios.

During both training and testing, subjects carried out free-form conversations with
NJFun to complete the six application tasks in Figure 10. For example, the task executed
by the user in Figure 1 was Task 4 in Figure 10. Subjects read each task description by
going to a separate web page for each task (accessible from the main experimental web
page), then called NJFun from their o�ce phone. At the end of the task, NJFun asked for
feedback on their experience (e.g., utterance S4 in Figure 1). Users then hung up the phone
and �lled out a user survey on the web, shown in Figure 11. Possible responses for questions
1 and 2 are shown. The answers to the �rst question (good, so-so, bad) are mapped to 1,
0, and -1, respectively. For the remaining questions, users indicated the strength of their
agreement on a 5 point Likert scale (Jack, Foster, & Stentiford, 1992), with the responses
(strongly agree, somewhat agree, neither agree nor disagree, somewhat disagree, strongly
disagree), which are mapped to 5 through 1, respectively.

As dictated by Step 2 of the RL methodology described in Section 3, we �rst built a
training version of the system, using the EIC state space and action choices outlined in
the preceding section, that used random exploration. By this we mean that in any state
for which we had speci�ed a choice of system actions, the training system chose randomly
among the allowed actions with uniform probability. We again emphasize the fact that
the allowed choices were designed in a way that ensured that any dialogue generated by

10. Subsequent analyses indicated that system performance did not depend signi�cantly on any of these
factors.
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� Please repeat (or give) your feedback on this conversation. (good, so-so, bad )

� Did you complete the task and get the information you needed? (yes, no )

� In this conversation, it was easy to �nd the place that I wanted.

� In this conversation, I knew what I could say at each point in the dialogue.

� In this conversation, NJFun understood what I said.

� Based on my current experience with using NJFun, I'd use NJFun regularly to �nd a
place to go when I'm away from my computer.

Figure 11: User survey.

this exploratory training system was intuitively sensible to a human user, and permitted
the successful completion of any task the system was intended to perform. Nevertheless, it
is important to note that over their multiple calls to the system, training users may have
e�ectively experienced multiple dialogue policies (as induced by the random exploration),
while test users experienced a single, �xed, deterministic policy.

The training phase of the experiment resulted in 311 complete dialogues (not all subjects
completed all tasks), for which NJFun logged the sequence of states and the corresponding
executed actions. The shortest and longest dialogues obtained had 3 and 11 user utterances,
respectively. In our training set, the number of samples per state for the initial ask choices
are:
0 1 0 0 0 0 0 GreetS=155 GreetU=156
1 2 0 0 0 0 0 Ask2S=93 Ask2U=72
1 2 0 0 0 0 1 Ask2S=36 Ask2U=48
Such data illustrates that the random action choice method of exploration led to a fairly
balanced action distribution per state. Similarly, the small state space, and the fact that
we only allowed 2 action choices per state, prevented a data sparseness problem. This is
important because the optimal dialogue policy obtained via RL is unreliable at infrequently
visited states. The �rst state in Figure 7, the initial state for every dialogue, was the most
frequently visited state (with 311 visits). Only 8 states that occur near the end of a dialogue
were visited less than 10 times.

The logged data was then used to construct the empirical MDP. As we have mentioned,
the measure we chose to optimize is a binary reward function based on the strongest possible
measure of task completion, called Binary Completion, that takes on value 1 if NJFun
queries the database using exactly the attributes speci�ed in the task description, and -1
otherwise. Since system logs could be matched with which of the six tasks the user was
attempting, it was possible to directly compute from the system logs whether or not the
user had completed the task. By \completed" we mean binding all three attributes (activity
type, location, and time of day) to the exact values speci�ed in the task description given on
the associated web page. In this way, each training dialogue was automatically labeled by
a +1 in the case of a completed task, or �1 otherwise. We note that this de�nition of task
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completion guarantees that the user heard all and only the database entries matching the
task speci�cations. Relaxations of this reward measure, as well as other types of measures
that could have been used as our reward measure, are discussed in the next section.

