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Abstract—Following work on designing optimal rewards for
single agents, we define a multiagent optimal rewards problem
(ORP) in common-payoff (or team) settings. This new problem
solves for individual agent reward functions that guide agents
to better overall team performance relative to teams in which
all agents guide their behavior with the same given team-reward
function. We present a multiagent architecture in which each
agent learns good reward functions from experience using a
gradient-based algorithm in addition to performing the usual
task of planning good policies (except in this case with respect to
the learned rather than the given reward function). Multiagency
introduces the challenge of nonstationarity: because the agents
learn simultaneously, each agent’s learning problem is nonstation-
ary and interdependent on the other agents. We demonstrate on
two simple domains that the proposed architecture outperforms
the conventional approach in which all the agents use the
same given team-reward function (even when accounting for the
resource overhead of the reward learning); that the learning
algorithm performs stably despite the nonstationarity; and that
learning individual reward functions can lead to better special-
ization of roles than is possible with shared reward, whether
learned or given.

I. INTRODUCTION

We consider the problem of designing reward functions for
individual agents in multiagent sequential decision-making
problems in the common-payoff, or team, setting. Throughout
we will be focused on decentralized planning/learning ap-
proaches and will assume no direct communication among the
agents. Furthermore, the shared reward function that defines
the objective in the team problem is assumed known. The
usual approach to such problems would, of course, make the
given joint reward function the reward function for each agent.
Why should a designer of multiagent systems do anything
different? As we discuss below, in single agent settings it
has been shown that designing reward functions can help
mitigate agent limitations, e.g., help overcome computational
limitations that prevent perfect planning. In this paper, directly
following work [16], [17] on designing optimal rewards in
single agent settings, we present an algorithm for learning
individual reward functions in multiagent team problems and
investigate three questions: 1) whether multiagent optimal
rewards are capable of overcoming agent limitations that in-
clude individual agents not knowing exactly how other agents
would behave; 2) whether our proposed multiagent optimal
reward function learning algorithm is able to successfully
handle the nonstationarity that comes from multiple agents

learning simultaneously when their actions collectively impact
the experience of all agents; and 3) whether in some domains
learning individually-customized reward functions leads to
more effective specialization of roles for the agents, and thus
more effective coordination among the agents.

Background on Designing Rewards in Single-Agent Set-
tings. The problem of designing rewards for single au-
tonomous agents is typically studied in cases where a reward
function is unavailable to begin with1. Nevertheless, multiple
approaches have been developed for the seemingly counterin-
tuitive problem of designing reward functions when already
given a reward function. For example, reward-shaping of the
variety developed by Ng et.al. [8] considered the question
of what space of reward functions yields the same optimal
policy as the given reward function with the hope that such a
space contains an alternative reward function that makes the
learning task faced by the agent easier. More recently, intrinsic
rewards based on psychological motivations such as curiosity
and exploration that are added to the given reward as bonuses
have been shown to improve the performance of computational
agents [10], [11], [13], [14], [20].

In this paper, we exploit the recent optimal rewards frame-
work of Singh et.al. [16] that stems from the observation that
reward functions play two distinct roles in autonomous agents:
that of evaluation because cumulative expected reward deter-
mines a preference-ordering over policies, and that of guidance
because approximate value functions computed/learned using
the reward function determine the actual behavior of the
autonomous agent. Separating these two distinct roles into
two separate reward functions, with the given reward func-
tion used for evaluation, sets up the formal optimal rewards
problem (ORP) whose solution is the reward function used
for guidance (the ORP can also be seen to be an optimization
approach to learning of intrinsic reward functions [16]). If
the agent is limited in some form (constraints on computation

1For example, the field of preference elicitation develops methods for
eliciting an approximate reward function from some human expert through
queries (e.g., [4]), while the field of inverse reinforcement learning infers an
approximate reward function from data observed by having a human expert
teleoperate the autonomous agent (e.g., [5], [9]). Of course, other approaches
to dealing with unknown reward functions in constructing autonomous agents
eschew the problem of designing rewards altogether and instead learn agent-
policies directly from observed expert behavior using some form of imitation
learning (e.g., [6]) or learning by demonstration (e.g., [1]) or supervised
learning (e.g., [19]).



or knowledge), then solving the ORP for a guidance-reward
function can improve the agent’s performance relative to using
the evaluation-reward function for guidance [17]; in other
words, optimal rewards can mitigate agent limitations. In
addition, algorithms and architectures to solve the ORP have
demonstrated empirical success [18] and we will build upon
those in this paper.

