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Abstract

The close connection between reinforcement
learning (RL) algorithms and dynamic pro-
gramming algorithms has fueled research on
RL within the machine learning commu-
nity. Yet, despite increased theoretical un-
derstanding, RL algorithms remain appli-
cable to simple tasks only. In this paper
I use the abstract framework afforded by
the connection to dynamic programming to
discuss the scaling issues faced by RL re-
searchers. 1 focus on learning agents that
have to learn to solve multiple structured RL
tasks in the same environment. I propose
learning abstract environment models where
the abstract actions represent “intentions” of
achieving a particular state. Such models are
variable temporal resolution models because
in different parts of the state space the ab-
stract actions span different number of time
steps. The operational definitions of abstract
actions can be learned incrementally using
repeated experience at solving RL tasks. 1
prove that under certain conditions solutions
to new RL tasks can be found by using simu-
lated experience with abstract actions alone.

1 INTRODUCTION

The close connection between reinforcement learning
(RL) algorithms and conventional dynamic program-
ming (DP) algorithms (Watkins 1989; Sutton 1990;
Barto et al. 1991; Barto et al. 1990; Werbos 1990)
has fueled research on RL within the machine learn-
ing community. Yet, despite the consequent increase
in theoretical understanding, the inability of RL algo-
rithms to scale well to complex tasks has limited their
application to simple tasks (but see Tesauro 1992 for
an exception). In this paper T use the general and ab-
stract framework afforded by DP to discuss some of
the scaling 1ssues faced by RL researchers. I present

a solution to one scaling issue that has been neglected
by researchers, but is crucial to making RL applicable
to more complex tasks.
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Figure 1: Markovian Decision Task. This figure shows
a block diagram representation of a single MDT. It
shows an agent interacting with an external environ-
ment. The agent observes the state of the environ-
ment, executes an action, and gets a payoff in return.

A useful common framework for most RL tasks is ob-
tained by adopting an optimal control perspective. In
such a framework an agent interacts with a dynamic
external environment and executes actions not only to
transform the environment to a desired goal state',
but also to improve performance with respect to an
objective function. A substantial number of applica-
tions of RL have dealt with Markovian Decision Tasks?
(MDTs). MDTs are a subset of discrete-time, optimal

In some RL tasks the objective is not to achieve a
desired goal state, but to follow a desired state trajectory
optimally, or to simply avoid certain undesirable states. In
this paper I do not consider such tasks.

2By choosing Markovian decision tasks I ignore the com-
plex issues arising from learning with incomplete state in-
formation (e.g., Whitehead et al. 1990), and learning in
non-stationary environments.



control tasks with the property that the current state
and future actions determine the expected future se-
quence of states independently of the state trajectory
prior to the current state. Figure 1 shows a block di-
agram representation of an MDT. At each time step
the agent observes the state of the environment, ex-
ecutes an action, and receives a payoff in return. In
MDTs (Bertsekas 1987) the objective function to be
maximized is often of the form, J,(i) = > ,_; 7' R(1),
where 7 is the starting state, R(t) is the expected pay-
off received at time step ¢, and n is the horizon of the
task. The discount factor, 0 < y < 1, determines the
weight given to temporally distant payoffs relative to
the more immediate payoffs. The horizon determines
the time period over which the payoffs are important.
A stationary control policy®, hereafter simply called
policy, 1s a function assigning actions to states. A pol-
icy that maximizes the agent’s objective function is an
optimal policy.

For single-stage MDTs, i.e., MDTs that have a hori-
zon of one, the search for an optimal policy can be
conducted locally for each state because the optimal
action in any state 1s simply an action that leads to
the highest immediate payoff. MDTs with a horizon
greater than one; or multi-stage MDTs, face the dif-
ficult temporal credit assignment (Sutton 1984) prob-
lem. Hence, the search for an optimal action in a state
cannot be conducted locally because it may be nec-
essary to examine the consequences of all action se-
quences of length equal to the horizon of the MDT. If
a model of the environment is not known for a multi-
stage MDT, the problem faced by the learning agent
becomes non-causal because constraints on the opti-
mal solution propagate backwards in time from the
future. Most algorithms for solving multi-stage MDTs
first convert such problems to single-stage MDTs by
computing or learning an evaluation function, called a
“yalue” function*, such that the task of determining
an optimal policy given the value function is a single-
stage MDT.

