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Abstract

Increasing attention has been paid to reinforcement learning algo�
rithms in recent years� partly due to successes in the theoretical
analysis of their behavior in Markov environments� If the Markov
assumption is removed� however� neither generally the algorithms
nor the analyses continue to be usable� We propose and analyze
a new learning algorithm to solve a certain class of non�Markov
decision problems� Our algorithm applies to problems in which
the environment is Markov� but the learner has restricted access
to state information� The algorithm involves a Monte�Carlo pol�
icy evaluation combined with a policy improvement method that is
similar to that of Markov decision problems and is guaranteed to
converge to a local maximum� The algorithm operates in the space
of stochastic policies� a space which can yield a policy that per�
forms considerably better than any deterministic policy� Although
the space of stochastic policies is continuous	even for a discrete
action space	our algorithm is computationally tractable�



� INTRODUCTION

Reinforcement learning provides a sound framework for credit assignment in un�
known stochastic dynamic environments� For Markov environments a variety of
di
erent reinforcement learning algorithms have been devised to predict and control
the environment �e�g�� the TD��� algorithm of Sutton� ��� and the Q�learning
algorithm of Watkins� ����� Ties to the theory of dynamic programming �DP� and
the theory of stochastic approximation have been exploited� providing tools that
have allowed these algorithms to be analyzed theoretically �Dayan� ����� Tsitsiklis�
����� Jaakkola� Jordan� � Singh� ����� Watkins � Dayan� ������

Although current reinforcement learning algorithms are based on the assumption
that the learning problem can be cast as Markov decision problem �MDP�� many
practical problems resist being treated as an MDP� Unfortunately� if the Markov
assumption is removed examples can be found where current algorithms cease to
perform well �Singh� Jaakkola� � Jordan� ������ Moreover� the theoretical analyses
rely heavily on the Markov assumption�

The non�Markov nature of the environment can arise in many ways� The most direct
extension of MDP�s is to deprive the learner of perfect information about the state
of the environment� Much as in the case of Hidden Markov Models �HMM�s�� the
underlying environment is assumed to be Markov� but the data do not appear to be
Markovian to the learner� This extension not only allows for a tractable theoretical
analysis� but is also appealing for practical purposes� The decision problems we
consider here are of this type�

The analog of the HMM for control problems is the partially observable Markov
decision process �POMDP� see e�g�� Monahan� ����� Unlike HMM�s� however�
there is no known computationally tractable procedure for POMDP�s� The problem
is that once the state estimates have been obtained� DP must be performed in
the continuous space of probabilities of state occupancies� and this DP process is
computationally infeasible except for small state spaces� In this paper we describe
an alternative approach for POMDP�s that avoids the state estimation problem and
works directly in the space of �stochastic� control policies� �See Singh� et al�� �����
for additional material on stochastic policies��

� PARTIAL OBSERVABILITY

A Markov decision problem can be generalized to a POMDP by restricting the state
information available to the learner� Accordingly� we de�ne the learning problem as
follows� There is an underlying MDP with states S � fs�� s�� � � � � sNg and transition
probability pa

ss�
� the probability of jumping from state s to state s� when action a is

taken in state s� For every state and every action a �random� reward is provided to
the learner� In the POMDP setting� the learner is not allowed to observe the state
directly but only via messages containing information about the state� At each time
step t an observable message mt is drawn from a �nite set of messages according to
an unknown probability distribution P �mjst� �� We assume that the learner does

�For simplicity we assume that this distribution depends only on the current state� The
analyses go through also with distributions dependent on the past states and actions



not possess any prior information about the underlying MDP beyond the number
of messages and actions� The goal for the learner is to come up with a policy	a
mapping from messages to actions	that gives the highest expected reward�

As discussed in Singh et al� ������� stochastic policies can yield considerably higher
expected rewards than deterministic policies in the case of POMDP�s� To make this
statement precise requires an appropriate technical de�nition of �expected reward��
because in general it is impossible to �nd a policy� stochastic or not� that maximizes
the expected reward for each observable message separately� We take the time�
average reward as a measure of performance� that is� the total accrued reward per
number of steps taken �Bertsekas� ���� Schwartz� ������ This approach requires the
assumption that every state of the underlying controllable Markov chain is reachable�

In this paper we focus on a direct approach to solving the learning problem� Direct
approaches are to be compared to indirect approaches� in which the learner �rst
identi�es the parameters of the underlying MDP� and then utilizes DP to obtain the
policy� As we noted earlier� indirect approaches lead to computationally intractable
algorithms� Our approach can be viewed as providing a generalization of the direct
approach to MDP�s to the case of POMDP�s�

� A MONTE�CARLO POLICY EVALUATION

Advantages of Monte�Carlo methods for policy evaluation in MDP�s have been re�
viewed recently �Barto and Du
� ������ Here we present a method for calculating
the value of a stochastic policy that has the �avor of a Monte�Carlo algorithm� To
motivate such an approach let us �rst consider a simple case where the average re�
ward is known and generalize the well�de�ned MDP value function to the POMDP
setting� In the Markov case the value function can be written as �cf� Bertsekas�
�����

V �s� � lim
N��

NX

t��

EfR�st� ut�� Rjs� � sg ���

where st and at refer to the state and the action taken at the tth step respectively�
This form generalizes easily to the level of messages by taking an additional expec�
tation�

V �m� � E fV �s�js� mg ���

where s � m refers to all the instances where m is observed in s and Ef�js� mg
is a Monte�Carlo expectation� This generalization yields a POMDP value function
given by

V �m� �
X

s�m

P �sjm�V �s� ���

in which P �sjm� de�ne the limit occupancy probabilities over the underlying states
for each message m� As is seen in the next section value functions of this type can be
used to re�ne the currently followed control policy to yield a higher average reward�

Let us now consider how the generalized value functions can be computed based
on the observations� We propose a recursive Monte�Carlo algorithm to e
ectively
compute the averages involved in the de�nition of the value function� In the simple



case when the average payo
 is known this algorithm is given by

�t�m� � ���
�t�m�

Kt�m�
��t�t���m� �

�t�m�

Kt�m�
���

Vt�m� � ���
�t�m�

Kt�m�
�Vt���m� � �t�m��R�st� at�� R� ���

where �t�m� is the indicator function for message m� Kt�m� is the number of times
m has occurred� and �t is a discount factor converging to one in the limit� This
algorithm can be viewed as recursive averaging of �discounted� sample sequences of
di
erent lengths each of which has been started at a di
erent occurrence of message
m� This can be seen by unfolding the recursion� yielding an explicit expression for
Vt�m�� To this end� let tk denote the time step corresponding to the kth occurrence
of message m and for clarity let Rt � R�st� ut� � R for every t� Using these the
recursion yields�

Vt�m� �
�

Kt�m�
� Rt� � ���� Rt��� � � � �� ���t�t� Rt

� � �

�Rtk � �k�� Rtk�� � � � �� �k�t�tk Rt� ���

where we have for simplicity used �k�T to indicate the discounting at the T
th step

in the kth sequence� Comparing the above expression to equation � indicates that
the discount factor has to converge to one in the limit since the averages in V �s� or
V �m� involve no discounting�

To address the question of convergence of this algorithm let us �rst assume a constant
discounting �that is� �t � � � ��� In this case� the algorithm produces at best an
approximation to the value function� For large K�m� the convergence rate by which
this approximate solution is found can be characterized in terms of the bias and
variance� This gives BiasfV �m�g � �� � ������K�m� and V arfV �m�g � �� �
������K�m� where �� � Ef�tk�tk��g is the expected e
ective discounting between
observations� Now� in order to �nd the correct value function we need an appropriate
way of letting �t � � in the limit� However� not all such schedules lead to convergent
algorithms� setting �t � � for all t� for example� would not� By making use of the
above bounds a feasible schedule guaranteeing a vanishing bias and variance can be
found� For instance� since � � �� we can choose �k�m� � ��K�m����� Much faster
schedules are possible to obtain by estimating ���

Let us now revise the algorithm to take into account the fact that the learner in fact
has no prior knowledge of the average reward� In this case the true average reward
appearing in the above algorithmneeds to be replaced with an incrementally updated
estimate Rt��� To improve the e
ect this changing estimate has on the values we
transform the value function whenever the estimate is updated� This transformation
is given by

Ct�m� � ���
�t�m�

Kt�m�
�Ct���m� � �t�m� ���

Vt�m� � Vt�m� � Ct�m��Rt � Rt��� ��

and� as a result� the new values are as if they had been computed using the current
estimate of the average reward�



To carry these results to the control setting and assign a �gure of merit to stochastic
policies we need a quantity related to the actions for each observed message� As
in the case of MDP�s� this is readily achieved by replacing m in the algorithm
just described by �m� a�� In terms of equation �� for example� this means that the
sequences started from m are classi�ed according to the actions taken when m is
observed� The above analysis goes through when m is replaced by �m� a�� yielding
�Q�values� on the level of messages�

Q��m� a� �
X

s

P ��sjm�Q��s� a� ���

In the next section we show how these values can be used to search e ciently for a
better policy�

� POLICY IMPROVEMENT THEOREM

Here we present a policy improvement theorem that enables the learner to search
e ciently for a better policy in the continuous policy space using the �Q�values�
Q�m� a� described in the previous section� The theorem allows the policy re�nement
to be done in a way that is similar to policy improvement in a MDP setting�

Theorem � Let the current stochastic policy 	�ajm� lead to Q�values Q��m� a� on
the level of messages� For any policy 	��ajm� de�ne

J�
�

�m� �
X

a

	��ajm��Q��m� a� � V ��m��

The change in the average reward resulting from changing the current policy accord�
ing to 	�ajm�� ��� 
�	�ajm� � 
	��ajm� is given by

!R� � 

X

m

P ��m�J�
�

�m� �O�
��

where P ��m� are the occupancy probabilities for messages associated with the current
policy�

The proof is given in Appendix� In terms of policy improvement the theorem can
be interpreted as follows� Choose the policy 	��ajm� such that

J�
�

�m� � max
a
�Q��m� a� � V ��m�� ����

If now J�
�

�m� � � for some m then we can change the current policy towards
	� and expect an increase in the average reward as shown by the theorem� The

 factor suggests local changes in the policy space and the policy can be re�ned

until max�� J
���m� � � for all m which constitutes a local maximum for this policy

improvement method� Note that the new direction 	��ajm� in the policy space can
be chosen separately for each m�

� THE ALGORITHM

Based on the theoretical analysis presented above we can construct an algorithm that
performs well in a POMDP setting� The algorithm is composed of two parts� First�



Q�m� a� values	analogous to the Q�values in MDP	are calculated via a Monte�
Carlo approach� This is followed by a policy improvement step which is achieved by
increasing the probability of taking the best action as de�ned by Q�m� a�� The new
policy is guaranteed to yield a higher average reward �see Theorem �� as long as for
some m

max
a
�Q�m� a�� V �m�� � � ����

This condition being false constitutes a local maximum for the algorithm� Examples
illustrating that this indeed is a local maximum can be found fairly easily�

In practice� it is not feasible to wait for the Monte�Carlo policy evaluation to converge
but to try to improve the policy before the convergence� The policy can be re�ned
concurrently with the Monte�Carlo method according to

	�ajmn�� 	�ajmn� � 
�Qn�mn� a�� Vn�mn�� ����

with normalization� Other asynchronous or synchronous on�online updating schemes
can also be used� Note that if Qn�m� a� � Q�m� a� then this change would be
statistically equivalent to that of the batch version with the concomitant guarantees
of giving a higher average reward�

� CONCLUSIONS

In this paper we have proposed and theoretically analyzed an algorithm that solves
a reinforcement learning problem in a POMDP setting� where the learner has re�
stricted access to the state of the environment� As the underlying MDP is not
known the problem appears to the learner to have a non�Markov nature� The aver�
age reward was chosen as the �gure of merit for the learning problem and stochastic
policies were used to provide higher average rewards than can be achieved with de�
terministic policies� This extension from MDP�s to POMDP�s greatly increases the
domain of potential applications of reinforcement learning methods�

The simplicity of the algorithm stems partly from a Monte�Carlo approach to obtain�
ing action�dependent values for each message� These new �Q�values� were shown to
give rise to a simple policy improvement result that enables the learner to gradually
improve the policy in the continuous space of probabilistic policies�

The batch version of the algorithm was shown to converge to a local maximum� We
also proposed an on�line version of the algorithm in which the policy is changed
concurrently with the calculation of the �Q�values�� The policy improvement of the
on�line version resembles that of learning automata�

APPENDIX

Let us denote the policy after the change by 	�� Assume �rst that we have access
to Q��s� a�� the Q�values for the underlying MDP� and to P ���sjm�� the occupancy
probabilities after the policy re�nement� De�ne

J�m�	�� 	�� 	� �
X

a

	��ajm�
X

s�m

P ���sjm��Q��s� a� � V ��s�� ����

where we have used the notation that the policies on the left hand side correspond
to the policies on the right respectively� To show how the average reward depends



on this quantity we need to make use of the following facts� The Q�values for the
underlying MDP satisfy �Bellman�s equation�

Q��s� a� � R�s� a�� R� �
X

s�

pa
ss

�V ��s
�

� ����

In addition�
P

a 	�ajm�Q
��s� a� � V ��s�� implying that J�m�	�� 	�� 	�� � � �see eq�

���� These facts allow us to write

J�m�	�� 	�� 	� � J�m�	�� 	�� 	�� J�m�	�� 	�� 	��

�
X

a

	��ajm�
X

s

P ���sjm��Q��s� a�� V ��s� �Q���s� a� � V ���s��

� R�� � R� �
X

s

P ���sjm�
X

s�

p�
�

ss�
�V ��s

�

�� V �� �s
�

��

�
X

s

P ���sjm��V ��s� � V ���s�� ����

By weighting this result for each class by P ���m� and summing over the messages
the probability weightings for the last two terms become equal and the terms cancel�
This procedure gives us

R�� � R� �
X

m

P ���m�J�m�	�� 	�� 	� ����

This result does not allow the learner to assess the e
ect of the policy re�nement
on the average reward since the J�� term contains information not available to the
learner� However� making use of the fact that the policy has been changed only
slightly this problem can be avoided�

As 	� is a policy satisfying maxma j	
��ajm��	�ajm�j � 
� it can then be shown that

there exists a constant C such that the maximum change in P �sjm�� P �s�� P �m� is
bounded by C
� Using these bounds and indicating the di
erence between 	� and
	 dependent quantities by ! we get

X

a

�	�ajm� � !	�ajm��
X

s

�P ��sjm� � !P ��sjm���Q��s� a�� V ��s��

�
X

a

!	�ajm�
X

s�m

P ��sjm��Q��s� a� � V ��s�� �

�
X

a

!	�ajm�
X

s

!P ��sjm��Q��s� a� � V ��s��

� 

X

a

	��ajm�
X

s

P ��sjm��Q��s� a� � V ��s�� �O�
�� ����

where the second equality follows from
P

a 	�ajm��Q
��s� a� � V ��s�� � � and the

third from the bounds stated earlier�

The equation characterizing the change in the average reward due to the policy
change �eq� ��� can be now rewritten as follows�

R�� � R� �
X

m

P ���m�J�m�	�� 	� 	� � O�
��



�
X

m

P ��m�
X

a

	��ajm��Q��m� a�� V ��m�� � O�
�� ���

where the bounds �see above� have been used for P ���m��P ��m�� This completes
the proof� �
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