Our departure from prior work on ORP is in extending it to
multiagent teams. Our contributions include: 1) defining the
optimal rewards problem in the multiagent team setting; 2)
extending a single-agent gradient-based approach to learning
optimal rewards from experience to multiagent teams; 3)
empirically demonstrating that despite the non-stationarity
introduced by the multiagency, learning optimal rewards can
mitigate agent limitations; and 4) learning optimal rewards in
teams can lead to more effective specialization in that each
agent is able to learn its own guidance-reward whilst sharing
the team’s evaluation-reward.

II. MULTIAGENT OPTIMAL REWARDS PROBLEM

Let the set of agents be {Ai}ni=1; our mathematical formula-
tion is for arbitrary n though our empirical evaluation will be
restricted to n = 2. At time step t agent Ai gets an observation
oit ∈ Oi from the environment M and takes an action ait ∈ Ai.
Agent i’s history at time t is hit = oi1a

i
1 · · · oit−1ait−1oit. The

joint observation, action and history at time t are denoted ot,
at and ht respectively. The join action at causes a stochastic
change in the underlying state of the environment which in
turn influences the next joint observation ot+1. The given joint
reward function, hereafter the objective reward function, is
denoted RO and will be used to evaluate joint histories, i.e.,
the objective utility achieved by the agents after history h is
UO(h) = 1

|h|
∑|h|

t=1R
O(ht). In the conventional formulation

the reward to each agent at history h would be RO(h). Here
we allow an individual guidance reward function Ri for agent
Ai. Thus the guidance utility for agent i with joint history h
is U i(h) = 1

|h|
∑|h|

t=1R
i(ht). Of course, in practice reward

functions are defined as mappings from some abstraction
of history to scalar rewards but for complete generality we
present our formulation with no abstractions. In single-agent
settings, the agent’s guidance reward function determines
its behavior. In multiagent settings, the joint setting of the
multiple individual guidance reward functions will collectively
determine the team’s behavior. Any coordination among the
agents has to be the result of independent learning/planning
guided by the individual reward functions.

Agent Ai using guidance reward function Ri is denoted
ARi

for ease of notation.

Definition of multiagent optimal rewards problem. Given
a set of agents {Ai}ni=1, a search space of reward functions
{Ri}ni=1, an environment M , and the objective reward func-
tion RO, the set of reward functions {Ri,∗}ni=1 is jointly
optimal for the team of agents, if

{Ri,∗}ni=1 = argmax
{Ri}ni=1∈{Ri}ni=1

Eh∼〈{ARi}ni=1,M〉

[
UO(h)

]
, (1)

where h ∼ 〈{ARi}ni=1,M〉 is a random history sampled by
the interaction of the set of agents {ARi}ni=1 in M .

In words, the optimal reward functions for the team of
agents are the choice of individual reward functions that
guide the team of agents to joint-behavior that in expectation
maximizes the objective utility as measured by the given joint
reward function. This paper is about approaches to solving this
new multiagent ORP.

Multiagent optimal rewards versus other approaches to
multiagent rewards. Crucially, the optimal set of guidance
reward functions are optimal not just with respect to the
environment and given objective reward function, but also with
respect to the details of the architectures and algorithms of the
various agents. Specifically, the agents and their limitations
(including those from the multiagency) help determine the
distribution over h which in turn determines the effective-
ness of choices of guidance reward functions. This sets the
multiagent optimal rewards problem and its solutions apart
from other approaches to designing rewards that also frame the
problem of finding good rewards or incentives in multiagent
settings as an optimization problem, e.g., from the collective
intelligence approach [21] that ignores the limitations of the
agents and focuses on dealing with strategic settings, and from
approaches based on mechanism design [12] that typically
assume the availability of a central auctioneer and more
importantly assume that the agents know and can communicate
their correct utility function to the central auctioneer. This
paper is also different from a recent and related approach to
learning social awareness via intrinsic rewards for multiagent
systems [15] because it demonstrates weak-mitigation, while
our emphasis is on the greater challenge of strong-mitigation
(see Section III for this important distinction).

The potential for specialization. By definition, in team prob-
lems the agents have to learn to cooperate and coordinate to
achieve high shared reward. In some problems such coordina-
tion requires different members of the team to adopt different
roles, i.e., to specialize. Thus one of the questions of interest is
whether the ability to learn different guidance reward functions
by the different agents can lead to increased specialization of
roles, and thereby an improvement in the coordination among
the team. We address this question empirically in Section V-B.

