Transfer of Learning Across Compositions of Sequential Tasks

Satinder P. Singh
Computer and Information Science Dept.
University of Massachusetts, Amherst,MA 01003
satinder@cs.umass.edu

Abstract

Most “weak” learning algorithms, including
reinforcement learning methods, have been
applied on tasks with single goals. The effort
to build more sophisticated learning systems
that operate in complex environments will
require the ability to handle multiple goals.
Methods that allow transfer of learning will
play a crucial role in learning systems that
support multiple goals. In this paper I de-
scribe a class of multiple tasks that represents
a subset of routine animal activity. I present
a new learning algorithm and an architecture
that allows transfer of learning by the “shar-
ing” of solutions to the common parts of mul-
tiple tasks. A proof of the algorithm is also
provided.

1 INTRODUCTION

One of the pervasive problems facing machine learning
researchers is the inability of most “weak” learning al-
gorithms to scale well to complex tasks. Much of the
research effort on the scaling problem has focussed on
two alternatives: discovering new learning algorithms
that show better scaling properties, and extending ex-
isting learning algorithms. However, while it is true
that most animals learn multiple tasks and have mul-
tiple goals, most artificial learning systems focus on
solving single complex tasks. Building complex learn-
ing agents that parallel some of the capabilities of real-
life learning systems will necessitate handling multiple
goals/tasks!. While discovering faster learning meth-
ods will help, methods that allow transfer of learning
across tasks will play a crucial role in learning systems
that support multiple goals.

The learning paradigm considered in this paper is that
of reinforcement learning (RL) where at each time step

!Throughout this paper I will use the words: tasks and
goals, interchangeably.

an agent takes an action based on its current goal and
the state of a dynamic external environment or world.
The agent’s action changes the state of the world and
elicits a payoff that usually represents the immedi-
ate “value” of taking the action in that state. Tasks
where the agent has to take a sequence of actions to
accomplish its goal are called sequential decision tasks
(SDTs). Typically, SDT’s are posed as optimal control
problems (Barto et al. [3],1990) where the objective of
the agent is to maximize some functional of the payoffs
received over a time horizon. An optimal control pol-
icy is a mapping from states to actions that achieves
the agent’s objective.

Control architectures based on reinforcement learn-
ing methods are increasingly being used for learning
situation-action rules, or reactions, that can then be
used for real-time decision making (Sutton [9], 1990;
Whitehead and Ballard [11],1990). To date, most ap-
plications have dealt with learning to solve single tasks,
l.e., learning the situation-action rules for satisfying a
single goal. One way to solve multiple SDTs is to
learn the optimal policy for each SDT independently.
If the tasks are related, learning them independently
will waste computational resources, both memory and
time. Also, since RL methods do not scale efficiently
to large tasks, the “learn each task independently”
method will be feasible for simple tasks only.

In this paper I propose an “interesting” set of struc-
tured tasks, and then present a learning architecture
that can learn multiple tasks with significant transfer
of learning across tasks.

2 COMPOSITIONALLY
STRUCTURED TASKS

A large part of everyday human activity involves com-
plex sequential tasks that have compositional struc-
ture, i.e., complex tasks which are built up in a system-
atic way from simpler tasks. Consider, as an example,
how many of our daily activities involve the subtasks:
lift an object, open a door, sit down, walk, etc. To for-

mulate the problem abstractly, consider an agent that
has to learn to solve many different simple and com-
plex tasks. In general, there may be n elemental tasks
labeled T1,7%,...,T,, i.e., tasks that cannot be de-
composed into simpler tasks. Composite tasks can be
produced by the temporal concatenation of a number
of elemental tasks, for example, [T;, T}, --- T;, _,T:,] is
a composite task made up of & elemental subtasks.
The solution for an elemental subtask is assumed to be
context-free, i.e., independent of the other subtasks in
the composite task. In this paper, I propose a learning
method that discovers the decomposition of a compos-
ite task, and constructs solutions for composite tasks
from the solutions for their elemental subtasks.

The sequential decision-making framework can incor-
porate multiple tasks simply by augmenting the state
description to include task descriptors. The agent can
then still have only one goal, that of maximizing its
payoff functional, and yet perform different tasks. The
particular task in which the agent is engaged will be
contingent on the augmented state of the world, and
clearly the agent would “see” different parts of the
augmented state space for different tasks. An alterna-
tive viewpoint, and one that will be adopted in this
paper, is to separate the task and state descriptions
and imagine an external agency providing the goal or
task command to the learning agent. Setting a dif-
ferent task will then amount to changing the payoff
structure so that in maximizing the payoff functional
the agent will accomplish the desired task.