Finally, we computed the optimal dialogue policy in this MDP using reinforcement
learning (cf. Section 3). The action choices constituting the learned policy are in boldface
in Figure 7. Note that no choice was �xed for several states (e.g., \1 1 4 0 0 0 0"), meaning
that the Q-values were identical after value iteration. Thus, even when using the learned
policy, NJFun still sometimes chooses randomly between certain action pairs.

Intuitively, the learned policy says that the optimal use of initiative is to begin with user
initiative, then back o� to either mixed or system initiative when reasking for an attribute.
Note, however, that the speci�c backo� method di�ers with attribute (e.g., system initiative
for attribute 1, but generally mixed initiative for attribute 2). With respect to con�rmation,
the optimal policy is to mainly con�rm at lower con�dence values. Again, however, the point
where con�rmation becomes unnecessary di�ers across attributes (e.g., con�dence level 2
for attribute 1, but sometimes lower levels for attributes 2 and 3), and also depends on
other features of the state besides con�dence (e.g., grammar and history). This use of ASR
con�dence by the dialogue policy is more sophisticated than previous approaches, e.g. (Niimi
& Kobayashi., 1996; Litman & Pan, 2000). NJFun can learn such �ne-grained distinctions
because the optimal policy is based on a comparison of 242 possible exploratory policies.
Both the initiative and con�rmation results suggest that the beginning of the dialogue was
the most problematic for NJFun. Figure 1 is an example dialogue using the optimal policy.

6. Experimentally Evaluating the Optimized Policy

For the testing phase, NJFun was reimplemented to use the (now deterministic) learned
policy. 21 test subjects then performed the same six tasks used during training, resulting
in 124 complete test dialogues. The primary empirical test of the proposed methodology
is, of course, the extent and statistical signi�cance of the improvement in the allegedly
optimized measure (binary task completion) from the training to test populations. In fact,
task completion as measured by Binary Completion does increase, from 52% in training
to 64% in testing. The following sections are devoted to the analysis of this test, as well as
several related tests.

6.1 Comparing the Learned Policy to the Training Policy

Table 1 summarizes the training versus testing performance of NJFun, for various evalu-
ation measures. Recall that in the 311 training dialogues, NJFun used randomly chosen
policies in the EIC policy class. In the 124 testing dialogues, NJFun used the single learned
policy. Although the learned policy was optimized for only the task success measure Bi-
nary Completion, many types of measures have been used to evaluate dialogue systems
(e.g., task success, dialogue quality, e�ciency, usability (Danieli & Gerbino, 1995; Kamm
et al., 1998)). We thus evaluate the performance of the learned policy with respect to both
the original reward measure and a number of other potential reward measures that we did
not optimize the test system for.

Perhaps our most important results are summarized in the �rst two rows of Table 1.
In the �rst row, we summarize performance for the Binary Completion reward measure,
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Evaluation Measure Train Test � p-value

Binary Completion 0:048 0:274 0:226 0:059

Weak Completion 1:72 2:18 0:46 0:029

ASR 2:48 2:67 0:19 0:038

Web feedback 0:18 0:11 �0:07 0:42

Easy 3:38 3:39 0:01 0:98

What to say 3:71 3:64 �0:07 0:71

NJFun understood 3:42 3:52 0:1 0:58

Reuse 2:87 2:72 �0:15 0:55

Table 1: Train versus test performance for various evaluation measures. The �rst column
presents the di�erent measures considered (see text for detail); the second col-
umn is the average value of the measure obtained in the training data; the third
column is the average value obtained in the test data; the fourth column shows
the di�erence between the test average and the train average (a positive number
is a \win", while a negative number is a \loss"); the �fth column presents the
statistical signi�cance value obtained using the standard t-test.

discussed in the preceding section. The average value of this reward measured across the
311 dialogues generated using the randomized training system was 0:048 (recall the range
is �1 to 1), while the average value of this same measure across the 124 dialogues using the
learned test system was 0:274, an improvement that has a p-value of 0:059 in a standard
two-sample t-test over subject means.11 This result corresponds to an improvement from
a 52% completion rate among the training dialogues to a 64% completion rate among the
testing dialogues.