III. MULTIAGENT STRONG-MITIGATION ARCHITECTURE

As in the single-agent setting, it is straightforward (see Equa-
tion 1) that as long as the search space of reward functions
for each agent contains the objective reward function the
objective utility obtained by using the optimal guidance reward
functions would be at least as high as that obtained by
the conventional use of the objective reward function as the
guidance reward function for all agents. This was called the
weak-mitigation property [3] in single-agent settings and it
holds by construction for the multiagent setting as well. Note
that the existence of guidance reward functions better than
the objective reward function in the search space, which is
all weak-mitigation demands, does not mean that such reward



functions can be found cheaply or at all. A more interesting
result would be to show that it is worth it for an agent to
devote some of its limited computational resources to learning
a good guidance reward function at the cost of having fewer
computational resources to plan good behavior with respect
to the guidance reward function. Such a favorable property
was called strong-mitigation [3] in single agent settings and it
accounts for the cost of finding good reward functions, whilst
weak-mitigation ignores it.

Bratman et.al. [3] showed that strong-mitigation implicitly
suggests a Nested Optimal Reward and Control (NORC)
architecture in which an overall agent has two components, an
actor-agent which is the usual agent that takes actions so as
to optimize reward, and a novel critic-agent that learns guid-
ance reward functions. They demonstrated strong-mitigation
in a setting where the single-agent repeatedly plans from
the current state to select a current action, and where the
computational constraint is the CPU-time available per action-
decision. For different constraints on the amount of CPU-time
per decision available, they compared the performance of two
agents: 1) an NORC agent that splits the available CPU-time
between the critic-agent updating the guidance reward function
and the actor-agent doing limited planning with respect to the
guidance reward function learned by the critic-agent, and 2) a
conventional agent that spends all available CPU-time per de-
cision on planning more deeply. They showed that with limited
CPU-time per decision, the NORC agent does better in terms
of objective utility than the conventional agent. In this paper,
we will follow the same empirical approach by considering
limited CPU-time per decision constraints and comparing the
performance of our multiagent NORC architecture (described
next) and a conventional multiagent architecture.

Actor-Agent 1 
(UCT-Planning) 

Critic-Agent 1 
(PGRD) 

Actor-Agent n 
(UCT-Planning) 

Critic-Agent n 
(PGRD) 

Environment 
Observations Actions 

Shared Objective Reward 

Agent 1 Agent n Agent 1’s  
environment 

Guidance Reward Guidance Reward 

Critic-Agent 1’s 
environment 

Fig. 1. The MultiAgent Nested Optimal Reward and Control (MNORC)
Architecture. Each agent is composed of a conventional actor-agent and a
novel critic-agent. The critic-agent learns a guidance reward function that
guides the associated actor-agent’s behavior. The joint action of all the agents
influences the shared objective reward received by all the agents. Note the
large irregular shape showing that the actor-agent-1’s environment includes
the external environment as well as all the other agents, and the wider and
more-rectangular shape showing that the critic-agent-1’s environment includes
its own actor-agent-1 as well as the external environment and the other agents.

Multiagent NORC Architecture. Figure 1 illustrates our
multiagent NORC architecture. Each agent has within it an

actor-agent and a critic-agent. In our empirical work the actor-
agent is a UCT-based planner [7] and the critic-agent uses the
Policy Gradient for Reward Design or PGRD algorithm of
Sorg et.al. ( [18]; we describe this algorithm briefly below).
The significant departure from the single-agent setting is that
while each agent gets its own observation and produces its
own action, it is the joint action of the agents that determines
the shared objective reward.

Another way of understanding the additional challenge
posed by multiagency is to consider the effective environ-
ment of a particular actor-agent. As shown in Figure 1, the
environment of actor-agent-1 includes not only the external
environment but also all the other agents including their critic-
agents. Even if all the other actor-agents are fixed planners, the
fact that the critic-agents are learners and thus nonstationary
make each actor-agent’s environment nonstationary. Figure 1
also shows a critic-agent’s environment, and again because
of multiagency it includes other learning components. The
big open questions are whether multiple NORC agents simul-
taneously learning guidance reward functions and acting in
the world will converge reliably and stably to good guidance
functions for each agent, and whether multiagent strong-
mitigation will be achieved, i.e., whether given CPU-time per
decision constraints the multiagent NORC architecture will
achieve more expected objective utility than the conventional
multiagent architecture. Before we turn to our empirical results
that are focused on these questions, we describe the actor-agent
and critic-agent briefly.
Actor-Agents and the search for good policies. We assume
that the actor-agents have a perfect model of the dynamics
of the environment and use UCT to plan. UCT has two
parameters T and D; it builds a search tree by simulating (from
the current history) T trajectories of depth D where action-
choices in the trajectory generation are treated as a bandit
problem solved by the UCB1 algorithm [2]. The guidance
reward function is used to compute from the resulting search-
tree an estimated long-term utility for each action at the root
node of the tree, and finally the best-estimated-utility action
at the root node is selected. This process is repeated afresh at
each time step for the current history as root node. The CPU-
time per decision is heavily dependent on the two parameters
T and D.