Let S be the set of states of the environment, and A,
be the set of primitive actions (actions executable in
one time step in the real environment) available to the
agent in each state. Let P denote the state transi-
tion probabilities. Py, (a) is the probability of a tran-
sition to state y from state x on executing action a.
The payoff function, R(z,a,y), is the payoff received
by the agent on causing a transition from state z to

®Control policies are also referred to as decision policies,
or situation-action mappings, or simply as “reactions”. [
do not consider non-stationary control policies because it
is known that the optimal policies for MDT's are stationary
(Ross 1983).

*The policy iteration algorithm is an exception because
it searches for an optimal policy directly in policy space.
Nevertheless, policies are evaluated by determining their
value function. Therefore the results of this paper are rel-
evant to learning algorithms based on policy iteration.

state y by executing action a. In this paper I focus
on the abstract process of learning the value function
for infinite-horizon (n = o0), undiscounted (y = 1)
MDTs, independent of the learning algorithm used.
Define the value of state x under policy 7 : S — A,
V7™ (x), as the infinite horizon sum of the payoff re-
ceived by the agent if it were to follow the policy =
forever from the initial state z. V™ (x) can be defined
recursively as follows:

Vi(e) = E{R(x,7(x),y)+ V" (y)},

where F is the expectation operator, and y is the next
state.

The optimal value of state z, V*(x), is the value un-
der the optimal policy 7*, and can be defined recur-
sively using the following form of the Bellman opti-
mality equation:

Vi) = gelifE{R(x,a,y)JrV*(y)}

Given the optimal value function the optimal action
in state z is determined as follows:

™(z) = argeljlaxE{R(x,a,y)+V*(y)}~

Learning the optimal value function is a necessary
and almost always a computationally intensive part
of learning to solve multi-stage MDTs. I ignore the
subsequent process of determining an optimal policy
because i1t does not involve the temporal credit assign-
ment problem. However, it is important to note that
determining an optimal policy from the optimal value
function can also be computationally intensive, partic-
ularly for large action sets. See Gullapalli (1992) for
a discussion of the scaling issues involved in deriving
the optimal policies for MDTs with large action sets.

2 SCALING ISSUES FOR
LEARNING ALGORITHMS
BASED ON DYNAMIC
PROGRAMMING

Adaptive critic architectures based on Watkins’s
(1989) Q-learning algorithm, or on Sutton’s (1988)
temporal differences (TD) algorithm, approximate DP
by using repeated experience at actually controlling
the environment to incrementally improve their esti-
mate of the optimal value function. Asymptotic con-
vergence results have been obtained under certain con-
ditions for both TD (Sutton 1988) and Q-learning
(Watkins 1989; Watkins and Dayan 1992). Sutton
(1990) demonstrated that both TD and Q-learning
could approximate the optimal value function as well
by using simulated experience with a model of the en-
vironment. The essential operation shared by all DP-
based learning algorithms is that of a “backup”. A
backup uses a state transition, whether simulated or



in the real environment, to update the estimated value
of the predecessor state by using the estimated value of
the successor state and the immediate payoff for that
state transition.

Let V; be the estimate of the value function for policy
7. The backup equation, assuming knowledge of the
state transition probabilities and payoff function, 1s:

Va(@) = Y Poy(m(@){R(x, n(x),y) + Va(y)}(1)

yeS

If the transition probabilities are not known, the TD
learning rule can be used to update the estimate of the
value function as follows:

Ve(z) = (1.0— a)Vie(z) + a[R(zx, 7(2),y) + Va(¥)],
where « is the learning rate parameter.

