Action-Conditional Video Prediction
using Deep Networks in Atari Games

Junhyuk Oh Xiaoxiao Guo Honglak Lee Richard Lewis Satinder Singh
University of Michigan, Ann Arbor, M1 48109, USA
{junhyuk, guoxiao, honglak, rickl, baveja}@umich.edu

Abstract

Motivated by vision-based reinforcement learning (RL) problems, in particular
Atari games from the recent benchmark Aracade Learning Environment (ALE),
we consider spatio-temporal prediction problems where future image-frames de-
pend on control variables or actions as well as previous frames. While not com-
posed of natural scenes, frames in Atari games are high-dimensional in size, can
involve tens of objects with one or more objects being controlled by the actions
directly and many other objects being influenced indirectly, can involve entry and
departure of objects, and can involve deep partial observability. We propose and
evaluate two deep neural network architectures that consist of encoding, action-
conditional transformation, and decoding layers based on convolutional neural
networks and recurrent neural networks. Experimental results show that the pro-
posed architectures are able to generate visually-realistic frames that are also use-
ful for control over approximately 100-step action-conditional futures in some
games. To the best of our knowledge, this paper is the first to make and evaluate
long-term predictions on high-dimensional video conditioned by control inputs.

1 Introduction

Over the years, deep learning approaches (see [5, 26] for survey) have shown great success in many
visual perception problems (e.g., [16, 7, 32, 9]). However, modeling videos (building a generative
model) is still a very challenging problem because it often involves high-dimensional natural-scene
data with complex temporal dynamics. Thus, recent studies have mostly focused on modeling simple
video data, such as bouncing balls or small patches, where the next frame is highly-predictable given
the previous frames [29, 20, 19]. In many applications, however, future frames depend not only on
previous frames but also on control or action variables. For example, the first-person-view in a ve-
hicle is affected by wheel-steering and acceleration. The camera observation of a robot is similarly
dependent on its movement and changes of its camera angle. More generally, in vision-based rein-
forcement learning (RL) problems, learning to predict future images conditioned on actions amounts
to learning a model of the dynamics of the agent-environment interaction, an essential component
of model-based approaches to RL. In this paper, we focus on Atari games from the Arcade Learn-
ing Environment (ALE) [1] as a source of challenging action-conditional video modeling problems.
While not composed of natural scenes, frames in Atari games are high-dimensional, can involve tens
of objects with one or more objects being controlled by the actions directly and many other objects
being influenced indirectly, can involve entry and departure of objects, and can involve deep partial
observability. To the best of our knowledge, this paper is the first to make and evaluate long-term
predictions on high-dimensional images conditioned by control inputs.

This paper proposes, evaluates, and contrasts two spatio-temporal prediction architectures based on
deep networks that incorporate action variables (See Figure 1). Our experimental results show that
our architectures are able to generate realistic frames over 100-step action-conditional future frames
without diverging in some Atari games. We show that the representations learned by our architec-
tures 1) approximately capture natural similarity among actions, and 2) discover which objects are
directly controlled by the agent’s actions and which are only indirectly influenced or not controlled.
We evaluated the usefulness of our architectures for control in two ways: 1) by replacing emulator
frames with predicted frames in a previously-learned model-free controller (DQN; DeepMind’s state

@‘} @aﬁ@'x

encoding transformation decoding I I encoding transformation decoding
(a) Feedforward encoding (b) Recurrent encoding

Figure 1: Proposed Encoding-Transformation-Decoding network architectures.

of the art Deep-Q-Network for Atari Games [21]), and 2) by using the predicted frames to drive a
more informed than random exploration strategy to improve a model-free controller (also DQN).