Formulations of the payoff structure for single SDTs
usually associate payoffs only with the state-action
pairs. For multiple tasks, multiple payoff values can
be defined for each state-action pair, one for each task.
However, for many sets of multiple tasks it is possi-
ble to define a single payoff value for each state-action
pair, if the different tasks can associate payoffs with
the states themselves. Intuitively, one can think of as-
sociating “costs” with the state-actions and “rewards”
with the states. Consider, as an example, that the
“cost” of opening a door is usually independent of the
final destination. In such cases, changing the payoff
structure for a new task will only involve changing the
state payoffs and not the state-action pair payoffs. I
will adopt the latter, more economical, formulation of
multiple SDTs.

3 COMPOSITIONAL Q-LEARNING

If an exact model of the dynamics of the world and
the payoff structure is available, dynamic program-
ming based computational procedures can be used to
solve for the optimal policy (see Barto and Singh [1],
1990). In the absence of a world-model and the
payoff structure, reinforcement learning methods that
approximate dynamic programming techniques, such
as temporal difference (TD) procedures (Sutton [8],

1988; Barto et al. [2], 1983) and Q-learning methods
(Watkins [10], 1989; Barto and Singh [4], 1990), can
be used to directly estimate an optimal policy without
building an explicit model of the world-dynamics.

For a deterministic SDT with state set S and action
set A, Q-learning maintains a Q-value for each state-
action pair, @4, which is the discounted sum of future
payoffs on taking action a in state z and following
the optimal policy thereafter. The Q-values satisfy
the following: Qg, = 7(z,a) + Yymax, ¢ 4 Qyq', Where
r(z,a) is the payoff on taking action a in state z, and
y 1s the resulting state. The optimal action for state
z, a* = argmax(@,,, maximizes the discounted sum
a

of all future payoff. The Q-values should satisfy the
following equation:

o0
Qzoa; = Z’y’r(mi,a;), (1)
2=0

where z; is the state at the i** time step, and a
denotes the optimal action from state z;. The up-
date rule to learn the right Q-values is given by:
Qza = Qza + a((r(m,a) + YymaXgicA an’) - Qza):

where o is a learning rate parameter.

Compositional Q-learning (CQ-learning) is a computa-
tionally inexpensive way to construct the Q-value func-
tions for composite tasks from the Q-value functions
for their elemental tasks. Formally, let Qr,(z, a) be the
Q-value for state-action pair (z,a) when the agent is
doing only the elemental task 7;. For composite task
C = [T},Tj, - T;-- - Tj,], let QF (,a) represent the
Q-value for state-action pair (z,a) when the agent is
performing subtask 7; in composite task C. Then for
deterministic SDTs with Markovian state descriptions
(see Barto et al [3],1990), with the following assump-
tions:

(A1) Each task has a single goal state.

(A2) The optimal path length for all elemental tasks
is bounded.

(A4) The payoff associated with the state-action pairs
is independent of the goal being accomplished.

(A5) For an elemental task, any task-dependent payoff
is associated only with the goal state. For composite
tasks, task-dependent payoff can be associated with
the goal states of some or all elemental subtasks.

it is proved in the Appendix A, that for all states z
and actions a:

Q%(m,a) = QTi(mia’)'i'K’f‘ii (2)

where K% is a constant whose value depends on the
subtask T; and the composite task C, and is indepen-
dent of the state and action.

Note that CQ-learning does not figure out the decom-
position of a composite task.

4 SCHEDULING ARCHITECTURE

The scheduling architecture is adapted from the
modular gating architecture developed by Jacobs [5]
(1990), which has only been used to learn multiple
non-sequential tasks within the supervised learning
paradigm. The scheduling architecture combines CQ-
learning with Nowlan’s [6] (1990) competitive experts
algorithm in order to learn both the decomposition
for a composite task and its Q-value function. A very
brief description of the scheduling architecture is pre-
sented here (See Nowlan [6], (1990); Singh [7], (1991)
for details.).

Reduced
State O
et Bias b a
+
r Module \)
Goal]
N
51 o 9
Scheduling 7 i
. h
Module : . Stochastic
S
Sp ? 9n
Reduced L
State q1 q2
White |
Noise
N(0, o) +
1 I 1
Q Q
Module Module | 44 ¢ | Module
1 2 n
State Action State Action State Action
Figure 1: Scheduling Architecture (adapted from

Nowlan [6] (1990)). See text for details.

The scheduling architecture (see Figure 1) consists of
a number of Q-modules that compete to learn the Q-
value functions for the elemental tasks. The scheduling
module has two functions: it learns to assign the differ-
ent elemental tasks to the different Q-modules, and it
forms temporal compositions of the Q-modules to rep-
resent the Q-value functions of composite tasks. For
a composite task, the Q-module that best represents
the Q-value function of the particular elemental task
being performed at a given time wins the competition,
and therefore learns the Q-value function of that el-
emental task even better. Over time, the scheduling
module adjusts its outputs to turn on the winning Q-
modules only. This process leads to the discovery of
the temporal decomposition of a composite task.

The action at time ¢ was selected from the winning Q-
module via the Boltzman distribution, i.e. for action
a € Aand z € S, P(a/z) = €U/ oy P90,
where the parameter 8 tended to infinity over time
via an annealing process.

Table 1: Tasks T3, T2, and T3 are elemental tasks.
Tasks C;, Cs, and C3 are composite tasks. The last
column describes the compositional structure of the
tasks.

Label | Repr. Description Decomp.
T 000001 | visit A T

T 000010 | visit B T

T, 000100 | visit C T,

C, 001000 | visit A and then C TiTs

Cy 010000 | visit B and then C 1T,

Cs 100000 | visit A, then B, then C | Th 1275

5 TASK DESCRIPTION

In this paper, I ignore the representation and the func-
tion approximation issues, and focus on transfer of
learning by the “sharing” of solutions to common ele-
ments of multiple composite tasks. I use a determinis-
tic task (see Figure 2) where a robot has to navigate in
a 8 x 8 grid room with 3 goal locations designated A,
B and C. In each state the robot has 4 actions: UP,
DOWN, LEFT and RIGHT. Any action that would
take the robot into an obstacle or boundary wall does
not change the robot’s location. The three elemental
tasks: 77, T> and T3, and the three composite tasks:
C,, C,, and Cj, are described in Table 1.

up
A

R\GHLA‘ LEFT

DOWN

GRIDWORLD

Figure 2: An 8 x 8 grid room with 3 goal locations des-
ignated as 4, B and C. The filled squares are obstacles
that the robot must navigate around.

Lookup tables were used to implement all the modules
of the scheduling architecture and unit-basis represen-
tations (see Table 1) were chosen for task commands.
To simplify matters further, it was assumed that the
state’ input to the bias and the scheduling modules
(see Figure 1) has 3 binary bits, one for each elemen-
tal task. For a composite task, the bit corresponding
to each elemental subtask was set when that subtask
was accomplished and remained set for the duration of
the composite task. The state’ bits were reset at the
beginning of each task.

6 EXPERIMENTAL RESULTS

The? scheduling architecture containing 3 Q-modules
was compared to a one-for-one architecture containing
6 modules. Both architectures were separately trained
to do six tasks: T, T3, T3, Cq1, C2, and C3. The
one-for-one architecture learned each task in a sep-
arate pre-assigned module. For each trial, the task
and the starting state of the robot were chosen ran-
domly. The trial ended when the robot reached the
goal state. Figure 3A shows the number of actions,
averaged over 50 trials, taken by the robot to get to
the goal. The one-for-one architecture performs bet-
ter initially because it can learn the three elemental
tasks quickly, but learning the composite tasks takes
much longer due to the long action sequences required
to accomplish the composite tasks. The scheduling ar-
chitecture performs worse initially, until the outputs of
the scheduling module become approximately correct,
at which point all six tasks are learned rapidly.

<9000 - A . B
Bl

— Output!
-~ Oupu
Output3

Output
J

Average Actions Tak

18
Number of Actons.

600.0 — Scheduling Architecture C Tesk'AC"

One-for-One Architecture

Output

— Outputt
0sf ')
; Output3

00 (I I
0 6 12 18

Number of Actons.
D Task'8C"

300.0

| — ouput
- Oupu
Output3

Output
G /IJ

' I
1 2 £
Number of Actons.

0.0

I T
0 5000 10000 15000 20000

Number of Trials Task "ABC"
Leaming Curves

Figure 3: A: Typical results for learning both elemen-
tal and composite tasks. See text for details.

Figures 3B,3C, and 3D show the 3 normalized outputs
of the scheduling module for one trial each of tasks
Ci, C3, and Cj3 respectively. The trials shown were
chosen after the robot had learned to do the tasks,
1.e., after 10,000 learning trials. The elemental tasks
T1, T, and T3 are learned by the Q-modules 1,3 and
2 respectively. Figures 3B,3C, and 3D show that for
each composite task the scheduling module switches
on the appropriate Q-modules in the right temporal
sequence.

ZAppendix B lists the parameter values used for the
experiment reported in this section. Please note that due
to lack of space, details of the scheduling architecture have
not been provided. See Singh [7], (1991) for details.