Other DP-based learning (DP-L) algorithms have sim-
ilar backup equations. I focus on the abstract prop-
erties of the backup equation and present results that
apply to all DP-L algorithms. Within the above frame-
work, there are two important differences in the DP-L
algorithms: the information available to the agent dur-
ing a backup, and the order in which the backups are
performed. DP-L architectures that have access to an
accurate environment model can do backups in any
arbitrary order, and in addition have potential access
to all the information needed for a backup, even for
stochastic problems. On the other hand, DP-L algo-
rithms that do not have access to a model, have only
sampled information available in stochastic problems,
and are limited to backing up into the current state of
the environment. For learning tasks where a model of
the environment is not available at the beginning, in-
direct learning algorithms (see Barto and Singh 1990)
use system identification techniques to learn a model
on-line. Equation 1 can then be used by substitut-
ing the estimated transition probabilities for the real
transition probabilities.

Numerous researchers have demonstrated accelerated
learning in both model-based and model-free ap-
proaches by using heuristics and domain knowledge
to change the order in which the backups are done.
State-preference predicates (Utgoff and Clouse 1991),
external critics (Whitehead 1991), external teachers
(Lin 1991), and nominal controllers, are some meth-
ods of utilizing prior domain knowledge. Smart ex-
ploration strategies based on heuristics, such as those
used by Sutton (1990), Whitehead et al. (1990), Barto
and Singh (1990), Thrun and Moller (1991), and Kael-
bling (1990), can also affect the order in which backups
are performed by a DP-L algorithm.

While the above heuristic methods do accelerate the
process of learning the value function, they have two
fundamental limitations: each backup changes the
value of only one state (the predecessor state), and
each backup involves neighboring states, i.e., states

that are linked by primitive actions executable in one
time step. The first limitation is addressed in the liter-
ature as the state or input generalization issue (Chap-
man and Kaelbling 1991; Moore 1991). If a function
approximator other than a look-up table is used to
learn the value function, there will be some general-
ization across states. However, there has been little
research on providing or learning the right generaliza-
tion bias for learning the value function in arbitrary
optimal control tasks (but see Samuel 1967; Yee 1992).
One way to achieve perfect generalization for finite-
state tasks would be to form state representations that
partition the state set into equi-value subsets. Given
such a representation, or in the infinite-state case an
approximation to one, a single backup can be used to
simultaneously update the entire subset of equi-valued
states to which the predecessor state belongs.

The much less studied second limitation constitutes
the temporal resolution issue. For most control prob-
lems there is a finest temporal scale at which the prob-
lem can be studied, determined usually by the highest
sampling frequency and other hardware constraints.
By limiting the backups to that fine a temporal scale,
or alternatively to that high a temporal resolution,
problems with large state sets become intractable be-
cause of the many backups that have to be performed
to learn the value function. In this paper I focus ex-
clusively on the temporal resolution issue.

3 VARIABLE TEMPORAL
RESOLUTION MODELS

Without a model of the environment a DP-L algorithm
has no choice but to do backups at the highest res-
olution afforded to it in the real environment®. To
do backups at longer time scales requires an abstract
model. Any physical control system can be modeled at
any of an infinity of levels of abstraction. The central
issue addressed in this paper is the nature of the ab-
stractions appropriate for accelerating learning of the
value function for MDTs. In particular, I study the
abstractions necessary to mitigate the high temporal
resolution problem. To that end, I focus on using ab-
stract models for prescription (see Simon 1990), i.e., on
using models to determine the effects of control poli-
cies via simulation or temporal projection. However,
the models that I will describe could be put to other
uses, e.g., for deriving structural explanations to deal
with the state generalization issue.

Building abstract models to speed up the process of
learning the value function is not a new idea. There is

® Alternatively, the controller can decrease the resolu-
tion by simply choosing not to change actions at some time
steps — but this can only come at the expense of reactivity.
Another method of achieving reduced temporal resolution
without building abstract models may be Sutton’s (1984)
method of using eligibility traces to do backups.



some work in doing structural abstractions, 1.e., ignor-
ing structural detail about the state that is observed by
the agent. I focus on abstracting temporal detail, i.e.,
the frequency with which the agent observes the state
and makes a decision. One way to abstract temporal
detail would be to simply learn to make predictions
for all possible sequences of actions of a fixed length
greater than one. However, the combinatorics of that
will outweigh any resulting advantage. Furthermore,
it 1s unlikely that there is a single frequency that will
economically capture all that 1s important to predict.
In different parts of the state space of the environment,
“interesting” situations, i.e., situations that merit pre-
diction, will occur at different frequencies. Any system
identification technique that models the environment
at a fixed frequency will be inefficient as compared to
a system 1identification technique that can construct
a variable temporal resolution model (VIRM), i.e., a
model with different temporal resolutions in different
parts of the state space.