Because this is a distributed multiagent setting and the
agents can not communicate with each other, there is an
interesting challenge, however. When it builds a UCT tree,
each agent must decide what actions the other agents would
do at each time step. A further complication is that if there
is any learning by the agents, as will be the case if the
guidance reward functions are learned through experience,
then the behavior of the other agents will be nonstationary
and thus difficult to predict. In all our experiments, agents
learn the other agents stochastic policy using the empirical
probabilities observed in historical data, and use this learned
behavior model to sample the other agents actions during the
tree-building process in UCT.
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(a) Food-Shelter (b) Pursuit (c) Capture

Fig. 2. Circled numbers indicate different agents. a) In Food-Shelter, thick
black lines indicate impassable walls, the large solid circle represents one
possible location for the consumable food, and the shaded grid square in the
middle of the bottom row is the shelter for the agents. b) In Pursuit, the
triangle represents the prey. c) In Pursuit, agents capture prey by pinning it
in a corner; illustrated for the lower right corner.

Critic-Agents and the search for good guidance rewards.
We assume that the search space of reward functions for each
agent is defined as a continuously-parameterized function of
reward-features (specific examples are in the empirical results
below). The PGRD algorithm views the actor-agent as a pro-
cedure for translating the continuous parameters of the reward
search space to a policy via planning. For certain classes
of actor-agents, including the UCT agents used here, PGRD
adapts standard policy-gradient approaches to use experience
to update the reward space parameters in the direction of
the gradient of the expected objective utility. We refer the
reader to Sorg et al. [18] for the details of PGRD. In our
multiagent NORC architecture each critic-agent implements
the PGRD algorithm for the UCT-planning actor-agents. The
main challenge is the fact that multiple critic-agents are
learning guidance reward functions simultaneously and the
resulting additional nonstationarity may lead to interference
across the agents and prevent convergence or create additional
low-quality local minima in reward space.

IV. EXPERIMENT OBJECTIVES AND STRUCTURE

We now describe a set of experiments in which we field
two multiagent NORC architecture in two different envi-
ronments, one which clearly has intuitively separate roles
for the two agents (called “Food-Shelter”), and one which
demands cooperation between the two agents but does not
have intuitively separate roles (called “Pursuit”). We provide
descriptions of the environments below, but first lay out what
we intend to demonstrate with these experiments via a set of
key comparisons among different agent types.

A. Overall Objectives and Key Comparisons

There are three main objectives:
1) Demonstrate strong-mitigation in team problems using

our multiagent NORC architecture.
2) Demonstrate that learning individual guidance reward

functions affords better specialization than using objec-
tive reward functions for shared guidance.

3) Demonstrate that independent PGRD learning by the
critic-agents can lead to relatively stable and effective
learning of guidance reward functions.

These demonstrations take the form of comparisons of the
performance of three different multiagent systems (MASs)
realized as multiagent NORC architectures that vary in the
critic-agent:
• UCT-ObjRe. In this MAS, both UCT-based actor agents

use the objective reward function as their guidance reward
functions; i.e. the critic agent supplies a single stationary
guidance reward that is fixed to be the objective reward.

• UCT-PGRD. In this MAS, the actor-agents plan with
guidance reward functions learned independently by the
critic-agents via PGRD using gradients of the objective
utility with respect to the coefficients on the reward-
features2. We describe the search space of reward func-
tions below.

• UCT-PGRDSame. In this MAS, both agents use PGRD
to update guidance reward functions, but are constrained
to use the same learned guidance reward function. We
implemented this constraint by averaging the gradients
computed independently for each agent and updating each
reward function with the same average gradient.