2 Related Work

Video Prediction using Deep Networks. The problem of video prediction has led to a variety of
architectures in deep learning. A recurrent temporal restricted Boltzmann machine (RTRBM) [29]
was proposed to learn temporal correlations from sequential data by introducing recurrent connec-
tions in RBM. A structured RTRBM (sRTRBM) [20] scaled up RTRBM by learning dependency
structures between observations and hidden variables from data. More recently, Michalski et al. [19]
proposed a higher-order gated autoencoder that defines multiplicative interactions between consec-
utive frames and mapping units, and showed that temporal prediction problem can be viewed as
learning and inferring higher-order interactions between consecutive images. Srivastava et al. [28]
applied a sequence-to-sequence learning framework [31] to a video domain, and showed that long
short-term memory (LSTM) [12] networks are capable of generating video of bouncing handwrit-
ten digits. In contrast to these previous studies, this paper tackles problems where control variables
affect temporal dynamics, and in addition scales up spatio-temporal prediction to larger-size images.

ALE: Combining Deep Learning and RL. Atari 2600 games provide challenging environments
for RL because of high-dimensional visual observations, partial observability, and delayed rewards.
Approaches that combine deep learning and RL have made significant advances [21, 22, 11]. Specifi-
cally, DQN [21] combined Q-learning [36] with a convolutional neural network (CNN) and achieved
state-of-the-art performance on many Atari games. Guo et al. [11] used the ALE-emulator for mak-
ing action-conditional predictions with slow UCT [15], a Monte-Carlo tree search method, to gener-
ate training data for a fast-acting CNN, which outperformed DQN on several domains. Throughout
this paper we will use DQN to refer to the architecture used in [21] (a more recent work [22] used a
deeper CNN with more data to produce the currently best-performing Atari game players).

Action-Conditional Predictive Model for RL. The idea of building a predictive model for
vision-based RL problems was introduced by Schmidhuber and Huber [27]. They proposed a neural
network that predicts the attention region given the previous frame and an attention-guiding action.
More recently, Lenz et al. [17] proposed a recurrent neural network with multiplicative interactions
that predicts the physical coordinate of a robot. Compared to this previous work, our work is evalu-
ated on much higher-dimensional data with complex dependencies among observations. There have
been a few attempts to learn from ALE data a transition-model that makes predictions of future
frames. One line of work [3, 4] divides game images into patches and applies a Bayesian framework
to predict patch-based observations. However, this approach assumes that neighboring patches are
enough to predict the center patch, which is not true in Atari games because of many complex in-
teractions. The evaluation in this prior work is 1-step prediction loss; in contrast, here we make and
evaluate long-term predictions both for quality of pixels generated and for usefulness to control.

3 Proposed Architectures and Training Method

The goal of our architectures is to learn a function f : Xy.¢, a; — X¢+1, Where x; and a; are the frame
and action variables at time ¢, and X;.; are the frames from time 1 to time ¢. Figure 1 shows our two
architectures that are each composed of encoding layers that extract spatio-temporal features from
the input frames (§3.1), action-conditional transformation layers that transform the encoded features
into a prediction of the next frame in high-level feature space by introducing action variables as
additional input (§3.2) and finally decoding layers that map the predicted high-level features into
pixels (§3.3). Our contributions are in the novel action-conditional deep convolutional architectures
for high-dimensional, long-term prediction as well as in the novel use of the architectures in vision-
based RL domains.

3.1 Two Variants: Feedforward Encoding and Recurrent Encoding

Feedforward encoding takes a fixed history of previous frames as an input, which is concatenated
through channels (Figure 1a), and stacked convolution layers extract spatio-temporal features di-
rectly from the concatenated frames. The encoded feature vector h{™ € R™ at time ¢ is:

hsnc = CNN (Xt—m—i-l:t) 5 (1)

where X; 1.4 € R(mxe)xhxw denotes m frames of h X w pixel images with ¢ color channels.
CNN is a mapping from raw pixels to a high-level feature vector using multiple convolution layers
and a fully-connected layer at the end, each of which is followed by a non-linearity. This encoding
can be viewed as early-fusion [14] (other types of fusions, e.g., late-fusion or 3D convolution [35]
can also be applied to this architecture).

Recurrent encoding takes one frame as an input for each time-step and extracts spatio-temporal
features using an RNN in which the temporal dynamics is modeled by the recurrent layer on top
of the high-level feature vector extracted by convolution layers (Figure 1b). In this paper, LSTM
without peephole connection is used for the recurrent layer as follows:

[, ¢,] = LSTM (ONN (x1), B"S, ¢ 1) , @)

where ¢, € R” is a memory cell that retains information from a deep history of inputs. Intuitively,
CNN (x;) is given as input to the LSTM so that the LSTM captures temporal correlations from
high-level spatial features.

3.2 Multiplicative Action-Conditional Transformation
We use multiplicative interactions between the encoded feature vector and the control variables:

hfﬁc = Z Wizihi'as i + bi, 3)
il

where h{"¢ € R” is an encoded feature, hfec € R" is an action-transformed feature, a; € R® is
the action-vector at time ¢, W € R™"*"™*® is 3-way tensor weight, and b € R" is bias. When the
action a is represented using one-hot vector, using a 3-way tensor is equivalent to using different
weight matrices for each action. This enables the architecture to model different transformations
for different actions. The advantages of multiplicative interactions have been explored in image and
text processing [33, 30, 18]. In practice the 3-way tensor is not scalable because of its large number
of parameters. Thus, we approximate the tensor by factorizing into three matrices as follows [33]:

hilec — Wdec (Wenchfnc ® Waat) + b, (4)

where Wae¢ ¢ R»*f Wene ¢ Rfxn 'We ¢ Rf*2 b € R”, and f is the number of factors.
Unlike the 3-way tensor, the above factorization shares the weights between different actions by
mapping them to the size- f factors. This sharing may be desirable relative to the 3-way tensor when
there are common temporal dynamics in the data across different actions (discussed further in §4.3).

3.3 Convolutional Decoding

It has been recently shown that a CNN is capable of generating an image effectively using upsam-
pling followed by convolution with stride of 1 [8]. Similarly, we use the “inverse” operation of
convolution, called deconvolution, which maps 1 x 1 spatial region of the input to d x d using de-
convolution kernels. The effect of s x s upsampling can be achieved without explicitly upsampling
the feature map by using stride of s. We found that this operation is more efficient than upsampling
followed by convolution because of the smaller number of convolutions with larger stride.

In the proposed architecture, the transformed feature vector h?¢¢ is decoded into pixels as follows:
%¢+1 = Deconv (Reshape (h??)) (5)

where Reshape is a fully-connected layer where hidden units form a 3D feature map, and Deconv
consists of multiple deconvolution layers, each of which is followed by a non-linearity except for
the last deconvolution layer.

3.4 Curriculum Learning with Multi-Step Prediction

It is almost inevitable for a predictive model to make noisy predictions of high-dimensional images.
When the model is trained on a 1-step prediction objective, small prediction errors can compound

through time. To alleviate this effect, we use a multi-step prediction objective. More specifically,

)) .) N
given the training data D = { ((xgl), a%”) s s (ng_), ag))) } , the model is trained to minimize
ol i=1

the average squared error over K -step predictions as follows:

K
L0 =5 LEY
% t k=1

2
)

. (1) (4)
Xtk — Xt-s—k’

(6)

where fc&) & 18 a k-step future prediction. Intuitively, the network is repeatedly unrolled through K

time steps by using its prediction as an input for the next time-step.

The model is trained in multiple phases based on increasing K as suggested by Michalski et al. [19].
In other words, the model is trained to predict short-term future frames and fine-tuned to predict
longer-term future frames after the previous phase converges. We found that this curriculum learn-
ing [6] approach is necessary to stabilize the training. A stochastic gradient descent with backprop-
agation through time (BPTT) is used to optimize the parameters of the network.

4 [Experiments

In the experiments that follow, we have the following goals for our two architectures. 1) To evaluate
the predicted frames in two ways: qualitatively evaluating the generated video, and quantitatively
evaluating the pixel-based squared error, 2) To evaluate the usefulness of predicted frames for control
in two ways: by replacing the emulator’s frames with predicted frames for use by DQN, and by using
the predictions to improve exploration in DQN, and 3) To analyze the representations learned by our
architectures. We begin by describing the details of the data, and model architecture, and baselines.

Data and Preprocessing. We used our replication of DQN to generate game-play video datasets
using an e-greedy policy with e = 0.3, i.e. DQN is forced to choose a random action with 30%
probability. For each game, the dataset consists of about 500, 000 training frames and 50, 000 test
frames with actions chosen by DQN. Following DQN, actions are chosen once every 4 frames which
reduces the video from 60fps to 15fps. The number of actions available in games varies from 3 to
18, and they are represented as one-hot vectors. We used full-resolution RGB images (210 x 160)
and preprocessed the images by subtracting mean pixel values and dividing each pixel value by 255.

Network Architecture. Across all game domains, we use the same network architecture as fol-
lows. The encoding layers consist of 4 convolution layers and one fully-connected layer with 2048
hidden units. The convolution layers use 64 (8 x 8), 128 (6 x 6), 128 (6 x 6), and 128 (4 x 4)
filters with stride of 2. Every layer is followed by a rectified linear function [23]. In the recurrent
encoding network, an LSTM layer with 2048 hidden units is added on top of the fully-connected
layer. The number of factors in the transformation layer is 2048. The decoding layers consists of one
fully-connected layer with 11264 (= 128 x 11 x 8) hidden units followed by 4 deconvolution layers.
The deconvolution layers use 128 (4 x 4), 128 (6 x 6), 128 (6 x 6), and 3 (8 x 8) filters with stride of
2. For the feedforward encoding network, the last 4 frames are given as an input for each time-step.
The recurrent encoding network takes one frame for each time-step, but it is unrolled through the
last 11 frames to initialize the LSTM hidden units before making a prediction. Our implementation
is based on Caffe toolbox [13].

Details of Training. We use the curriculum learning scheme above with three phases of increasing
prediction step objectives of 1, 3 and 5 steps, and learning rates of 10=%, 107, and 10~°, respec-
tively. RMSProp [34, 10] is used with momentum of 0.9, (squared) gradient momentum of 0.95,
and min squared gradient of 0.01. The batch size for each training phase is 32, 8, and 8 for the feed-
forward encoding network and 4, 4, and 4 for the recurrent encoding network, respectively. When
the recurrent encoding network is trained on 1-step prediction objective, the network is unrolled
through 20 steps and predicts the last 10 frames by taking ground-truth images as input. Gradients
are clipped at [—0.1, 0.1] before non-linearity of each gate of LSTM as suggested by [10].

Two Baselines for Comparison. The first baseline is a multi-layer perceptron (MLP) that takes
the last frame as input and has 4 hidden layers with 400, 2048, 2048, and 400 units. The action
input is concatenated to the second hidden layer. This baseline uses approximately the same number
of parameters as the recurrent encoding model. The second baseline, no-action feedforward (or
naFf), is the same as the feedforward encoding model (Figure 1a) except that the transformation
layer consists of one fully-connected layer that does not get the action as input.

naFf Feedforward Recurrent Ground Truth | Action

Figure 2: Example of predictions over 250 steps in Freeway. The ‘Step’ and ‘Action’ columns show the
number of prediction steps and the actions taken respectively. The white boxes indicate the object controlled
by the agent. From prediction step 256 to 257 the controlled object crosses the top boundary and reappears at
the bottom; this non-linear shift is predicted by our architectures and is not predicted by MLP and naFf. The
horizontal movements of the uncontrolled objects are predicted by our architectures and naFf but not by MLP.

200 400 80 400 250

+ MLP
200 ¢ naFf
150 300 60 300 B Feedforward
150 @ Recurrent

100 200 40 200

50 100 20 100

0 0 0 08 0
0 50 100 0 50 100 0 50 100 0 50 100 0 50 100

(a) Seaquest (b) Space Invaders (c) Freeway (d) QBert (e) Ms Pacman

Figure 3: Mean squared error over 100-step predictions

4.1 Evaluation of Predicted Frames

Qualitative Evaluation: Prediction video. The prediction videos of our models and baselines are
available in the supplementary material and at the following website: https://sites.google.
com/a/umich.edu/junhyuk-oh/action-conditional-video-prediction. As seen in the
videos, the proposed models make qualitatively reasonable predictions over 30—500 steps depending
on the game. In all games, the MLP baseline quickly diverges, and the naFf baseline fails to predict
the controlled object. An example of long-term predictions is illustrated in Figure 2. We observed
that both of our models predict complex local translations well such as the movement of vehicles
and the controlled object. They can predict interactions between objects such as collision of two
objects. Since our architectures effectively extract hierarchical features using CNN, they are able to
make a prediction that requires a global context. For example, in Figure 2, the model predicts the
sudden change of the location of the controlled object (from the top to the bottom) at 257-step.

However, both of our models have difficulty in accurately predicting small objects, such as bullets in
Space Invaders. The reason is that the squared error signal is small when the model fails to predict
small objects during training. Another difficulty is in handling stochasticity. In Seaquest, e.g., new
objects appear from the left side or right side randomly, and so are hard to predict. Although our
models do generate new objects with reasonable shapes and movements (e.g., after appearing they
move as in the true frames), the generated frames do not necessarily match the ground-truth.

Quantitative Evaluation: Squared Prediction Error. Mean squared error over 100-step predic-
tions is reported in Figure 3. Our predictive models outperform the two baselines for all domains.
However, the gap between our predictive models and naFf baseline is not large except for Seaquest.
This is due to the fact that the object controlled by the action occupies only a small part of the image.

https://sites.google.com/a/umich.edu/junhyuk-oh/action-conditional-video-prediction
https://sites.google.com/a/umich.edu/junhyuk-oh/action-conditional-video-prediction

/R REE S N
oo e T Tede bl | | L T
-ERE@edftie - HEEEENEN

(a) Ms Pacman (28 x 28 cropped) (b) Space Invaders (90 x 90 cropped)

Figure 4: Comparison between two encoding models (feedforward and recurrent). (a) Controlled object is
moving along a horizontal corridor. As the recurrent encoding model makes a small translation error at 4th
frame, the true position of the object is in the crossroad while the predicted position is still in the corridor. The
(true) object then moves upward which is not possible in the predicted position and so the predicted object
keeps moving right. This is less likely to happen in feedforward encoding because its position prediction is
more accurate. (b) The objects move down after staying at the same location for the first five steps. The
feedforward encoding model fails to predict this movement because it only gets the last four frames as input,
while the recurrent model predicts this downwards movement more correctly.

5000 2500 — Emulator

---Rand

+ MLP

¢ naFf

B Feedforward
@ Recurrent

8000
: 4000 2000
6000 [\
3000 N\, 1500

4000 | g
2000 1000

2000

1000
500

07 0

0
0 50 100 0 50 100 0 50 100 0 50 100 0 50 100

(a) Seaquest (b) Space Invaders (c) Freeway (d) QBert (e) Ms Pacman

Figure 5: Game play performance using the predictive model as an emulator. ‘Emulator’ and ‘Rand’ correspond
to the performance of DQN with true frames and random play respectively. The x-axis is the number of steps
of prediction before re-initialization. The y-axis is the average game score measured from 30 plays.

Qualitative Analysis of Relative Strengths and Weaknesses of Feedforward and Recurrent
Encoding. We hypothesize that feedforward encoding can model more precise spatial transfor-
mations because its convolutional filters can learn temporal correlations directly from pixels in the
concatenated frames. In contrast, convolutional filters in recurrent encoding can learn only spatial
features from the one-frame input, and the temporal context has to be captured by the recurrent layer
on top of the high-level CNN features without localized information. On the other hand, recurrent
encoding is potentially better for modeling arbitrarily long-term dependencies, whereas feedforward
encoding is not suitable for long-term dependencies because it requires more memory and parame-
ters as more frames are concatenated into the input.

As evidence, in Figure 4a we show a case where feedforward encoding is better at predicting the
precise movement of the controlled object, while recurrent encoding makes a 1-2 pixel translation
error. This small error leads to entirely different predicted frames after a few steps. Since the
feedforward and recurrent architectures are identical except for the encoding part, we conjecture
that this result is due to the failure of precise spatio-temporal encoding in recurrent encoding. On
the other hand, recurrent encoding is better at predicting when the enemies move in Space Invaders
(Figure 4b). This is due to the fact that the enemies move after 9 steps, which is hard for feedforward
encoding to predict because it takes only the last four frames as input. We observed similar results
showing that feedforward encoding cannot handle long-term dependencies in other games.

4.2 Evaluating the Usefulness of Predictions for Control

Replacing Real Frames with Predicted Frames as Input to DQN. To evaluate how useful the
predictions are for playing the games, we implement an evaluation method that uses the predictive
model to replace the game emulator. More specifically, a DQN controller that takes the last four
frames is first pre-trained using real frames and then used to play the games based on ¢ = 0.05-
greedy policy where the input frames are generated by our predictive model instead of the game
emulator. To evaluate how the depth of predictions influence the quality of control, we re-initialize
the predictions using the true last frames after every n-steps of prediction for 1 < n < 100. Note
that the DQN controller never takes a true frame, just the outputs of our predictive models.

The results are shown in Figure 5. Unsurprisingly, replacing real frames with predicted frames
reduces the score. However, in all the games using the model to repeatedly predict only a few time

Table 1: Average game score of DQN over 100 plays with standard error. The first row and the second row
show the performance of our DQN replication with different exploration strategies.

Model Seaquest ~ S.Invaders Freeway QBert Ms Pacman

DON - Random exploration 13119 (538) 698 (20) 30.9 (0.2) 3876 (106) 2281 (53)
DQN - Informed exploration 13265 (577) 681 (23) 32.2(0.2) 8238 (498) 2522 (57)

NFRARAAADINNDY 2 KLE€RR

N
F
N
A
2,
2
&
3
§
3
\
v
2
¢
&
200 40 B0 80 100 4 240 160 2w B 100 w0 0 16 §
(a) Random exploration. (b) Informed exploration.
Figure 6: Comparison between two exploration methods on Ms Pacman. Figure 7: Cos.ine sim‘ilarity be-
Each heat map shows the trajectories of the controlled object measured tween every pair .Of action factors
over 2500 steps for the corresponding method. (see text for details).

steps yields a score very close to that of using real frames. Our two architectures produce much
better scores than the two baselines for deep predictions than would be suggested based on the much
smaller differences in squared error. The likely cause of this is that our models are better able to
predict the movement of the controlled object relative to the baselines even though such an ability
may not always lead to better squared error. In three out of the five games the score remains much
better than the score of random play even when using 100 steps of prediction.

Improving DQN via Informed Exploration. To learn control in an RL domain, exploration of
actions and states is necessary because without it the agent can get stuck in a bad sub-optimal policy.
In DQN, the CNN-based agent was trained using an e-greedy policy in which the agent chooses
either a greedy action or a random action by flipping a coin with probability of €. Such random
exploration is a basic strategy that produces sufficient exploration, but can be slower than more
informed exploration strategies. Thus, we propose an informed exploration strategy that follows
the e-greedy policy, but chooses exploratory actions that lead to a frame that has been visited least
often (in the last d time steps), rather than random actions. Implementing this strategy requires a
predictive model because the next frame for each possible action has to be considered.

The method works as follows. The most recent d frames are stored in a trajectory memory, denoted

Nd - . .
D = {Xm}i:r The predictive model is used to get the next frame x(*) for every action a. We
estimate the visit-frequency for every predicted frame by summing the similarity between the pre-
dicted frame and the most d recent frames stored in the trajectory memory using a Gaussian kernel
as follows:

d
np(x@) = Z E(x@, xD); k(x,y) = exp(— Z min(max((z; — ;) — ,0),1)/a) (7)

where ¢ is a threshold, and o is a kernel bandwidth. The trajectory memory size is 200 for QBert
and 20 for the other games, § = 0 for Freeway and 50 for the others, and o = 100 for all games. For
computational efficiency, we trained a new feedforward encoding network on 84 x 84 gray-scaled
images as they are used as input for DQN. The details of the network architecture are provided in
the supplementary material. Table 1 summarizes the results. The informed exploration improves
DQN’s performance using our predictive model in three of five games, with the most significant
improvement in QBert. Figure 6 shows how the informed exploration strategy improves the initial
experience of DQN.

4.3 Analysis of Learned Representations

Similarity among Action Representations. In the factored multiplicative interactions, every ac-
tion is linearly transformed to f factors (W®a in Equation 4). In Figure 7 we present the cosine
similarity between every pair of action-factors after training in Seaquest. ‘N’ and ‘F’ corresponds

to ‘no-operation’ and ‘fire’. Arrows correspond to movements with (black) or without (white) “fire’.
There are positive correlations between actions that have the same movement directions (e.g., ‘up’
and ‘up+fire’), and negative correlations between actions that have opposing directions. These re-
sults are reasonable and discovered automatically in learning good predictions.

Distinguishing Controlled and Uncontrolled Objects is itself a hard and interesting problem.
Bellemare et al. [2] proposed a framework to learn contingent regions of an image affected by agent
action, suggesting that contingency awareness is useful for model-free agents. We show that our
architectures implicitly learn contingent regions as they learn to predict the entire image.

In our architectures, a factor (f; = (Wﬁ:)—ra) with higher
variance measured over all possible actions, Var (f;) =

E, [(fi — Ea] fz])Z] , is more likely to transform an image

differently depending on actions, and so we assume such
factors are responsible for transforming the parts of the
image related to actions. We therefore collected the high
variance (referred to as “highvar”) factors from the model
trained on Seaquest (around 40% of factors), and collected
the remaining factors into a low variance (“lowvar”) subset.
Given an image and an action, we did two controlled for-
ward propagations: giving only highvar factors (by setting
the other factors to zeros) and vice versa. The results are
visualized as ‘Action’ and ‘Non-Action’ in Figure 8. In-
terestingly, given only highvar-factors (Action), the model
predicts sharply the movement of the object controlled by
actions, while the other parts are mean pixel values. In con-
trast, given only lowvar-factors (Non-Action), the model prediction given only learned action-
predicts the movement of the other objects and the back- facors with high variance; Non-Action
ground (e.g., oxygen), and the controlled object stays at its jmage given only low-variance factors.
previous location. This result implies that our model learns

to distinguish between controlled objects and uncontrolled objects and transform them using disen-
tangled representations (see [25, 24, 37] for related work on disentangling factors of variation).

Prev. frame Next frame Prediction

Action Non-Action

Figure 8: Distinguishing controlled and
uncontrolled objects. Action image shows

5 Conclusion

This paper introduced two different novel deep architectures that predict future frames that are de-
pendent on actions and showed qualitatively and quantitatively that they are able to predict visually-
realistic and useful-for-control frames over 100-step futures on several Atari game domains. To
our knowledge, this is the first paper to show good deep predictions in Atari games. Since our ar-
chitectures were domain independent we expect that they will generalize to many vision-based RL
problems. In future work we will learn models that predict future reward in addition to predicting
future frames and evaluate the performance of our architectures in model-based RL.

Acknowledgments. This work was supported by NSF grant IIS-1526059, Bosch Research, and
ONR grant N00014-13-1-0762. Any opinions, findings, conclusions, or recommendations expressed
here are those of the authors and do not necessarily reflect the views of the sponsors.

References
[1] M. G. Bellemare, Y. Naddaf, J. Veness, and M. Bowling. The Arcade Learning Environment: An evalua-
tion platform for general agents. Journal of Artificial Intelligence Research, 47:253-279, 2013.

[2] M. G. Bellemare, J. Veness, and M. Bowling. Investigating contingency awareness using Atari 2600
games. In AAAIL 2012.

[3] M. G. Bellemare, J. Veness, and M. Bowling. Bayesian learning of recursively factored environments. In
ICML, 2013.

[4] M. G. Bellemare, J. Veness, and E. Talvitie. Skip context tree switching. In ICML, 2014.

[5] Y. Bengio. Learning deep architectures for Al. Foundations and Trends in Machine Learning, 2(1):1-127,
20009.

[6] Y. Bengio, J. Louradour, R. Collobert, and J. Weston. Curriculum learning. In /CML, 2009.

[7] D. Ciresan, U. Meier, and J. Schmidhuber. Multi-column deep neural networks for image classification.
In CVPR, 2012.

(8]

(9]

[10]
(1]

(12]

(13]

(14]

(15]
(16]

[17]

(18]
(19]

[20]

(21]

[22]

(23]

[24]

[25]

(26]
(27]

(28]

(29]

(30]

(31]
(32]

(33]

(34]

[35]

(36]
[37]

A. Dosovitskiy, J. T. Springenberg, and T. Brox. Learning to generate chairs with convolutional neural
networks. In CVPR, 2015.

R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich feature hierarchies for accurate object detection
and semantic segmentation. In CVPR, 2014.

A. Graves. Generating sequences with recurrent neural networks. arXiv preprint arXiv:1308.0850, 2013.

X. Guo, S. Singh, H. Lee, R. L. Lewis, and X. Wang. Deep learning for real-time Atari game play using
offline Monte-Carlo tree search planning. In NIPS, 2014.

S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural Computation, 9(8):1735-1780,
1997.

Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadarrama, and T. Darrell. Caffe:
Convolutional architecture for fast feature embedding. In ACM Multimedia, 2014.

A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar, and L. Fei-Fei. Large-scale video classifi-
cation with convolutional neural networks. In CVPR, 2014.

L. Kocsis and C. Szepesvari. Bandit based Monte-Carlo planning. In ECML. 2006.

A. Krizhevsky, 1. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional neural
networks. In NIPS, 2012.

I. Lenz, R. Knepper, and A. Saxena. DeepMPC: Learning deep latent features for model predictive
control. In RSS, 2015.

R. Memisevic. Learning to relate images. IEEE TPAMI, 35(8):1829-1846, 2013.

V. Michalski, R. Memisevic, and K. Konda. Modeling deep temporal dependencies with recurrent gram-
mar cells. In NIPS, 2014.

R. Mittelman, B. Kuipers, S. Savarese, and H. Lee. Structured recurrent temporal restricted Boltzmann
machines. In ICML, 2014.

V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and M. Riedmiller. Playing
Atari with deep reinforcement learning. arXiv preprint arXiv:1312.5602, 2013.

V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves, M. Riedmiller,
A. K. Fidjeland, G. Ostrovski, et al. Human-level control through deep reinforcement learning. Nature,
518(7540):529-533, 2015.

V. Nair and G. E. Hinton. Rectified linear units improve restricted Boltzmann machines. In ICML, 2010.

S. Reed, K. Sohn, Y. Zhang, and H. Lee. Learning to disentangle factors of variation with manifold
interaction. In ICML, 2014.

S. Rifai, Y. Bengio, A. Courville, P. Vincent, and M. Mirza. Disentangling factors of variation for facial
expression recognition. In ECCV. 2012.

J. Schmidhuber. Deep learning in neural networks: An overview. Neural Networks, 61:85-117, 2015.

J. Schmidhuber and R. Huber. Learning to generate artificial fovea trajectories for target detection. Inter-
national Journal of Neural Systems, 2:125-134, 1991.

N. Srivastava, E. Mansimov, and R. Salakhutdinov. Unsupervised learning of video representations using
LSTMs. In ICML, 2015.

I. Sutskever, G. E. Hinton, and G. W. Taylor. The recurrent temporal restricted Boltzmann machine. In
NIPS, 2009.

L. Sutskever, J. Martens, and G. E. Hinton. Generating text with recurrent neural networks. In ICML,
2011.

I. Sutskever, O. Vinyals, and Q. Le. Sequence to sequence learning with neural networks. In NIPS, 2014.

C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabi-
novich. Going deeper with convolutions. arXiv preprint arXiv:1409.4842, 2014.

G. W. Taylor and G. E. Hinton. Factored conditional restricted Boltzmann machines for modeling motion
style. In ICML, 2009.

T. Tieleman and G. Hinton. Lecture 6.5 - RMSProp: Divde the gradient by a running average of its recent
magnitude. Coursera, 2012.

D. Tran, L. Bourdev, R. Fergus, L. Torresani, and M. Paluri. Learning spatiotemporal features with 3D
convolutional networks. In /CCV, 2015.

C. J. Watkins and P. Dayan. Q-learning. Machine learning, 8(3-4):279-292, 1992.

J. Yang, S. Reed, M.-H. Yang, and H. Lee. Weakly-supervised disentangling with recurrent transforma-
tions for 3D view synthesis. In NIPS, 2015.