I propose learning models for abstract actions that rep-
resent the intention of achieving interesting situations,
and ignore the temporal detail that would have to be
taken into account in any operational definition of such
abstract actions. Within the above optimal control
framework, abstract actions will express intentions of
achieving useful environment states. Note that pre-
dicting the effect of executing an action, abstract or
primitive, requires knowledge of both the state transi-
tion probabilities, and the payoft function for that ac-
tion. While the payoff function for a primitive action
is directly available from the environment, the payoff
function for an abstract action will clearly depend on
the particular control policy that is adopted to real-
ize the intended environment state associated with the
abstract action.

3.1 LEARNING TO SOLVE MULTIPLE
TASKS

It is unlikely that the computational effort of learn-
ing a VIRM would be worthwhile to an agent that
has to learn to solve a single MDT. Indeed, for some
MDTs it is possible to directly determine an optimal
policy by using actual experience at controlling the en-
vironment at the highest temporal resolution (Barto
and Singh 1990), before the environment model be-
comes accurate enough to be useful. However, if the
learning agent has to learn to solve multiple MDTs
(Singh 1992¢) in the same environment, the cost of
constructing a VI'RM can be amortized across the
tasks. Figure 2 shows a block diagram representation
of multiple MDTs; all the MDTs are defined with the
same environment, have the same state set S, the same
action set 4;, and the same state transition probabil-
ities P. The payoff function, though, differs for each
MDT. For an arbitrary set of MDTs it may be difficult,
if not impossible, to determine the useful environment

states for forming the abstract actions. The approach
I adopt in this paper is to consider learning agents
that have to learn to solve a special but useful class of
tasks, namely compositionally-structured MDTs, and
to use that a priori knowledge to help determine the
useful abstract actions.
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Figure 2: Multiple Markovian Decision Tasks. This
figure shows a block diagram representation of mul-
tiple MDTs defined in the same environment. The
state transition probabilities and the cost function do
not change across the tasks; only the reward function
does.

Formally, let there be a set of composite MDTs la-
beled Ty,T5,...,T,. Each composite MDT requires
the agent to learn the optimal path through a sequence
of desired states. For example, task T; = [@129 - - 2],
where for 1 < i < m, z; € S. Task T} requires the
agent to learn the optimal trajectory from any start
state to x,;, via infermediate states xi, 9, ..., Tm_1
in that order. The composite MDTs are composi-
tionally structured because they can be described as
a temporal sequence of simpler tasks each of which
is an MDT in itself. The task of achieving interme-
diate state a optimally is itself an MDT, X = [«],
defined over the same environment. Without loss of
generality, I will assume that the n composite MDTs
are defined over a set of N intermediate states labeled
x1,%a,...,xNn. Equivalently, the n composite MDTs
are defined over N simpler or elemental MDTs denoted
X1,Xs,...,Xn. Note that the symbol X is used to
represent an elemental MDT while the symbol T 1s
used to represent a composite MDT. Each MDT 1s de-
fined via a list of states enclosed in square brackets.
The intermediate states of the composite tasks are as-
sumed to be unknown to the learning agent.

The payoff function has two components: C(z,a), the
“cost” of executing action a in state x, and r(x), the
“reward” for a transition into state x. It i1s assumed
that the cost of executing an action is no greater than



zero, and is independent of the task being performed
by the learning agent. The reward (Figure 2) for tran-
siting into a state will in general depend on the task.
For task T;, the payoff for executing action a in state x
and transiting to state y is R;(x, a,y) = ri(y)+C(x, a).
To facilitate theoretical analysis, I make the following
assumptions:

(A1) Each MDT has a single absorbing goal state. In
practice, once the agent reaches the goal state the task
is considered to be accomplished and the agent is given
the next task. Theoretically, this is equivalent to the
agent getting absorbed in that state with zero payoff
being provided for every time step after the first time
the agent reaches the goal state.