To demonstrate strong mitigation (Objective 1), we must
show that UCT-PGRD outperforms UCT-ObjRe with equiva-
lent resource consumption. To demonstrate better specializa-
tion via learned individual guidance rewards (Objective 2),
we must show that UCT-PGRD outperforms UCT-PGRDSame
(the MAS constrained to learn a single guidance reward for
both agents) and does so via increased specialization of reward
and behavior. To demonstrate stable and effective learning of
guidance reward functions (Objective 3), we must show that
UCT-PGRD both outperforms UCT-ObjRe and does so while
settling on stable guidance rewards despite the non-stationarity
of the learning problem.

B. Two Environments: Food-Shelter and Pursuit

Food-Shelter. The environment has two clear and separate
roles for the two agents: one should gather food and the other
should keep the shelter repaired. As illustrated in Figure 2(a), it
is a 7×5 grid world with a shelter for the agents at the bottom
and 5 corridors separated by impassable walls at the top. The
agents objective utility is the expected objective reward per
time step over a lifetime of 5000 time steps.

Dynamics. The shelter breaks down (perhaps by invaders)
with probability 0.3 at each time step; once broken it remains
so until repaired. Food appears at the top of one of the
corridors; when food is gathered new food reappears at the top
of a different (randomly chosen) corridor. The agents have four
deterministic actions corresponding to each cardinal direction;
if the resulting direction is blocked by a wall or the boundary,
the action results in no movement. The agents have a gather
action when at a food location and a repair action when at
the shelter location that repairs a broken shelter immediately.

2Throughout all the experiments, we used the following PGRD parameters
without tuning, discount rate γ = 0.95, temperature τ = 100, learning rate
of α = 1e − 4, decaying-average parameter β = 0.9, and regularization
parameter λ = 0.



The agents act simultaneously at each time step. The starting
location of both agents is at the shelter.

Objective reward. Gathering food contributes a joint objec-
tive reward of 1.0 while if the shelter is broken it contributes
an objective reward of −1.0; the objective reward is 0 else.
Thus the task for the two agents is to gather as much food as
possible while keeping the shelter repaired; ideally one agent
should focus on keeping the shelter repaired and the other
agent should focus on gathering food.

Observations and prior-knowledge. Both agents observe the
full state of the environment, i.e., observe the location of
both agents, the location of the food, and whether the shelter
is broken or not. The agents have a perfect model of the
dynamics of the environment. They don’t know how the other
agent will act, of course, but they can observe how the other
agent has acted in the past.

Pursuit. This environment also demands cooperation between
two agents to catch a prey but does not have intuitively
separate roles for the two agents. As shown in Figure 2(b),
it is a 5 × 5 discrete, square grid-like world in which two
agents (circles) need to coordinate to capture a prey (triangle).
The prey’s movements are fixed and not learned (see details
below). The agents capture prey by pinning it any one of the
4 corners, as illustrated in Figure 2(c). The agents objective
utility is the expected objective reward per time step over a
lifetime of 10, 000 time steps.

Dynamics. Both agents and the prey have four deterministic
actions corresponding to each cardinal direction; if the result-
ing direction is blocked by the boundary, the action results in
no movement. At each time step, the two agents move simul-
taneously while the prey observes the agents new locations
before moving. The prey moves so as to maximize distance to
the closest agent3. The initial positions of the agents and prey
are at opposite corners as shown in Figure 2(b); the predators
and prey are reset to this position once the prey is captured.

Objective reward. The objective reward function RO pro-
vides a reward of 1.0 when the prey is captured and a reward
of 0 otherwise.

Observations and prior-knowledge. Both agents observe the
full state, i.e., the locations of the two agents and the prey. The
actor-agents have a perfect model of environment dynamics.
Each agent can observe the other agent’s past actions.

C. Search Space of Guidance Reward Functions

For both domains and both UCT-PGRD and UCT-PGRDSame,
we define a reward function search space as linear combina-
tions of two features of history, the objective reward and an
inverse-recency feature. The inverse-recency feature for agent
Ai in history hi, is defined as φiinv.rec(h

i) = 1− 1
c(hi) , where

c(hi) is the number of time steps since the agent Ai was in
the same location as the location at the end of history hi.

3Formally, the prey moves according to the action:
a = arg maxa∈A{min [dist(l1,∆′), dist(l2,∆′)]} ∩
arg maxa∈A{sum [dist(l1,∆′), dist(l2,∆′)]}, where l1, l2 represent
the agents’ locations and ∆′ is the prey’s next location after taking its action,
and dist measures the Manhattan distance between the agents and prey.