The second row of Table 1 shows that performance also improves from training to test
for the closely related measure Weak Completion12. Weak Completion is a relaxed
version of task completion that gives partial credit: if all attribute values are either correct or
wildcards, the value is the sum of the correct number of attributes. Otherwise, at least one
attribute is wrong (e.g., the user says \Lambertville" but the system hears \Morristown"),
and the value is -1. The motivation for this more re�ned measure is that reward -1 indicates
that the information desired was not contained in the database entries presented to the user,
while non-negative reward means that the information desired was present, but perhaps
buried in a larger set of irrelevant items for smaller values of the reward. The training
dialogue average of weak completion was 1:72 (where the range is �1 to 3), while the
test dialogue average was 2:18. Thus we have a large improvement, this time signi�cant
at the 0:029 level. We note that the policy dictated by optimizing the training MDP for

11. Conventionally, a p-value of less than .05 is considered to be statistically signi�cant, while p-values less
than .10 are considered indicative of a statistical trend.

12. We emphasize that this is the improvement in weak completion in the system that was designed to
optimize binary completion | that is, we only �elded a single test system, but examined performance
changes for several di�erent evaluation measures which could also have been used as our reward measure.
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binary completion (which was implemented in the test system), and the policy dictated by
optimizing the training MDP for weak completion (which was not implemented) were very
similar, with only very minor di�erences in action choices.

The measure in the third row, ASR, is another variation of Binary Completion.
However, instead of evaluating task success, ASR evaluates dialogue quality. In particular,
ASR approximates speech recognition accuracy for the database query, and is computed by
adding 1 for each correct attribute value and .5 for every wildcard. Thus, if the task is to go
winetasting near Lambertville in the morning, and the system queries the database for an
activity in New Jersey in the morning, Binary Completion=-1, Weak Completion=1,
and ASR=2. Table 1 shows that the average value of ASR increased from 2:48 during
training to 2:67 during testing (where the range is 0 to 3), a signi�cant improvement (p <
0:04). Again, this improvement occurred even though the learned policy used for testing
was not optimized for ASR.

The three measures considered so far are objective reward measures, in the sense that
the reward is precisely de�ned as a function of the system log on a dialogue, and can be
computed directly from this log. We now examine how performance changes from training
to test when a set of subjective usability measures (provided by the human user following
each dialogue) are considered. Recall that each dialogue task was accompanied by the web
survey in Figure 11. The measure Web feedback is obtained from the �rst question in
this survey (recall the range is �1 to 1). The measures Easy, What to say, NJFun
understood and Reuse are obtained from the last four questions (recall the range is 1
to 5). Since we did not optimize for any of these subjective measures, we had no a priori
expectations for improvement or degradation. The last �ve rows of Table 1 shows we in
fact did not �nd any statistically signi�cant changes in the mean in either direction for
these measures. However, we observed a curious move to the middle e�ect in that a smaller
fraction of users had extremely positive or extremely negative things to say about our test
system than did about the training system. Figure 12, which shows the entire distribution
of the values for both the train and test systems for these subjective measures, shows that
in optimizing the test system for the task completion measure, we seem to have consistently
shifted weight away from the tails of the subjective measures, and towards the intermediate
values. Although we have no �rm explanation for this phenomenon, its consistency (it
occurs to varying degree for all 5 subjective measures) is noteworthy.

In sum, our empirical results have demonstrated improvement in the optimized task
completion measure, and also improvement in two non-optimized (but related) objective
measures. In contrast, our results show no statistically signi�cant changes for a number of
non-optimized subjective measures, but an interesting move to the middle e�ect.