(A2) For all MDTs T;, R;(x,a,y) > 0 implies that y
is the goal state for task 7; and that z # y.

(A3) Given any state pair, (2, y), there exists a station-
ary policy that if executed by the agent will transform
the environment from initial state x to state y with
probability one.

These simplifications and assumptions were intro-
duced for the purpose of theoretical analysis. Even
with these simplifications, composite MDTs remain
very difficult to solve. Keep in mind that the agent
does not know the decomposition of the composite
MDTs. In addition, the only reward the agent gets
is provided at the very end of the successful com-
pletion of a task. Given the long sequences of ac-
tions required to solve a composite MDT, the agent
faces very difficult temporal credit assignment prob-
lems, and conventional RL architectures may be un-
able to learn the value function for composite MDTs
(Singh 1992a). The implications of relaxing some of
the above assumptions are discussed in Section 5.

3.2 TEMPORAL ABSTRACTIONS

For compositionally structured tasks, the useful ab-
stract actions would naturally be those that would
transform the environment to intermediate states
x1,Ta,...,xNn. Thus, abstract action A represents the
“intention” of transforming the environment state to
z € S. Figure 3 shows an example of two levels of
a hierarchy of VTRMs for a finite-state, determinis-
tic, MDT. The VITRMs are shown as state-transition
graphs. The lower graph shows the highest resolution
model with the arcs representing primitive actions and
the nodes representing states. The upper graph shows
two abstract actions .4 and B corresponding to goal
states a,b € S. The abstract action A is shown by
direct links from every state to the state marked a.
Similarly, for abstract action B there are direct links
to the state marked b from every state. As can be seen
by inspecting the abstract model in Figure 3, doing a
backup in the abstract model will transmit information
between states that are not neighbors in the highest
resolution model.

Figure 3: Hierarchy of VIRMs. This figure shows
2 levels of a hierarchy of VI'RMs for a deterministic
MDT. The lower figure represents the state transition
graph with primitive actions as the arcs and the nodes
as states. The upper figure shows the same state space
with two abstract actions A and . The abstract ac-
tion A is shown via solid lines and the abstract action
B via dashed lines. The payoffs to be assigned to these
arcs will depend on the control policies associated with
these abstract actions.



Abstract actions are similar to macro-operators (Korf
1985) in that they allow the agent to ignore irrelevant
temporal detail in determining solutions. However,
macros are generally open loop sequences of actions
that would, if executed, transform the environment
from a fixed initial state to a goal state. Macros cannot
handle stochasticity and model imperfection because
of their open loop nature. The abstract actions I define
are closed loop policies for achieving a goal state from
any start state and can thus handle stochastic tasks.
In addition, since the abstract actions are embedded
in an optimal control framework, they can be learned
incrementally. Thus, as the policy associated with the
abstract action improves, the expected payoff for that
abstract action should also get more accurate.

In the next section, I prove that for compositionally
structured tasks the abstract actions and their payoffs
can be defined in a manner that learning the value
function for a new task requires little computation.
Thus, temporal abstraction is achieved by learning ab-
stract actions that span many time steps in the real
environment.

4 A HIERARCHY OF
ENVIRONMENT MODELS

Consider 2 levels of a hierarchy of VIRMs for solv-
ing the set of compositionally structured MDTs.
Such VTR models are stochastic sequential machines
(Booth 1967) of the Mealy-type (when the payoffs are
considered to be the outputs of the machines), and
when convenient I shall treat them as such. Let M-1
be the highest resolution model or machine with ac-
tion set .4; consisting of primitive actions executable
in one time step. M-1 has two mappings: the state
transition probabilities P : S x A; x S — R, and
the cost function, C' : S x Ay — R. The abstract
model M-2 1s deterministic, even for a stochastic M-
1, and has two mappings: P : S x Ay — S, and
Cy:SxAy — R Ay = {X, X, ..., XN}, is the set of
abstract actions corresponding to the elemental MDTs
X1, Xs,..., Xn that are defined for the intermediate
states x1,®9,...,x5. Note that both M-1 and M-2
are mathematical abstractions of the same underlying
“real” environment. Machines M-1 and M-2 abstract
at different temporal resolutions over the same state
set S.

