
Predicting Lifetimes in Dynamically

Allocated Memory

David A� Cohn
Adaptive Systems Group

Harlequin� Inc�
Menlo Park� CA �����
cohn�harlequin�com

Satinder Singh
Department of Computer Science

University of Colorado
Boulder� CO �����

baveja�cs�colorado�edu

Abstract

Predictions of lifetimes of dynamically allocated objects can be used
to improve time and space e	ciency of dynamic memory manage

ment in computer programs� Barrett and Zorn ����� used a simple
lifetime predictor and demonstrated this improvement on a variety
of computer programs� In this paper� we use decision trees to do
lifetime prediction on the same programs and show signi�cantly
better prediction� Our method also has the advantage that during
training we can use a large number of features and let the decision
tree automatically choose the relevant subset�

� INTELLIGENT MEMORY ALLOCATION

Dynamic memory allocation is used in many computer applications� The appli

cation requests blocks of memory from the operating system or from a memory
manager when needed and explicitly frees them up after use� Typically� all of these
requests are handled in the same way� without any regard for how or for how long
the requested block will be used� Sometimes programmers use runtime pro�les to
analyze the typical behavior of their program and write special purpose memory
management routines speci�cally tuned to dominant classes of allocation events�
Machine learning methods o�er the opportunity to automate the process of tuning
memory management systems�

In a recent study� Barrett and Zorn ����� used two allocators� a special allocator
for objects that are short
lived� and a default allocator for everything else� They
tried a simple prediction method on a number of public
domain� allocation
intensive
programs and got mixed results on the lifetime prediction problem� Nevertheless�
they showed that for all the cases where they were able to predict well� their strategy
of assigning objects predicted to be short
lived to the special allocator led to savings



in program running times� Their results imply that if we could predict well in all
cases we could get similar savings for all programs� We concentrate on the lifetime
prediction task in this paper and show that using axis
parallel decision trees does
indeed lead to signi�cantly better prediction on all the programs studied by Zorn and
Grunwald and some others that we included� Another advantage of our approach
is that we can use a large number of features about the allocation requests and let
the decision tree decide on their relevance�

There are a number of advantages of using lifetime predictions for intelligent mem

ory management� It can improve CPU usage� by using special
purpose allocators�
e�g�� short
lived objects can be allocated in small spaces by incrementing a pointer
and deallocated together when they are all dead� It can decrease memory fragmen

tation� because the short
lived objects do not pollute the address space of long lived
objects� Finally� it can improve program locality� and thus program speed� because
the short
lived objects are all allocated in a small part of the heap�

The advantages of prediction must be weighed against the time required to examine
each request and make that prediction about its intended use� It is frequently
argued that� as computers and memory become faster and cheaper� we need to
be less concerned about the speed and e	ciency of machine learning algorithms�
When the purpose of the algorithm is to save space and computation� however�
these concerns are paramount�

��� RELATED WORK

Traditionally� memory management has been relegated to a single� general
purpose
allocator� When performance is critical� software developers will frequently build a
custom memory manager which they believe is tuned to optimize the performance
of the program� Not only is this hand construction ine	cient in terms of the pro

gramming time required� this �optimization� may seriously degrade the program�s
performance if it does not accurately re�ect the program�s use �Wilson et al�� �����

Customalloc �Grunwald and Zorn� ���� monitors program runs on benchmark in

puts to determine the most commonly requested block sizes� It then produces a
set of memory allocation routines which are customized to e	ciently allocate those
block sizes� Other memory requests are still handled by a general purpose allocator�

Barrett and Zorn ����� studied lifetime prediction based on benchmark inputs� At
each allocation request� the call graph �the list of nested procedure�function calls in
e�ect at the time� and the object size was used to identify an allocation site� If all
allocations from a particular site were short
lived on the benchmark inputs� their
algorithm predicted that future allocations would also be short
lived� Their method
produced mixed results at lifetime prediction� but demonstrated the savings that
such predictions could bring�

In this paper� we discuss an approach to lifetime prediction which uses learned
decision trees� In the next section� we �rst discuss the identi�cation of relevant
state features by a decision tree� Section � discusses in greater detail the problem
of lifetime prediction� Section � describes the empirical results of applying this
approach to several benchmark programs� and Section � discusses the implications
of these results and directions for future work�



� FEATURE SELECTION WITH A DECISION TREE

Barrett and Zorn�s approach captures state information in the form of the program�s
call graph at the time of an allocation request� which is recorded to a �xed pre

determined depth� This graph� plus the request size� speci�es an allocation �site��
statistics are gathered separately for each site� A drawback of this approach is that
it forces a division for each distinct call graph� preventing generalization across ir

relevant features� Computationally� it requires maintaining an explicit call graph
�information that the program would not normally provide�� as well as storing a
potentially large table of call sites from which to make predictions� It also ignores
other potentially useful information� such as the parameters of the functions on the
call stack� and the contents of heap memory and the program registers at the time
of the request�

Ideally� we would like to examine as much of the program state as possible at the
time of each allocation request� and automatically extract those pieces of informa

tion that best allow predicting how the requested block will be used� Decision tree
algorithms are useful for this sort of task� A decision tree divides inputs on basis
of how each input feature improves �purity� of the tree�s leaves� Inputs that are
statistically irrelevant for prediction are not used in any splits� the tree�s �nal set
of decisions examine only input features that improve its predictive performance�

Regardless of the parsimony of the �nal tree however� training a tree with the entire
program state as a feature vector is computationally infeasible� In our experiments�
detailed below� we arbitrarily used the top �� words on the stack� along with the
request size� as an approximate indicator of program state� On the target machine
�a Sparcstation�� we found that including program registers in the feature set made
no signi�cant di�erence� and so dropped them from consideration for e	ciency�

� LIFETIME PREDICTION

The characteristic of memory requests that we would like to predict is the lifetime
of the block � how long it will be before the requested memory is returned to the
central pool� Accurate lifetime prediction lets one segregate memory into short

term� long
term and permanent storage� To this end� we have used a decision tree
learning algorithm to derive rules that distinguish �short
lived� and �permanent�
allocations from the general pool of allocation requests�

For short
lived blocks� one can create a very simple and e	cient allocation scheme
�Barrett and Zorn� ����� For �permanent� blocks� allocation is also simple and
cheap� because the allocator does not need to compute and store any of the infor

mation that would normally be required to keep track of the block and return it to
the pool when freed�

One complication is that of unequal loss for di�erent types of incorrect predictions�
An appropriately routed memory request may save dozens of instruction cycles� but
an inappropriately routed one may cost hundreds� The cost in terms of memory
may also be unequal� a short
lived block that is incorrectly predicted to be �per

manent� will permanently tie up the space occupied by the block �if it is allocated
via a method that can not be freed�� A �permanent� block� however� that is in

correctly predicted to be short
lived may pollute the allocator�s short
term space
by preventing a large segment of otherwise free memory from being reclaimed �see
Barrett and Zorn for examples��

These risks translate into a time
space tradeo� that depends on the properties of



the speci�c allocators used and the space limitations of the target machine� For our
experiments� we arbitrarily de�ned false positives and false negatives to have equal
loss� except where noted otherwise� Other cases may be handled by reweighting
the splitting criterion� or by rebalancing the training inputs �as described in the
following section��

� EXPERIMENTS

We conducted two types of experiments� The �rst measured the ability of learned
decision trees to predict allocation lifetimes� The second incorporated these learned
trees into the target applications and measured the change in runtime performance�

��� PREDICTIVE ACCURACY

We used the OC� decision tree software �designed by Murthy et al� ������ and
considered only axis
parallel splits� in e�ect� conditioning each decision on a single
stack feature� We chose the sum minority criterion for splits� which minimizes the
number of training examples misclassi�ed after the split� For tree pruning� we used
the cost complexity heuristic� which holds back a fraction �in our case ���� of
the data set for testing� and selects the smallest pruning of the original tree that is
within one standard error squared of the best tree �Breiman et al� ����� The details
of these and other criteria may be found in Murthy et al� ����� and Breiman et al�
������ In addition to the automatically
pruned trees� we also examined trees that
had been truncated to four leaves� in e�ect examining no more than two features
before making a decision�

OC� includes no provisions for explicitly specifying a loss function for false positive
and false negative classi�cations� It would be straightforward to incorporate this
into the sum minority splitting criterion� we chose instead to incorporate the loss
function into the training set itself� by duplicating training examples to match
the target ratios �in our case� forcing an equal number of positive and negative
examples��

In our experiments� we used the set of benchmark applications reported on by
Barrett and Zorn� Ghostscript� a PostScript interpreter� Espresso� a PLA logic
optimizer� and Cfrac� a program for factoring large numbers� Gawk� an AWK pro

gramming language interpreter and Perl� a report extraction language� We also
examined Gcc� a public
domain C compiler� based on our company�s speci�c inter

est in compiler technology�

The experimental procedure was as follows� We linked the application program with
a modi�ed malloc routine which� in addition to allocating the requested memory�
wrote to a trace �le the size of the requested block� and the top �� machine words
on the program stack� Calls to free allowed tagging the existing allocations� which�
following Barrett and Zorn� were labeled according to how many bytes had been
allocated during their lifetime��

It is worth noting that these experiments were run on a Sparcstation� which fre

quently optimizes away the traditional stack frame� While it would have been
possible to force the system to maintain a traditional stack� we wished to work
from whatever information was available from the program �in the wild�� without
overriding system optimizations�

�We have also examined� with comparable success� predicting lifetimes in terms of the
number of intervening calls to malloc� which may be argued as an equally useful measure�
We focus on number of bytes for the purposes of comparison with the existing literature�



Input �les were taken from the public ftp archive made available by Zorn and
Grunwald ������ Our procedure was to take traces of three of the �les �typically
the largest three for which we could store an entire program trace�� Two of the
traces were combined to form a training set for the decision tree� and the third was
used to test the learned tree�

Ghostscript training �les� manual�ps and large�ps� test �le� ud
doc�ps
Espresso training �les� cps and mlp�� test �le� Z�xp�
Cfrac training inputs� ����������������������������������� and

������������������������� test input� ������������������������������

Gawk training �le� adj�awk�words
small�awk� test �le� adj�awk�words
large�awk�

Perl training �les� endsort�perl �endsort�perl as input�� hosts�perl �hosts
data�perl
as input�� test �le� adj�perl�words
small�awk as input�

Gcc training �les� cse�c and combine�c� test �le� expr�c

����� SHORT�LIVED ALLOCATIONS

First� we attempted to distinguish short
lived allocations from the general pool�
For comparison with Barrett and Zorn ������ we de�ned �short
lived� allocations
as those that were freed before ��k subsequent bytes had been allocated� The
experimental results of this section are summarized in Table ��

Barrett � Zorn OC�
application false pos � false neg � false pos � false neg �
ghostscript � ���� ���� ������ ��� ������
espresso ����� �� ���� ������ ���� ������
cfrac ���� ���� ��� ������ ���� ������
gawk � 
� ����� ������� ���� ������
perl ���� ���� ���� ������ ���� ������
gcc 
 
 ���� ������ ���� ������

Table �� Prediction errors for �short
lived� allocations� in percentages of misallo

cated bytes� Values in parentheses are for trees that have been truncated to two
levels� Barrett and Zorn�s results included for comparison where available�

����� �PERMANENT� ALLOCATIONS

We then attempted to distinguish �permanent� allocations from the general pool
�Barrett and Zorn only consider the short
lived allocations discussed in the previous
section�� �Permanent� allocations were those that were not freed until the program
terminated� Note that there is some ambiguity in these de�nitions � a �permanent�
block that is allocated near the end of the program�s lifetime may also be �short

lived�� Table � summarizes the results of these experiments�

We have not had the opportunity to examine the function of each of the �relevant
features� in the program stacks� this is a subject for future work�

�For Gawk� we varied the training to match that used by Barrett and Zorn� They used
as training input a single gawk program �le run with one data set� and tested on the same
gawk program run with another�

�We were unable to compute Barrett and Zorn�s exact results here� although it appears
that their false negative rate was less than ���



application false pos � false neg �
ghostscript � �����
espresso � ����
cfrac ����� ���
gcc ���� ����

Table �� Prediction errors for �permanent� allocations �� misallocated bytes��

��� RUNTIME PERFORMANCE

The raw error rates we have presented above indicate that it is possible to make
accurate predictions about the lifetime of allocation requests� but not whether those
predictions are good enough to improve program performance� To address that
question� we have incorporated predictive trees into three of the above applications
and measured the e�ect on their runtimes�

We used a hybrid implementation� replacing the single monolithic decision tree with
a number of simpler� site
speci�c trees� A �site� in this case was a lexical instance
of a call to malloc or its equivalent� When allocations from a site were exclusively
short
lived or permanent� we could directly insert a call to one of the specialized
allocators �in the manner of Barrett and Zorn�� When allocations from a site were
mixed� a site
speci�c tree was put in place to predict the allocation lifetime�

Requests predicted to be short
lived were routed to a �quick malloc� routine similar
to the one described by Barrett and Zorn� those predicted to be permanent were
routed to another routine specialized for the purpose� On tests with random data
these specialized routines were approximately four times faster than �malloc��

Our experiments targeted three applications with varying degrees of predictive ac

curacy� ghostscript� gcc� and cfrac� The results are encouraging �see Table ��� For
ghostscript and gcc� which have the best predictive accuracies on the benchmark
data �from Section ����� we had a clear improvement in performance� For cfrac�
with much lower accuracy� we had mixed results� for shorter runs� the runtime per

formance was improved� but on longer runs there were enough missed predictions
to pollute the short
lived memory area and degrade performance�

� DISCUSSION

The application of machine learning to computer software and operating systems
is a largely untapped �eld with promises of great bene�t� In this paper we have
described one such application� producing e	cient and accurate predictions of the
lifetimes of memory allocations�

Our data suggest that� even with a feature set as large as a runtime program stack�
it is possible to characterize and predict the memory usage of a program after only
a few benchmark runs� The exceptions appear to be programs like Perl and gawk
which take both a script and a data �le� Their memory usage depends not only
upon characterizing typical scripts� but the typical data sets those scripts act upon��

Our ongoing research in memory management is pursuing a number of other con


�Perl�s generalization performance is signi�cantly better when tested on the same script
with di�erent data� We have reported the results using di�erent scripts for comparison
with Barrett and Zorn�



application benchmark test error run time
�training set� short long permanent normal predictive
ghostscript� trained on ud
doc�ps� � sites� � tree
manual�ps ��������� ������ ��� ����� �����
large�ps ����� �����
thesis�ps ����� �����
gcc� trained on combine� cse� c
decl� �� sites� � trees
expr�c ������� ���������� ���������� ����� �����
loop�c ���� ����
reload��c ���� ����
cfrac� trained on ��� � � ����� � sites� � trees
��� � � ���� ���������� ����������� ������� ���� ����
��� � � ���� ����� �����
��� � � ���� ������ ������

Table �� Running times in seconds for applications with site
speci�c trees� Times
shown are averages over ��
�� runs� and with the exception of loop�c� are statistically
signi�cant with probability greater than ����

tinuations of the results described here� including lifetime clustering and intelligent
garbage collection�

REFERENCES

D� Barrett and B� Zorn ������ Using lifetime predictors to improve memory
allocation performance� SIGPLAN��� � Conference on Programming Language
Design and Implementation� June ����� Albuquerque� New Mexico� pp� ���
����

L� Breiman� J� Friedman� R� Olshen and C� Stone ������ Classi�cation and
Regression Trees� Wadsworth International Group� Belmont� CA�

D� Grunwald and B� Zorn ������ CUSTOMALLOC� E	cient synthesized mem

ory allocators� Technical Report CU
CS
���
��� Dept� of Computer Science� Uni

versity of Colorado�

S� Murthy� S� Kasif and S� Salzberg ������ A system for induction of oblique
decision trees� Journal of Arti�cial Intelligence Research �������

P� Wilson� M� Johnstone� M� Neely and D� Boles ������ Dynamic storage
allocation� a survey and critical review� Proc� ���� Intn�l Workshop on Memory
Management� Kinross� Scotland� Sept� ������ Springer Verlag�

B� Zorn and D� Grunwald ������ A set of benchmark inputs made publicly
available� in ftp archive ftp�cs�colorado�edu��pub�misc�malloc�benchmarks��


