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Abstract

Reinforcement learning �RL� algorithms pro

vide a sound theoretical basis for building
learning control architectures for embedded
agents� Unfortunately all of the theory and
much of the practice �see Barto et al�� �	���
for an exception� of RL is limited to Marko

vian decision processes �MDPs�� Many real

world decision tasks� however� are inherently
non
Markovian� i�e�� the state of the environ

ment is only incompletely known to the learn

ing agent� In this paper we consider only par

tially observable MDPs �POMDPs�� a use

ful class of non
Markovian decision processes�
Most previous approaches to such prob

lems have combined computationally expen

sive state
estimation techniques with learn

ing control� This paper investigates learning
in POMDPs without resorting to any form
of state estimation� We present results about
what TD��� and Q
learning will do when ap

plied to POMDPs� It is shown that the con

ventional discounted RL framework is inad

equate to deal with POMDPs� Finally we
develop a new framework for learning with

out state
estimation in POMDPs by includ

ing stochastic policies in the search space�
and by de�ning the value or utility of a dis�
tribution over states�

� INTRODUCTION

A diverse variety of sequential tasks of interest to ar

ti�cial intelligence researchers can be formulated ab

stractly as embedded agents seeking to control their
environment by executing actions� The agents are
usually equipped with sensors that provide informa

tion about the state of the environment� Reinforce

ment learning �RL� techniques provide a sound the

oretical basis for building learning control architec

tures for embedded agents �Barto et al�� to appear�

�		��� Unfortunately all of the elegant theory of RL is
limited to Markovian decision processes �MDPs� �Sut

ton� �	��
 Watkins and Dayan� �		�
 Dayan� �		��
Jaakkola et al�� �		�� Tsitsiklis� to appear�� Formu

lating a given problem as an MDP requires that the
agent�s sensors return the complete state of the envi

ronment� The word state is used here as in control
theory to mean all the information necessary to make
the prediction of the future states of the environment
dependent only on the current state and the future
actions and independent of the past states�

While there are interesting problems that can be for

mulated as MDPs� a great many real
world decision
problems have hidden state� i�e�� are inherently non

Markovian� One can always apply RL algorithms de

veloped speci�cally for Markovian processes to non

Markovian decision processes �N
MDPs� simply by
treating the agent�s sensor readings as state descrip

tions� There is some empirical evidence that such a
technique can work well on particular non
Markovian
problems �e�g�� Barto et al�� �	���� However� as yet
there is no theory of RL for N
MDPs� and no char

acterization of the class of N
MDPs on which con

ventional RL algorithms will perform reasonably well�
The general hope that the performance of RL algo

rithms will degrade gracefully as the degree of non

Markovianness is increased in a given decision problem
is unfounded� because it is easy to construct decision
problems� where failure to distinguish between just two
states can lead to an arbitrarily high absolute loss in
performance �see Section ��� for an example
 also� see
Whitehead� �		���

We show why it is di�cult to extend the conventional
discounted RL framework to environments with hidden
state� We present results about what TD��� �Sutton�
�	��� and Q
learning �Watkins� �	�	� will do when
applied to a class of N
MDPs� Finally we develop a
new framework for learning without state
estimation
in such N
MDPs by including stochastic policies in the
search space� and by de�ning the value� or utility� of a
distribution over states�



� PREVIOUS APPROACHES

Previous approaches to learning in N
MDPs have fo

cused on methods that combine some form of state

estimation with learning control� Such approaches
build an internal representation of the state of the
environment by combining sensor readings with past
internal representations �Whitehead and Lin� �		���
Several di�erent forms of internal representations have
been used� tapped
delay line representations for higher
order Markov problems �e�g�� Lin and Mitchell� �		���
recurrent neural network based representations �Lin
and Mitchell� �		��� and probability distributions over
an underlying state space based on the theory of
partially observable MDPs �Sondik� �	��
 Chrisman�
�		�a� �		�b
 McCallum� �		��� In addition� White

head and Ballard ��		�� have proposed using percep

tual actions in robots to gather multiple sensor read

ings� one of which is selected as representing the state
of the environment�

A common drawback of all the above methods is that
the state estimation component is always based on
strong assumptions about the environment� For ex

ample� it is usually assumed that the number of states
is known in advance� A further drawback is that state
estimation is computationally expensive and can re

quire a large amount of data� Even if the true en

vironment has a �nite number of states� using state

estimation can result in a continuous space of esti

mated states making the search problem di�cult �e�g��
Sondik� �	���� Also the computations performed by
the learning control component are wasted until the
state
estimation component becomes accurate enough
to be useful� Finally� in learning policies that map
estimated states to actions� such methods depart fun

damentally from conventional RL architectures that
learnmemory�less policies� i�e�� learn policies that map
the immediate observation of the agent into actions�
This paper studies memory
less policies in a class of
N
MDPs�

� PROBLEM FORMULATION

We assume that there is an inaccessible MDP underly

ing the non
Markovian decision problem faced by the
agent� Let the state set of the underlying MDP be
S � fs�� s�� s�� � � � � sNg� Let the set of actions avail

able in each state be denoted A� The probability of
a transition to state s� on executing action a in state
s is denoted P a�s� s��� Note that this transition prob

ability is independent of the states prior to reaching
state s �the Markov assumption�� The expected value
of the payo� received on executing action a in state
s is denoted Ra�s�� The actions the agent executes
constitute its control policy� The task for the learn

ing architecture is to determine a control policy that
maximizes the expected value of the in�nite
horizon
sum of discounted payo�s received by the agent� A

discount factor � � � � � allows the payo�s distant
in time to be weighted less than the more immediate
payo�s� Such a policy is called an optimal policy� It is
known that for every �nite MDP there exists a station

ary deterministic policy� �� � S � A that is optimal
�see Ross� �	���� Therefore� in MDPs the agent can
restrict its search to the �nite set of stationary deter

ministic policies�

In N
MDPs the control agent has sensors that return
some estimate of the state of the environment� In par

ticular we will assume that the estimates are elements
of X � fX�� X�� X�� � � � � XMg� where � � M � When
the underlying� non
observable MDP is in state s� the
sensor reading� or observation� is X with �xed proba

bility P �Xjs�� Note that P �Xjs� is independent of the
agent�s policy� Such an N
MDP is called a partially
observable MDP� or POMDP �e�g�� Sondik� �	���� In
this paper we will consider only POMDPs� Henceforth
we will use the word state to refer to an element of the
set S� and the word observation to refer to an element
of the set X �

In this paper we will prove negative results by giving
examples from a subclass of POMDPs that have the
special property that the observations are labels for
disjoint partitions of the underlying state space S� i�e��
P �Xijs� � � for all s �� Si � S� and P �Xijs� � � for all
s � Si� In a pictorial representation of such a POMDP
�see Figures � to ��� an ellipse around a set of states
will be used to represent the fact that the enclosed
states belong to the same observation�

��� STOCHASTIC POLICIES

Consider the possible loss in performance when one ap

plies a conventional RL algorithmdeveloped for MDPs
to a POMDP�

Fact �� Just confounding two states of an MDP can
lead to an arbitrarily high absolute loss in the return
or cumulative in�nite
horizon discounted payo��

Proof� Figure � presents a POMDP with two states�
one observation� and two actions� The optimal pol

icy in the underlying MDP returns a payo� of R at
each time step� Therefore the optimal return in the
underlying MDP is R

��� � At best the RL algorithm

applied to a POMDP will �nd the best deterministic
memory
less policy�� In the POMDP shown in Fig

ure � there are only two deterministic policies� because
there is only one observation and two actions� In the
best case� the agent can get a payo� of R followed by

�We conjecture that in general Q�learning will not
�nd the best deterministic memory�less policy� Unlike
the Markov case� the Q�values found by Q�learning in
POMDPs will depend on the control policy followed during
learning� Therefore it may be di�cult to make any gen�
eral statements about Q�learning without restricting the
learning policy �see Section �����



an in�nite sequence of �R�s� Therefore the best return
for a deterministic memory
less policy in the POMDP
of Figure � is R � �R

��� � The loss�
��R
��� � can be made

arbitrarily high by increasing R�
�

Fact � shows that RL algorithms do not degrade
gracefully with the degree of non
Markovianness in a
POMDP� We now show that the guarantee of a deter

ministic optimal policy does not hold for POMDPs�

Fact �� In a POMDP the best stationary stochastic
policy can be arbitrarily better than the best station

ary deterministic policy�

Proof� Figure � shows a POMDP with two states�
one observation� and two actions� that has a station

ary stochastic policy which beats all stationary deter

ministic policies� As noted before� the best stationary
deterministic policy can at best return a payo� of R
followed by a in�nite sequence of�R�s� The stationary
stochastic policy that picks action A with probability
��� and action B with probability ���� gets an expected
payo� of ��� at every time step� The resulting increase

in the return� R��������� � can be made arbitrarily high by

increasing R and setting � � ����
�
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Figure �� Need for Stochastic Policies� This �gure
shows a POMDP for which the optimal stationary pol

icy is stochastic� The underlying MDP has � states and
� actions A and B� The payo� for each transition� R
or �R� is labeled along the transition� The agent sees
only one observation� The ellipse around the states �a
and �b indicate that both states yield the same obser

vation� This �gure is used to prove Facts � to ��

Therefore� we propose learning control in the space
of stationary stochastic memory
less policies as an al

ternative to the state
estimation based approaches for
dealing with POMDPs� As shown above by example�
in POMDPs the best stochastic policy can be signi�


cantly better than the best deterministic policy� How

ever� the following fact shows that despite expanding
the search space to stationary stochastic policies� one
still has to pay a cost for having hidden state�

Fact �� The best stationary stochastic policy in a
POMDP can be arbitrarily worse than the optimal
policy in the underlying MDP�

Proof� In Figure � the best deterministic policy in the
underlying MDP would yield a return of R

��� As noted

before� the best stationary stochastic policy would
yield a expected return of ���� The di�erence can be
made arbitrarily high by increasing R�

�

Fact �� In POMDPs the optimal policies can be non

stationary�

Proof� Figure � shows that the non
stationary policy
that picks actions A and B alternately will at worst
return a payo� of �R followed by an in�nite sequence
of R�s which is signi�cantly better than the best sta

tionary policy �for � � ����� Again� the di�erence can
be made arbitrarily large by increasing R�

�

However� searching in the space of non
stationary poli

cies could be prohibitively expensive� Besides� a non

stationary policy is precluded by our intention of learn

ing memory
less policies because a non
stationary pol

icy requires the memory of time elapsed� If mem

ory were allowed� all kinds of memory
based state

estimation techniques could be included and then it is
not clear whether there is any advantage to be gained
by learning non
stationary policies� Indeed� the proof
of Fact � also shows that the optimal non
stationary
policy in POMDPs can be arbitrarily worse than the
optimal memory
less policy in the underlying MDP�

In the rest of this paper� a control policy� �� assigns
to each observation a probability distribution over ac

tions� The conventional deterministic policies are a
special case of stochastic policies� All policies referred
to in this paper will be assumed stationary unless oth

erwise stated� We will use the symbol � to denote the
space of stochastic policies de�ned on the observation
space of a POMDP� Note that in general � is not equal
to the set of stochastic policies de�ned over the state
space of the underlying MDP� The return for� or the
value of� a �xed policy � � � in POMDPs is de�ned
as the expected value of the in�nite
horizon sum of
discounted payo�s� just as in the case of MDPs�

Assumption �� Throughout the rest of this paper
we will assume POMDPs that have the property that
the underlying MDPs are ergodic for every stationary
policy�

Note that Facts � to � are also true for ergodic
POMDPs� This can be seen by modifying the POMDP
in Figure � and making it ergodic by adding an � � �



probability transition from state �a to state �b for ac

tion A� and from state �b to state �a for action B� The
probability of the self
loops will have to be reduced by
a corresponding �� The quantity � can be made small
enough to ensure that the modi�cations have a negli

gible e�ect on the returns�

� EVALUATING A FIXED POLICY

In the Markov case� the value of executing policy �
when the starting state of the environment is s� is
V ��s� � E�fRa��s����R

a� �s����
�Ra��s���� � � js� �

sg� where si and ai are the state and action at time
step i� and E� is the expectation symbol under the
assumption that action ai is chosen according to the
probability distribution ��si�� Using the Markov as

sumption� the value of state s under policy � can also
be written recursively as follows�

V ��s� �
X
a�A

Pr�aj�� s� �Ra�s�

��
X
s��S

P a�ss��V ��s��

�
���

In a POMDP the value of an observation X under
policy � � � cannot be de�ned in a form similar to
Equation �� However� note that the value of a state s
in the underlying MDP does not change just because
it is inaccessible� If at any time step the environment
enters state s the expected value of the subsequent
discounted sequence of payo�s is still V ��s�� Therefore
we propose that a suitable de�nition of the value of
observation X under policy � is as follows�

V ��X� �
X
s�S

P ��sjX�V ��s� ���

where P ��sjX� is the asymptotic occupancy proba

bility distribution� i�e�� the probability that the state
of the underlying MDP is s when the observation is
known to be X� Note that Equation � is only a def

inition of V ��X�� and not an algorithm� because the
state�s s are not observable in POMDPs�

The asymptotic occupancy distribution can be de�ned
as follows�

P ��sjX� �
P �Xjs�P ��s�

P ��X�
�

P �Xjs�P ��s�P
s��S P �Xjs

��P ��s��

where P ��s� is the limiting distribution over the un

derlying state space of the MDP� and is well de�ned
under Assumption ��

��� WHAT DOES TD��� LEARN�

Sutton�s ��	��� TD��� algorithm is a RL algorithm
that is commonly used to evaluate a policy� It is an
iterative stochastic approximation algorithm that does

not require knowledge of the MDP�s transition proba

bilities� and takes the following form in Markov prob

lems�

Vk���sk� � �����sk��Vk�sk����sk��Rk��Vk�sk����

where Vk�s� is the kth estimate of V ��s�� sk and Rk are
the state and payo� at step k� and � is the learning
rate� In Markov problems� under certain conditions
on �� TD��� will converge with probability one to V ��
even if the policy � is stochastic� When applied to
a non
Markov problem TD��� will take the following
form�

Vk���Xk� � �� � ��Xk��Vk�Xk�

���Xk��Rk � �Vk�Xk�����

Theorem �� In a POMDP of the type de�ned above�
Sutton�s TD��� algorithm will converge to the solu

tion of the following system of equations with proba

bility one �under conditions identical to those required
for convergence of TD��� in MDPs� plus the condi

tion that the learning rates� �� are non
increasing��
�X � X �

V �X� �
X
s�S

P ��sjX� �R��s�

��
X
X��X

P ��s�X��V �X��

�
� ���

where P ��s�X �� �
P

s��P
��s� s��P �X �js����

Proof� Consider a semi
batch version of TD��� that
collects the changes to the value function for M steps
before making the change� By makingM large enough
the states of the underlying MDP can be sampled with
a frequency that matches P ��sjX� to within � with
probability � � �� In Appendix A�� we prove con

vergence of the semi
batch TD��� algorithm outlined
above to the solution of Equation � with probability
one� The semi
batch proof can be extended to on
line
TD��� by using the analysis developed in Theorem � of
Jaakkola et al� ��		��� In brief� it can be shown that
the di�erence caused by the on
line updating vanishes
in the limit thereby forcing semi
batch TD��� and on

line TD��� to be equal asymptotically� The use of the
analysis in Theorem � from Jaakkola et al� ��		�� re

quires that the learning rate parameters � are such

that the �t�X�
maxt�Mk

�t�X� � � uniformly w�p���
 Mk is

the kth batch of size M� If �t�X� is non
increasing in
addition to satisfying the conventional TD��� condi

tions� then it will also meet the above �asymptotic
�atness� requirement�

�

In general the solution to Equation � will not equal
the desired value function as de�ned in Equation ��
Figure � from Sutton ��		�� presents an example that
illustrates a crucial di�erence between the value func

tion found by the TD��� algorithm and the correct
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Figure �� TD��� and Hidden State� This �gure shows
a POMDP in which it is clear that TD��� cannot learn
the desired values� States �a and �b are in the same
observation� TD��� will learn a value function that as

signs the same value to observations � and � because
both lead to observation � with a zero payo�� There

fore� the fact that observation � leads reliably to a
payo� of two with a delay of one time step while ob

servation � does not� will not be discerned by TD����

value function �as de�ned by Equation ��� It shows a
six state� �ve observation POMDP� TD���� or for that
matter any �
step Markov algorithm will assign the
same value to observations � and � because both lead
deterministically into observation � with an immediate
payo� of zero� The true value function of observation
�� however� will be higher than the true value function
of observation � because observation � reliably leads
to a payo� of two after a delay of one time step� while
observation � does not��

� OPTIMAL CONTROL

��� WHAT DOES Q	LEARNING LEARN�

Q
learning �Watkins� �	�	� is a RL algorithm for �nd

ing optimal policies in MDPs� One of the big ad

vantages of Q
learning is that it separates exploration
from control� In short� the control policy followed dur

ing learning has no impact on asymptotic convergence
as long as every action gets executed in every state
in�nitely often� No algorithm for POMDPs can re

tain that advantage because the control policy followed

�Unlike TD�	�� the more general family of TD�� � 	�
�Sutton� �
��� algorithms average multi�step predictions
and will therefore learn a value function that assigns a
higher value to observation � than observation 
 in the
POMDP de�ned in Figure �� However� for � � �� TD���
will still not be able to learn the value function de�ned
by Equation �� For POMDPs with absorbing goal states�
o��line TD���� which is equivalent to the Monte Carlo al�
gorithm that averages path�payo�s� will however �nd the
desired value function�

during learning will impact the occupancy probabili

ties that are a part of the de�nition of the return from
a policy� To make analysis possible� consider the spe

cial case of applying Q
learning with a �xed stationary
persistent excitation learning policy� i�e�� a policy that
assigns a non
zero probability to every action in every
state� and for which the underlying Markov chain is er

godic� Note that for POMDPs that satisfy Assumption
� all stationary policies that assign a non
zero proba

bility to every action in every state are persistently ex

citing� Following such a policy during learning would
satisfy the conditions required for w�p�� convergence
of Q
learning in MDPs�

Theorem �� In a POMDP of the type de�ned above�
if a persistent excitation policy � is followed during
learning� the Q
learning algorithm will converge to
the solution of the following system of equations with
probability one �under the same conditions required
for convergence of Q
learning in MDPs� plus the con

dition that the learning rates� �� are non
increasing��
�X � X �

Q�X� a� �
X
s�S

P ��sjX� a� �Ra�s�

��
X
X��X

P a�s�X�� max
a��A

Q�X�� a��

�
���

where P ��sjX� a� is the asymptotic probability� un

der policy �� that the underlying state is s given that
the observation
action pair is �X� a�� and P a�s�X�� �P

s��P
a�s� s��P �X�js����

Proof� The proof for Theorem � is very similar to
the proof of Theorem �� As in the case of TD��� con

sider the semi
batch version of Q
learning that collects
the changes to the value function for M steps before
making the change� By making M large enough the
states of the underlying MDP can be sampled with a
frequency that matches P ��sjX� a� to within � with
probability � � �� In Appendix A we prove that the
semi
batch version of Q
learning outlined above con

verges to the solution of Equation � with probability
one� The semi
batch proof can be extended to on
line
Q
learning by using the analysis developed in Theo

rem � of Jaakkola et al� ��		�� in a manner similar to
that used in the proof of Theorem ��

�

The solution to Equation � su�ers from the same prob

lem as the solution to Equation � because Q
learning
is also based on the �
step Markov assumption� An
additional problem with Q
learning is that it is based
on the assumption that a deterministic policy is being
sought� An interesting Q
value like quantity can be
de�ned in POMDPs as follows�

Q��X���� �
X
s�S

P ��sjX�Q��s� ��� ���

where Q��s� ��� � R���s� � �
P

s��S P
���s� s��V ��s���



Note that Q��X���� is the Q
value for a stochastic
action ���X��

��
 WHAT IS AN OPTIMAL POLICY�

In discounted MDPs� an optimal policy is simply one
that maximizes the value of each state simultaneously�
Unfortunately� in discounted POMDPs it is no longer
possible to de�ne optimal policies in a similar way�

Fact �� In the class of POMDPs de�ned in Section ��
there need not be a stationary policy that maximizes
the value of each observation simultaneously�

Proof� Figure � shows a four state� three observation
POMDP with two actions A and B� The only pol

icy decision is made in observation �� Increasing the
probability of choosing action A in observation � in

creases the value of observation � and decreases the
value of observation �� Increasing the probability of
choosing action B in observation � has the opposite
e�ect� Therefore� with hidden state there may not be
a policy that maximizes the value of each observation
simultaneously�

�
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Figure �� No Policy that Maximizes the Value of Each
Observation� This example shows that in general there
need not be a policy that simultaneously maximizes
the value of each observation� This �gure shows a �
state� � observation POMDP� The only policy decision
is made in observation �� Increasing the probability of
picking action A increases the value of observation �
and decreases the value of observation �� Decreasing
the probability of picking action A has the opposite
e�ect�

However� one could imagine that there might be a pol

icy in � that would simultaneouslymaximize the value
of each state� were they accessible� Even that is not
true�

Fact �� In the class of POMDPs de�ned in Section ��
there need not be a stationary policy that maximizes
the value of each state in the underlying MDP simul


taneously�

Proof� Figure � shows a four state� three observation
POMDP with two actions A and B� The only policy
decision is made in observation �� The value of state
�a inside observation � is maximized when action A is
chosen with probability one� while the value of state �b
is maximized when action B is chosen with probability
one�

�
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Figure �� No Policy that Maximizes the Value of Each
State� This �gure shows a POMDP in which no policy
maximizes the value of each state in the underlying
MDP simultaneously� The transition probabilities are
shown in parenthesis� States �a and �b are in the same
observation� There are two actions in observation ��
There is no setting of the policy for observation � that
simultaneously maximizes the value of states �a and
�b�

The di�culty in de�ning an optimal policy in dis

counted POMDPs can be explained with the help of
Equation �� Changing a policy not only changes the
value of each state in the underlying MDP� but also
the occupancy distribution of states for each observa

tion� This dual e�ect makes it possible to trade o�
the value of one observation with the values of other
observations�

��� DEFINING AN OPTIMAL POLICY

Discounted Payo� POMDPs� The evaluation of a
policy is a vector of values� one value for each state�
and as shown above� in general� it is not possible to
maximize each element of the value vector simultane

ously� One way to overcome that problem is to convert
the vector of values into a scalar� e�g�� by de�ning the
value of a policy � as

P
X�X PXV

��X�� where PX is
some weight or measure of the importance of observa

tion X� Some obvious choices for PX are �� the prob

ability of starting in observation X� and �� the prob

ability of occupying observation X� The �rst option
pays undue attention to the starting observation in an



in�nite
horizon problem� The second option� de�nes
�� � argmax���

P
X�X P ��X�V ��X�� and is shown

in Fact � to be equivalent to maximizing the �average
payo� per time step� criterion that is discussed in the
next paragraph� Other choices may exist for PX � but
they are unlikely to be reasonable for all POMDPs�

Average Payo� POMDPs� A second policy evalu

ation criterion that has been studied in the MDP liter

ature �e�g�� Bertsekas� �	��� and more recently in the
RL literature �Schwartz� �		�
 Singh� �		�� is the av

erage payo� per time step criterion� The average pay


o� under policy � is de�ned as limN��E�f

P
N

t��
Rt

N
g

and is known to be independent of the starting state
for MDPs that are ergodic for all stationary policies�
The average payo� is a bounded scalar� and a policy
that achieves the maximum value is an optimal policy�
The average payo� per time step for a policy in � is
una�ected by the agent�s inability to sense the state
of the environment�

Let the average payo� for policy � be denoted ���
The relative value function in average payo� MDPs is
de�ned as follows �see Bertsekas� �	����

V ��s� �
X
a�A

Pr�aj�� s� ��Ra�s� � ���

�
X
s��S

P a�s� s��V ��s��

�
�

From here onwards we will use a subscript of �
to distinguish the value function for a discounted
decision problem� The de�nition of the relative
value of an observation in an average payo� POMDP
is the same as for a discounted payo� POMDP

V ��X� �

P
s�S P

��sjX�V ��s�� An optimal policy
�� � argmax��� �

� �

Fact �� Let V �
� be the value function �as de�ned by

Equation �� for a given POMDP with a discount factor
of �� For the same POMDP� let �� be the average
payo� per time step for policy � �without the discount
factor�� Then� for each � � ��

P
X�X P

��X�V �
� �X� �

��

���
� Therefore maximizing

P
X�X P ��X�V �

� �X� is

equivalent to maximizing the average payo� per time
step�

Proof� By de�nition V �
� �X� �

P
s�S P

��sjX�V �
� �s��

Therefore�X
X�X

P ��X�V �
� �X� �

X
X�X

P ��X�
X
s

P ��sjX�V �
� �s�

�
X
s

X
X

P ��X�P ��sjX�V �
� �s�

�
X
s

P ��s�V �
� �s�

�
X
s

P ��s�R��s� � �
X
s

P ��s�

X
s�

P ��s� s��V �
� �s

��

� �� � �
X
s�

P ��s��V �
� �s

��

� �� � �
X
X

P ��X�V �
� �X��

�

� DISCUSSION

In this paper� we developed a new framework for learn

ing without state estimation in POMDPs by including
stochastic policies in the search space and by de�n

ing the value of an observation under a given policy�
It was demonstrated that the return for a memory

less stochastic policy can be signi�cantly better than
the return for any memory
less deterministic policy�
However� it should be pointed out that the de�nition
of an optimal policy suggested in this paper is some

what arbitrary because the only reason to restrict the
search space to stationary policies is computational
economics�

Note that RL researchers �Sutton� �		�� and
learning automata researchers �e�g�� Narendra and
Thathachar��	��
 Barto and Anandan� �	��� have
used stochastic policies in the past� but as interme

diate policies to ensure su�cient exploration� and al

ways with the view that the ultimate goal is to learn
the best deterministic policy� However� researchers
in game theory have studied zero
sum games where
the optimal strategies are stochastic for the same rea

son that motivated the search for stochastic policies
in POMDPs� the lack of knowledge of the opponent�s
action constitutes hidden state�

Finally� we presented strong reasons why researchers
should use the average payo� criterion to formulate
problems that have hidden state� because of the di�

culty in de�ning optimal policies with the discounted
payo� criterion�

� Conclusion

The motivation for this study came from the follow

ing simple observation� the �rst
principles de�nition
of the value of a state under a �xed policy does not in

volve the Markov assumption and can be computed
statistically via Monte Carlo evaluation �Barto and
Du�� �		��� This means that for any average pay

o� POMDP� given enough computational resources
it is possible to determine the best policy from any
�nite set of policies with an arbitrarily high degree
of con�dence� Unfortunately hidden state introduced
two complications� First� the Markov assumption no
longer holds� and it was the Markov assumption that
allowed e�cient search of the policy space via conven

tional RL
based techniques� Second� in moving from



deterministic to stochastic policies we have moved
from a �nite policy space to an in�nite policy space� In
this paper we developed a framework for assigning val

ues to observations in POMDPs that does not involve
the Markov assumption� In a subsequent paper� we
present a new Monte Carlo algorithm for solving aver

age payo� POMDPs that can do an e�cient search of
the in�nite stochastic policy space �Jaakkola� Singh�
and Jordan� �		�� as de�ned in this paper�

A Convergence of semi�batch
Q�learning

LetMk�X� a� be the number of times action a was exe

cuted in observation X within the kth batch of sizeM �
nk�sjX� a� be the number of times the actual underly

ing state was s when the observation
action pair was
�X� a�� and n�X�X�ja� be the number of times a tran

sition took place from observation X to observation
X� given that action a was executed� The persistent
excitation policy followed by Q
learning during learn

ing is denoted �� Then the Q
value of �X� a� after the
kth batch is given by�

Qk���X� a� � �� �Mk�X� a��k�X� a��Qk�X� a�

�Mk�X� a��k�X� a�

�X
s

n�sjX� a�

Mk�X� a�
rak�s�

��
X
X�

n�X�X�ja�

Mk�X� a�
max
a�

Qk�X
�� a��

�
�

where rak�s� is the sample average of the actual payo�s
received on executing action a in state s in the kth

batch� Assume �Q�X� a� is the solution to Equation ��
Let

Fk�X� a� �
X
s

n�sjX� a�

Mk�X� a�
rak�s�

��
X
X�

n�X�X�ja�

Mk�X� a�
max
a�

Qk�X
�� a��

� �Q�X� a��

then� if Vk�X� � maxaQk�X� a� and �V �X� �
maxa �Q�X� a��

Fk�X� a� � �
X
X�

n�X�X �ja�

Mk�X� a�
�Vk�X

��� �V �X���

�
X
s

�
n�sjX� a�

Mk�X� a�
rak�s� � P ��sjX� a�Ra�s��

��
X
X�

��
n�X�X�ja�

Mk�X� a�
� P a�X�X�j��� �V �X����

where

P a�X�X�j�� �
X
s

P ��sjX� a�

�X
s�

�P a�s� s��P �X�js���

�
�

The expected value of Fk�X� a� can be bounded by

jjEfFk�X� a�gjj � �jjVk � �V jj

�jjEf
X
s

�
n�sjX� a�

Mk�X� a�
� P ��sjX� a��Ra�s�gjj

��jj
X
X�

Ef��
n�X�X�ja�

Mk�X� a�
� P a�X�X�j��� �V �X���gjj

� �jjVk � �V jj� C�Mk �

where �Mk is the larger of

max�s�X�a� jEf
n�sjX�a�
Mk�X�a�

g � P ��sjX� a�j� and

max�X�X� �a� jEf�
n�X�X�ja�
Mk�X�a�

g � P a�X�X�j���j�

For any � � �� �M� such that �
M�

k � � �because the
sample probabilities converge with probability one��
The variance of Fk�X� can also be shown to be
bounded because the variance of the sample proba

bilities is bounded �everything else is similar to stan

dard Q
learning for MDPs�� Therefore by Theorem
� of Jaakkola et al� ��		��� for any � � �� with
probability �� � ��� Qk�X� a� � Q��X� a�� where
jQ��X� a� � �Q�X� a�j � �C�� Therefore� semi
batch
Q
learning converges with probability one�

�

A�� Convergence of semi	batch TD���

The proof of convergence for semi
batch Q
learning
can be easily adapted to prove probability one con

vergence of semi
batch TD��� to the solution of Equa

tion �� Set the persistent excitation policy in the proof
for Q
learning to the policy being evaluated� and re

place Ra�s� by R��s� and P a�X�X�j�� by P ��X�X���
Everything else follows�

�
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