Low values of this feature (close to 0) indicate that the agent
is visiting a location it visited recently while large values of
this feature (close to 1) indicate that the agent is visiting a
location it has not visited recently. Formally, guidance reward
as a function of history h are of the form,

Ri(h) = RO(h) + θiinv.recφ
i
inv.rec(h

i) (2)

where θiinv.rec is the one continuous scalar parameter and its
range provides the search space of reward functions4. Note
that a positive value of θiinv.rec will mean that the agent should
want to visit locations not visited recently while a negative
value of θiinv.rec will mean that the agent should avoid locations
not visited recently. This form of reward function space was
used in previous work with single-agent ORP [3], [18] and
was found to be effective in overcoming limited planning by
encouraging a more systematic approach to exploration. We
use this same reward function space because it is not task-
specific and because seeking or avoiding exploration is an
interesting abstract form of specialization that might manifest
itself in interesting ways (and we will see such a phenomenon
in Food-Shelter).

Equation 2 defines a one dimensional continuous search
space for PGRD in each critic-agent in the UCT-PGRD MAS
for a 2-dimensional joint search space. Recall that for UCT-
PGRDSame the two critic-agents are required to use the
same reward function and thus the joint search space is one
dimensional. In both MASs, for i = 1, 2, the initial value of
θiinv.rec = 0, i.e., the critic-agents start with the objective reward
function as the guidance reward function.

V. EXPERIMENT RESULTS

The results below are organized around the three main
empirical objectives set out above and use the fol-
lowing methodology. For demonstrating strong mitiga-
tion we focus on computational time as the resource
of interest. But instead of imposing a priori CPU-
time-per-decision constraints, for both domains we eval-
uate all three MASs with UCT planning depths D ∈
{2, 3, 4, 5, 6, 7, 8} and number of Monte Carlo (MC) trajec-
tories T ∈ {50, 100, 150, 200, 250, 300, 350, 400, 450, 500};
together these parameters determine in large part the CPU-
time per decision. The aspects of MAS performance collected
will include CPU-time per decision, average objective utility,
the guidance reward functions learned, and the behavior of the
agents. In particular, this means that we present the results in
a way that does not commit to a particular combination of D
and T as being best for some given time-per-decision limit.

A. Demonstrations of Strong Mitigation

Figure 3(a) shows the per-time-step objective utility in Food-
Shelter over 5, 000 time-steps plotted against CPU-time per
decision for the three different MASs; the results are averages
over a 100 trials and the error-bars are shown. The points in the

4Note that the inverse-recency reward function feature is only a function of
hi and not h and so does not require any communication among the agents.
The objective reward is already assumed to be shared among the agents.
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Fig. 3. The points in each of the two figures correspond to different
architectures (shown as circles for ObjRe, squares for PGRD, and stars for
PGRDSame; different points of the same shape correspond to different UCT
parameters (depth, trajectories). See for example the three points labeled
with (4, 500) in panel (a) that correspond to PGRD (square), PGRDSame
(star), and ObjRe (circle). The x-value and y-value of each point is the
CPU time resource consumption and the average objective utility respectively
for the corresponding architecture and UCT parameters. For example, the
leftmost points for each MAS is (2, 50) and rightmost points for each
MAS is (8, 500) (because these take the smallest and largest CPU-time per
decision respectively). Each point also has error-bars shown though in most
cases the error-bars are too small to be visible. The three curves in each
figure correspond to the upper envelopes of performance for the three MAS
architectures. See text for further discussion.

figure correspond to different architectures (shown as circles
for ObjRe, squares for PGRD, and stars for PGRDSame);
different points of the same shape correspond to different UCT
parameters (depth, trajectories). For all constraints on CPU-
time per decision, using PGRD to learn reward functions is
better than simply using the given objective reward. This is
seen most clearly via the upper envelope curves in which UCT-
PGRD that learns separate guidance reward functions for both
agents does the best, UCT-PGRDSame with the constraint that
both agents use the same learned guidance reward functions
is slightly worse, and finally UCT-ObjRe that employs the
objective reward function for guidance is far worse.

This is clear evidence of strong mitigation in this domain.
Consider any point on the x-axis—for example 0.8 seconds
per decision—and if that were to be the computational bound

on the MAS, spending some of those resources on learning
guidance reward functions is far better than spending all those
resources on action-planning. This improvement is the vertical
gap between the corresponding upper-envelope curves at the
vertical line x = 0.8. In other words, using PGRD in the critic-
agent to learn guidance reward functions helps overcome the
bounded depth/trajectories in UCT planning as well as the
limited knowledge of the other agent’s actions.