6.2 E�ect of Expertise

In addition to the task-independent performance changes from training to testing policy
just discussed, there were also task-dependent performance changes. For example, there
was a signi�cant interaction e�ect between policy and task (p<.01) when performance
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Figure 12: Distributions of the subjective measures. (a) Web feedback. (b) Easy. (c) What to say.
(d) NJFun understood. (e) Reuse.
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Figure 13: Interaction e�ects between task and policy. The bar charts show the binary
completion rate for the six tasks (in the order they were presented) for the test
and train policies. The test policy performance is better for the last four tasks
while the train policy performance is better on the �rst two tasks, providing
evidence that the learned test policy is slightly optimized for expert users.

was evaluated for Binary Completion.13 We believe that this could be the e�ect of
user expertise with the system since previous work suggests that novice users perform
comparably to experts after only two tasks (Kamm et al., 1998). Since our learned policy
was based on six tasks with each user, it is possible that the learned policy is slightly
optimized for expert users. To explore this hypothesis, we divided our corpus into dialogues
with \novice" (tasks 1 and 2) and \expert" (tasks 3-6) users. We found that the learned
policy did in fact lead to a large and signi�cant improvement in Binary Completion for
experts, increasing the number of completed dialogues from 46% during training to 69%
during testing (p<.001). In contrast, there was a non-signi�cant degradation for novices
(train=66%, test=55%, p<.3). In particular, as shown in Figure 13, the test means are
lower than the train means for the �rst two tasks, but higher for the last four tasks.

6.3 Comparison to Hand Designed Policies

Although the results presented so far indicate an improvement from training to testing, a
potential limitation is that using a set of policies in the EIC class may not be the best
baseline for comparison to our learned policy. A more standard alternative would be com-
parison to the very best hand-designed �xed policy. However, there is no agreement in the
literature, nor amongst the authors, as to what the best hand-designed policy might have
been. Nevertheless, it is natural to ask how our optimized system compares to systems
employing a dialogue policy picked by a human expert. Although implementing a number

13. Our experimental design consisted of two factors: the within-group factor policy and the between-groups
factor task. We use a two-way analysis of variance (ANOVA) to compute interaction e�ects between
policy and task.
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of hand-picked policies, gathering dialogues from them, and comparing to our learned sys-
tem would be time-consuming and expensive (and in fact, is exactly the kind of repeated,
sequential implement-and-test methodology we are attempting to replace), our training sys-
tem provides a convenient and mathematically sound proxy. In this section we show that
the performance of the learned policy is better than several \standard" �xed policies, by
computing the reward for all the trajectories in the empirical MDP that are consistent with
each alternative policy. Then, because each of these alternatives has only a handful of con-
sistent trajectories in the MDP, in the next section we present an analysis of the MDP's
accuracy.

Since our training dialogues are generated making random choices, any dialogue in the
training set that is consistent with a policy � in our policy class provides an unbiased Monte
Carlo trial of �. By consistent we mean that all the random choices in the dialogue agree
with those dictated by �. We can average the rewards over the consistent training dialogues
to obtain an unbiased estimate of the return of �.

Policy # of Trajs. Emp. Avg. MDP Value p-value

Test 12 0:67 0:534

SysNocon�rm 11 �0:08 0:085 0:06

SysCon�rm 5 �0:6 0:006 0:01

UserNocon�rm 15 �0:2 0:064 0:01

UserCon�rm 11 0:2727 0:32 0:30

Mixed 13 �0:077 0:063 0:06

Table 2: Comparison to standard policies. Here we compare our test policy with several
standard policies using the Monte Carlo method. The �rst column presents the
di�erent policies considered (see text for detail); the second column shows the
number of consistent trajectories in the training data; the third column shows
the empirical average reward on these consistent trajectories; the fourth column
shows the estimated value of the policy according to our learned MDP, and the
�fth column shows the statistical signi�cance (p-value) of the policy's loss with
respect to the test policy.

Table 2 compares the performance of our learned test system, on the Binary Com-

pletion reward measure, to 5 �xed policies in our class that are common choices in the
dialogue systems literature, or that were suggested to us by dialogue system designers.
The SysNocon�rm policy always uses system initiative and never con�rms; the SysCon�rm
policy always uses system initiative and con�rms; the UserNocon�rm policy always uses
user initiative and never con�rms; the UserCon�rm policy always uses user initiative and
con�rms; the Mixed policy varies the initiative during the dialogue. For all but the User-
Con�rm policy, the test policy is better with a signi�cance near or below the 0:05 level, and
the di�erence with UserCon�rm is not signi�cant. (Not surprisingly, the �xed UserCon�rm
policy that fared best in this comparison is most similar to the policy we learned.) Thus,
in addition to optimizing over a large class of policy choices than is considerably more re-
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�ned than is typical, the reinforcement learning approach outperforms a number of natural
standard policies.