Figure 4 shows that machine M-1 can be used to sim-
ulate the abstract machine M-2. Let the mapping
L:As x S — A; be defined VX € A;, and Vs € S.
Simulating the execution of a single action in M-2 re-
quires following the policy dictated by the mapping L
till the first time the state of M-1 equals the state of
M-2. Define Fr(sp, X;) to be the expected number of
time steps in which the state of M-1 becomes z; when
the simulation for abstract action & is started in state
sg. Let s; denote the state of M-1 after simulating ¢

steps and let L(X;, s;) = a;. M-2 is said to realize the
abstract model M-1 under the mapping L, if Vsg € 5,
and VA; € A, the following are true: Fpr(sg, ;) is
bounded from above,

Py(s0,X;) = xj, and
t=k

Caso, ) = E{)_ R(1)},
t=1

where Zzlf R(t) is the k step cumulative payoff re-
ceived on simulating abstract action &; in M-1, start-
ing from state sg, and & is the number of time steps
for M-1 to reach state x; for the first time.

Define V;? to be the optimal value function for the
composite task 7; in the machine defined by M-2. V.* is
the optimal value function for task 7;. The mapping L
is optimal, if VA € As, Vs € S, and VL', Car(s, X) >
Cari(s, X), where by a slight abuse of notation Csr is
the cost function realized under mapping L and Chyps
is the cost function realized under mapping L’. If the
agent were to execute the policy defined for abstract
action X; by an optimal L, it would follow the least
cost path to state ;.

Proposition: If the abstract environment model (M-
2) realizes the environment model M-1 under an opti-
mal mapping L defined as above, then for all composite

tasks 7;, and Vs € S, Viz(s) =V (s).

Proof: Without loss of generality, consider a compos-
ite task T; = [z12y...24,]. By definition, the envi-
ronment has to go through the states zq,x2,..., 2, in
sequence. Thus, given the assumptions of the propo-
sition, an optimal policy for task 7; in machine M-2 1s
to execute the abstract actions in the sequence corre-
sponding to the intermediate states in the decompo-
sition of T;. For if there were a better policy in M-2,
the mapping L would not define optimal policies for all
intermediate subtasks. Therefore, for arbitrary start
state sg € S:

Viz(SO) = Ca(sg, A1) + Ca(aq, X2) +

coit Colwn—1, Xn) + ri(2n).

Next consider the highest resolution model of the en-
vironment, i.e., machine M-1. Let 7* be an optimal
policy for composite task 7;. The optimal value of
state sg for task 7; is given by:

t=kn
Vi(so) = Ee{) Cls,a))} +riln),  (2)

where af i1s an optimal primitive action for state sy,
and k, is the random variable for the number of steps
taken under policy 7* to reach state x, from start
state sg via the intermediate states. By definition of
T;, ®1xs ...x, 18 a subsequence of the set of states vis-
ited by the agent under policy 7*. Thus, the sequence
of states visited by the agent can be partitioned into
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subsequences that correspond to the robot getting to
the goal locations of the elemental subtasks in the de-
composition of 7T;. Let x¥ be an optimal policy for the
intermediate subtask A;. Let k; be the random vari-
able that represents the time at which state x; is first
visited. Equation 2 can be rewritten as:

t=k1y t=ko
Vi(so) = Ex{) Clse,a)+ Y Clsi,a))+
t=0 t=k1+1
t=k,
Y Clsna)Y (). (3)
t=kp_1+1

Solving the composite task 7; optimally would require
each of the subtasks to be solved optimally (by defini-
tion of composite tasks and the definition of optimal-
ity). Once the agent reaches the final goal state z,, the
remaining payoffs are zero, and hence Equation 3 can
be rewritten as:

t=kq

Vi(so) = Exp{)_ Clse,ar)}+

t=ko
Ens{ > Clsiyan)}+...
t=k1+1
t=k,
+Er{ Y. Clsi,a)} + ri(an).

t=kp_1+1

By assumption, C(s, a¢) is independent of the task
being performed Vs; € S, and a; € A;. Therefore, if
M-1 realizes M-2 and the policies defined under L are
optimal:

‘/Z'*(SO) = Cz(So,Xl)—FCz(l‘l,Xz)—F...
+Cz(l‘n—1, Xn) + Tl(l‘n)
Therefore for all composite tasks T;

S;V2(s) = Vi (s).
Q.E.D.

and Vs €

The proposition proved above implies that after build-
ing M-2, which requires learning to solve the elemental
MDTs, composite MDTs can be solved by doing dy-
namic programming only in M-2. Value functions for
composite MDTs can be learned faster by doing back-
ups in the abstract model M-2 because information
about the value function gets propagated backwards
from the goal further in one backup than it would with
a single backup in M-1.

5 DISCUSSION

The choice of compositional structure for the set of
MDTs made the problem of determining the useful
temporal abstractions relatively straightforward. The
important and difficult question of the automatic dis-
covery of useful abstract actions for classes of tasks

more general than compositionally structured tasks is
not addressed here. However, the idea that abstract
actions should represent intentions of transforming the
environment to useful, “landmark” states could gener-
alize to an arbitrary set of tasks. For example, for
an animal in the real world there are many landmark
states, locations of food, water, shelter, etc., that could
serve as goal states for abstract actions. Learning to
solve a new task could then simply plan in terms of
realizing the intention of being in the “food” state
without regard to the temporal detail of realizing the
intention.

Another special aspect of compositionally-structured
tasks 1s that the optimal solutions for composite tasks
could be constructed by temporally concatenating the
optimal solutions to the appropriate elemental tasks.
While that may not be true for an arbitrary set of
tasks, it may still be possible to construct near-optimal
solutions to complex tasks using the solutions to sim-
pler subtasks. Doing DP in abstract models may then
quickly lead to a near-optimal value function. The
quick sub-optimal solutions could then be optimized
over time using experience in the real environment.
Further research is needed to test these intuitions.

Learning abstract actions shares some drawbacks with
macro-learning systems (e.g., Iba 1989); they increase
the total size of the action set available to the agent
(increased branching factor), and redundant and use-
less abstract actions can offset the advantages gained
from reducing the potential number of backups. It is
possible that many of the heuristics used in macro-
learning systems to provide partial remedies to the
above problems may transfer to learning abstract ac-
tions.

The purpose of this paper was to prove that given the
correct temporal abstractions for the special class of
tasks under study here, the value function for a new
composite task could be learned by doing backups from
simulated experience in the abstract model alone. To
that end, I assumed that the desired abstract actions
had already been learned in M-2. In a separate paper
(Singh 1992b), T address the issue of learning the useful
abstract actions for a set of compositionally-structured
MDTs. Note that the learning agent does not have ac-
cess to the structure of the composite tasks, else the
discovery would be trivial. In Singh (1992b), T also
present a learning architecture that learns to solve a
set of compositionally-structured MDTs using an ex-
tension to Sutton’s (1990) DYNA architecture. On
simulations performed on a robot navigation task, sig-
nificant savings were achieved using abstract models
over a learning system that uses the same learning al-
gorithm, but learns with the highest resolution model
only.



6 CONCLUSION

Machine learning researchers, whether they study su-
pervised learning tasks, single-stage RL tasks, or
multi-stage RL tasks have to abstract structural de-
tail in order to generalize to unseen parts of the input
space. Of the three types of learning tasks mentioned
above, the need to abstract temporal detail arises only
for researchers studying multi-stage RL tasks (but see
Schmidhuber 1992). One of the contributions of this
paper is to demonstrate that temporal detail can be
abstracted independently of abstracting structural de-
tail, and that the two are really orthogonal issues. Of
course, both these issues will have to be resolved si-
multaneously before RL algorithms can deal with most
“real” optimal control tasks. The insight that they can
be tackled independently could lead to new techniques
for addressing them jointly.

Most applications of RL algorithms have been to sin-
gle tasks. An additional contribution of this paper is
to emphasize the need to study autonomous learning
agents that have to learn to solve multiple tasks. There
are at least three reasons to do so: building realistic
autonomous robots will require that ability, research
on achieving transfer of learning across multiple tasks
i1s an important approach to the scaling problem, and
it could lead to insights for handling non-stationary
environments.
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