Figure 3(b) shows the results for Pursuit in the same format
as above. As was the case for the Food-Shelter, for all con-
straints on time per decision, using PGRD to learn guidance
reward functions is better than simply using the given objective
reward. The main difference from the Food-Shelter results is
that the performance of the UCT-PGRDSame MAS is better
than the performance of the UCT-PGRD MAS, though as for
Food-Shelter both PGRD-based MASs are significantly better
than the UCT-ObjRe MAS. Strong-mitigation is observed
again in that for all constraints on the available seconds per
decision, i.e., for all points on the x-axis, the vertical gap
between the upper-envelope curves for UCT-PGRDSame and
UCT-ObjRe is the performance advantage of spending some
of the fixed computational resource on updating the guidance
reward function.

B. Demonstrations of Specialization

As expected intuitively from the specifics of the two domains,
we did not find specialization in Pursuit and so focus here
primarily on analyzing the results of Food-Shelter. Our first
positive result concerning specialization is in the dominance
of UCT-PGRD over UCT-PGRDSame in Food-Shelter as
described above (see Figure 3(a)): learning individual guidance
rewards does produce greater to slightly greater performance,
depending on the CPU-time per decision constraint, than
learning a shared reward. But is this dominance in performance
associated with clearly specialized behavior and clearly spe-
cialized individual rewards? We address these two questions
here.

The expression of specialization in behavior. By design, in
order to achieve high objective utility in Food-Shelter, one
agent needs to focus on shelter-repairing work while the other
focuses on food-gathering work. We defined a measure of
this specialization as follows. For each agent we compute the
following fraction: the number of times it gathers food divided
by the number of times it gathers food and repairs shelter. For
each run, the absolute value of the difference between this
fraction for the two agents is a measure of the specialization
for that run. This difference in specialization ratio is between
0 and 1. The more specialized the agents are the closer the
specialization ratio will be to one, and the less specialized they
are the closer the specialization ratio will be to zero. Figure 4
shows the average amount of specialization as a function of
CPU-time-per-decision in curves that correspond to different
number of trajectories (the UCT parameter). The points along
the curve from left to right correspond to increasing depth. It
is clear that the UCT-PGRD MAS specializes far more than
the UCT-ObjRe MAS. Finally, observe that in each pair of
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Fig. 4. Specialization Ratio Curves for Food-Shelter. Each point is for a
distinct agent, i.e., a MAS (circles for ObjRe and squares for PGRD) using
particular UCT parameters. The x and y values of each point are the seconds
per decision and the specialization ratio respectively for the corresponding
agent. Curves connect points for agents using the same MAS and the same
number of trajectories in UCT. The main result is that PGRD agents achieve
higher specialization ratios relative to ObjRe agents when both are constrained
to similar CPU-time per decision. See text for further discussion.
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Fig. 5. The two panels (a) and (b) correspond to Food-Shelter with UCT-
PGRD MAS (D = 8, T = 500) agent. Each of 100 data points in panel (a)
corresponds to a separate run and plots the coefficient for the inverse-recency
reward feature for one agent against the same coefficient for the other agent.
Panel (b) shows the objective utility along the vertical-axis for each of the
same 100 runs. Panels (c) and (d) are similarly plotted results for Pursuit (with
UCT-PGRD MAS (D = 5, T = 500) agent). The striking specialization of
reward functions in Food-Shelter is apparent from most of the points being
off-diagonal in panel (a). This is in contrast to Pursuit in which the lack of
reward function specialization is apparent in most of the points being close
to the diagonal in panel (c). See text for further discussion.

curves corresponding to the same number of trajectories, the
rightmost points that correspond to the highest depths show
that as the consequential computational limitation that small
depth imposes on UCT is removed from the agents, the UCT-
ObjRe MAS specializes just as well or even better than the
UCT-PGRD MAS. This is because learning guidance reward
functions can really only help in bounded agents and at the

largest depth the agents have no planning bounds.
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Fig. 6. The heat-maps above show the number of time steps an agent spends
in each location on average over a 100 runs; the lighter the color in a grid-
square the more the time spent in that location. The top row is for Food-Shelter
with UCT-parameters D = 3, T = 500 and the panels correspond to: (a)
UCT-ObjRe Food Agent. (b) UCT-ObjRe Shelter Agent (c) UCT-PGRD Food
Agent. (d) UCT-PGRD Shelter Agent. In the bottom row for Pursuit, the UCT-
parameters are D = 5, T = 500, and the panels are: (e) UCT-ObjRe Agent 1,
(f) UCT-ObjRe Agent 2, (g) UCT-PGRD larger coefficient for inverse-recency
reward feature, and (h) UCT-PGRD smaller coefficient for inverse-recency
reward feature. The top-row provides evidence for greater specialization in
behavior for Food-Shelter relative to the undifferentiated heat-maps in the
lower-row for Pursuit. See text for further discussion.