6.4 The Goodness of our MDP

Finally, we can ask whether our estimate of state was actually a good estimate or whether we
have simply been fortunate | that is, whether our MDP might have actually been a rather
poor predictor of the value of actions, but that we happened to have nevertheless chosen a
good policy by chance. As some closing evidence against this view, we o�er the results of
a simple experiment in which we randomly generated many (deterministic) policies in our
policy class. For each such policy �, we used the training dialogues consistent with � to
compute an unbiased Monte Carlo estimate R̂� of the expected (binary completion) return
of � (exactly as was done for the hand-picked \expert" policies in Table 2). This estimate
was then paired with the value R� of � (for the start state) in the learned MDP. If the MDP
were a perfect model of the user population's responses to system actions, then the Monte
Carlo estimate R̂� would simply be a (noisy) estimate of R�, the correlation between these
two quantities would be signi�cant (but of course dependent on the number of samples in
the Monte Carlo estimate), and the best-�t linear relationship would be simply R̂� = R�+Z

(slope 1 and intercept 0), where Z is a normally distributed noise variable with adjustable
mean and variance decreasing as the number of consistent trajectories increases. At the
other extreme, if our MDP had no relation to the user population's responses to system
actions, then R̂� and R� would be uncorrelated, and the best we could do in terms of a
linear �t would be R̂� = Z (slope and intercept 0) | that is, we ignore R� and simply
model R̂� as noise. The results summarized in Table 3 indicate that we are much closer
to the former case than the latter. Over the 1000 random policies � that we generated,
the correlation between R̂� and R� was positive and rejected the null hypothesis that the
variables are uncorrelated well below the 0:01 level of signi�cance; furthermore, the least
squares linear �t gave a slope coe�cient close to 1:0 and a y-intercept close to 0, as predicted
by the idealized case above.

7. Discussion

In this paper we presented a practical methodology for applying reinforcement learning to
the problem of optimizing dialogue policy design in spoken dialogue systems. Our method-
ology takes a relatively small number of exploratory dialogues, and directly computes the
apparent optimal policy within a space of perhaps thousands of policies, instead of perform-
ing a sequence of implementations of only a handful of particular policies. We have used
this method to construct a training version of the NJFun spoken dialogue system, and have
empirically demonstrated improved performance in NJFun after optimization. In a con-
trolled experiment with human users using NJFun, we veri�ed signi�cant improvements in
the reward measure for which the optimization was performed. We also showed that there
were signi�cant improvements for several other objective reward measures (even though the
test policy was not optimized for these measures), but no improvements for a set of sub-
jective measures (despite an interesting change in their distributions). Finally, we showed
that the learned policy is not only better than the non-deterministic EIC policy class, but
also better than other �xed choices proposed in the literature. Our results demonstrate

23



Singh, Litman, Kearns, & Walker

# of Trajs. # of Policies Corr. Coe�. p-value Slope Inter.

> 0 1000 0:31 0:00 0:953 0:067

> 5 868 0:39 0:00 1:058 0:087

> 10 369 0:5 0:00 1:11 0:11

Table 3: A test of MDP accuracy. We generated 1000 deterministic policies randomly. For
each policy we computed a pair of numbers: its estimated value according to the
MDP, and its value based on the trajectories consistent with it in the training
data. The number of consistent trajectories varied with policy. The �rst row is
for all 1000 policies, the second row for all policies that had at least 5 consis-
tent trajectories, and the last row for all policies that had at least 10 consistent
trajectories. The reliability of the empirical estimate of a policy increases with
increasing number of consistent trajectories. The third column presents the cor-
relation coe�cient between the empirical and MDP values. The fourth column
presents the statistical signi�cance of the correlation coe�cient. The main result
is that the hypothesis that these two sets of values are uncorrelated can be soundly
rejected. Finally, the last two columns present the slope and intercept resulting
from the best linear �t between the two sets of values.

that the application of reinforcement learning allows one to empirically optimize a system's
dialogue policy by searching through a much larger search space than can be explored with
more traditional methods.