The expression of specialization in the learned reward func-
tions. What form did the learned guidance reward functions
actually take in the two domains? Figures 5(a-b) present the
results for the UCT-PGRD MAS (with D = 8 and T = 500)
on Food-Shelter. Each point in panel (a) is for a separate
run; it plots the learned coefficients on the inverse-recency
reward feature for the two agents. As is visually clear, one
agent tends to learn a near zero coefficient while the other
agent tends to learn a slightly positive coefficient. Recall that
a positive coefficient for the inverse-recency reward features
encourages the agent to explore, to visit places it hasn’t visited
recently, and this helps this agent become better at finding food
which moves from place to place. The agent with a near-
zero or slightly negative coefficient for the inverse-recency
reward feature is discouraged from exploring and this helps
it stay put at the shelter location. Thus, it is clear that the
critic-agents for the two agents learn quite different guidance
reward functions, i.e., there is specialization in the guidance
reward functions. Panel (b) shows the objective utility on the
vertical-axis for each point plotted in panel (a); it is clear
that the runs that don’t end up with one agent having a near-
zero coefficient and the other agent a positive coefficient do
worse in terms of objective utility. Figure 6(a-d) show that
there is specialization also in behavior as a result. Each panel
shows the number of time steps spent in each location of the
grid where lighter color means more time spent (a kind of
heat-map). Panels (a) and (b) are for the UCT-ObjRe MAS
and correspond respectively to the agent that gathers food
more often and the agent that repairs the shelter more often.
Similarly, panels (c) and (d) are for the UCT-PGRD MAS
food and shelter agents respectively. From visual inspection it
is clear that there is increased behavioral specialization in the
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Fig. 7. Stability of learning guidance reward functions. The graphs show
the specialization ratio as a function of time for 100 independent runs for
UCT-ObjRe and UCT-PGRD MASs (with D = 5, T = 500).

MAS that learns guidance reward functions; the shelter agent
concentrates more heavily on the shelter location in the UCT-
PGRD MAS compared to the shelter agent in UCT-ObjRe
MAS.

Figures 5(c-d) plot the coefficients for the inverse-recency
reward features for the two agents in UCT-PGRD MAS for
Pursuit. Visually it is clear that for most of the 100 runs, agents
learn roughly the same coefficients. The lower panel (d) shows
that the runs that don’t end up with the both agents having
similar positive coefficients do worse in terms of objective
utility. There is little specialization of the guidance reward
functions in Pursuit. This lack of behavioral specialization is
apparent as well from panels (e-h) in Figure 6 in which both
UCT-ObjRe agent’s heat-maps (panels e & f) look similar to
each other as well as similar to the heat-maps for the two
agents in the UCT-PGRD MAS (panels g & h).

C. Demonstration of Stability in the Face of Non-stationarity

Figure 7 illustrates how adapting the guidance reward func-
tions can lead to more stable agent behavior. The curves in
the two panels show the specialization ratio as a function
of time for 100 different independent runs in Food-Shelter.
The left & right panels are for the UCT-ObjRe and UCT-
PGRD respectively. As is visually apparent for a significantly
greater fraction of runs in UCT-PGRD the specialization ratio
converges to nearly 1. This is evidence of behavioral stability
in that relative to UCT-ObjRe in UCT-PGRD it is more often
the case across runs that one agent mostly focuses on food
whilst the other focuses mostly on shelter.

VI. CONCLUSION

In this paper, we defined a new multiagent optimal rewards
problem whose solution defines the guidance reward for each
agent in a team such that the resulting behavior of the
team ends up maximizing the objective utility of the team
as measured by a given shared objective reward function.
We provided a multiagent nested optimal reward and control
architecture and empirically demonstrated on two domains
that given limited CPU-time per decision, it is better to
spend some of the limited computational resources in learning
good guidance reward functions instead of spending them
all on planning good actions. This is the first evidence of
strong-mitigation in multiagent settings. We also showed that
our specific adaptation to multiagents of existing single-
agent methods for learning guidance reward functions and for

planning did reliably and stably learn good guidance reward
functions. In Food-Shelter, both guidance reward function and
increased behavioral specialization were seen in our results.
More theoretical analysis and extensive empirical results await
future work.
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