Reinforcement learning has been applied to dialogue systems in previous work, but our
approach di�ers from previous work in several respects. Biermann and Long (1996) did not
test reinforcement learning in an implemented system, and the experiments of Levin et al.
(2000) utilized a simulated user model. Walker et al. (1998a)'s methodology is similar to that
used here, in testing reinforcement learning with an implemented system with human users.
Walker et al. (1998a) explore initiative policies and policies for information presentation in a
spoken dialogue system for accessing email over the phone. However that work only explored
policy choices at 13 states in the dialogue, which conceivably could have been explored with
more traditional methods (as compared to the 42 choice states explored here).

We also note that our learned policy made dialogue decisions based on ASR con�dence
in conjunction with other features, and also varied initiative and con�rmation decisions
at a �ner grain than previous work; as such, our learned policy is not a standard policy
investigated in the dialogue system literature. For example, we would not have predicted
the complex and interesting back-o� policy with respect to initiative when reasking for an
attribute.

Our system and experiments have begun to address some of the challenges spoken di-
alogue systems present to the prevailing theory and application of RL (e.g., balancing the
competing concerns of random exploration with user experience in a �elded training system;
keeping the state space as small as possible in order to make learning data-e�cient, while
retaining all information necessary for decision-making). However, other challenges remain
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to be addressed. For example, because in our work our learned MDP model is at best an
approximation, we may be introducing the problem of hidden state or partial observability
into the problem of choosing optimal actions in each state. For situations with hidden state
a richer POMDP model is often more appropriate (Kaelbling et al., 1996). Roy, Pineau, and
Thrun (2000) are currently exploring whether a POMDP-style approach can yield MDP-like
speeds in a spoken dialogue system for a robot, where state is used to represent the user's
intentions rather than the system's state.

To see how how our method scales, we are currently applying reinforcement learning
to dialogue systems for customer care and for travel planning, which are more complex
task-oriented domains. As future work, we wish to understand the aforementioned results
on the subjective measures, explore the potential di�erence between optimizing for expert
users and novices, automate the choice of state space and reward for dialogue systems
(which in our methodology is assumed to be given), investigate the use of a learned re-
ward function (Walker et al., 1998a), and explore the use of more informative non-terminal
rewards.
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Appendix A. Experimental Instructions

NJFun (The New Jersey Place-To-Go Recommender)

General Description

NJFun is an experimental spoken dialogue system that allows you to access a database of
things to do in New Jersey via a telephone conversation. You will be asked to call NJFun to
do 6 di�erent tasks. You should try to do each task as e�ciently as you can. Note that you
will be speaking to a di�erent version of NJFun during each phone call, and that NJFun
might even vary its behavior within a single phone call.

Instructions for calling NJFun can be found at each task scenario. Please read through
the instructions before calling. On rare occasions, you may get an apparently dead line
when you call. This indicates that all lines are busy. If this occurs, hang up and call later.
Also, PLEASE DO NOT USE A SPEAKER PHONE.

At the end of each task, you will be asked to say \good", \so-so", or \bad" , in order
to provide feedback on your phone call with NJFun. PLEASE DO NOT HANG UP THE
PHONE BEFORE PROVIDING THIS FEEDBACK. After you hang up the phone, there
will also be a few brief questions for you to answer. Even if NJFun aborted before you could
complete the task, PLEASE FINISH THE SURVEY and continue to the next task. Once
you have �nished ALL of the tasks, there will also be an opportunity for you to provide
further comments.
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If you have any problems during the experiment, call Diane at 973-360-8314, or Satinder
at 973-360-7154.

Thank you for participating in this experiment!

Task Scenarios

You have 6 tasks to try in this experiment. You should do one task at a time, in the
prescribed order. After you �nish each task and have provided your feedback, hang up the
phone and �nish the survey for that task. Once you have �nished ALL of the tasks, please
provide any �nal comments.

� Click here to try Task 1

� Click here to try Task 2

� Click here to try Task 3

� Click here to try Task 4

� Click here to try Task 5

� Click here to try Task 6

� Click here to provide �nal comments
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