7 DISCUSSION

This paper presented an economical formulation for
multiple, compositionally-structured tasks within the
sequential decision-making framework. A new algo-
rithm, CQ-learning, was presented and it was shown
that under assumptions A1-Ab5 (see Section 3), there is
an efficient way of constructing solutions for compos-
ite tasks from the solutions of their elemental tasks.
The results in Section 6 show that the scheduling ar-
chitecture represents a general mechanism whereby a
“yocabulary” of elemental tasks can be learned in sepa-
rate modules, and arbitrary® temporal syntactic com-
positions of elemental tasks can be learned with the
help of the bias and scheduling modules.

Animals rarely learn a new task in isolation, they bring
to bear on a new task knowledge gained in numerous
prior experiences with many different tasks. The tra-
ditional response within the machine learning commu-
nity has been to reject the tabula rasa approach and
to capture that experience by building prior knowl-
edge into the data structures used by the learning sys-
tem. However, it is my conjecture that much will be
gained by building learning systems that learn to per-
form multiple tasks in a complex environment.

Future work will investigate the use of CQ-learning
and the scheduling architecture on more realistic tasks
and more complex state and task command represen-
tations. Also, the context-free nature of the solutions
to elemental tasks is a strong constraint, and means of
extending the above method to more general multiple
task formulations are being considered.

8 APPENDIX

A Proof of Equation 2

Consider an elemental deterministic sequential deci-
sion task (SDT) T; and its goal state zZ:. For any
arbitrary start state o, assume w.l.o.g. that the opti-
mal path from zg to mg'i goes through n + 2 states;
.,mn_l,mn,mg'i. The action sequence ends
once the agent is in the goal state. Define Ur,(z) =
max, Qr,(z,a) = Qr,(z,a%). Let r(z;,a]) = ¢ for
0<i<(n—1)and r(z,,a.) = c, + ET:, where ET:
is the goal-dependent payoff associated with goal state
mg‘i. Then using Equation 1, V5;0 < j < n:

Lo, T1, - -

Ur,(z;) = c¢j+ejt1+...+cno1+(cn+ ET")(B)
For any arbitrary action, @, and Vj;0 < j < (n—1):

Qri(zj,a) = r(zj,a) +Ur(zjta). (4)

3This assumes that the state’ representation is rich

enough to distinguish repeated performances of the same
elemental task.

Let the symbol C stand for a deterministic compos-
ite task [T, T}, ---T;---Tj,] which contains subtask
T;. Then Uf_,(,’;(m) = max, Q%(m,a) = Q%(m,a*). The
optimal path for the composite task C has to pass
through the goal states of all the elementary subtasks
that form the composite task. Furthermore, each ele-
mental subtask terminates in its own goal state. Con-
sider the start state zo chosen in the previous para-
graph. Then with the assumptions cited in Section 3
the optimal path from z(to mg'i remains the same
as when the agent was performing only the elemental
task T;. Define Vfg = Uf_,(,’;Jrl (mg‘i), where T; 4 is the el-
emental subtask that starts when subtask 7} finishes.

Let the goal-dependent payoff for reaching state mg'i in
task C be E% Then Vj5;0 < j < m:

US(2;) = ¢4 +ca1+(ca+ ES)+VE(5)

and for any arbitrary action, a, and Vj;0 < j < (n—1):
QF.(zj,0) = r(zj,a) + UF (2)41), (6)

Then for any arbitrary elemental task T;, and any com-
posite task C such that T; is contained in C, and for all
states z, and for all actions a: Equations 3, 4, 5,and 6
show that:

US(z) = Ur(z)+(VE +ES — ET).

Define K% = Vf_,{’; + E% — ET%, then:

Q%(m,a) = QTi(mia’)'i'K:rc‘i:

Q.E.D.

The above proof can be extended to stochastic se-
quential decision problems that satisfy the assump-
tions stated in Section 3 by noting that the transition
probabilities for an elemental task are independent of
the position of that elemental task within a composite
task.

B Parameter Values

The initial values for the lookup tables implementing
the Q-modules were random values in the range 0.0—
0.5, and the initial values for the scheduling module
lookup table were random values in the range 0.0-0.4.
The policy selection parameter 3, started at 0.1 and
was incremented by 1.0 after every 100 trials.

Acknowledgements

I would like to thank Andrew Barto and the UMass
Adaptive Networks Group for their help on this
project. This work was supported by the Air Force Of-
fice of Scientific Research, Bolling AFB, under Grant
AFOSR-89-0526 and by the National Science Founda-
tion under Grant ECS-8912623.

References

[1] A. G. Barto and S. P. Singh. Reinforcement learn-
ing and dynamic programming. In Proc. of the
Sizth Yale Workshop on Adaptive and Learning
Systems, New Haven, CT, Aug 1990.

[2] A. G. Barto, R. S. Sutton, and C. W. Anderson.
Neuronlike elements that can solve difficult learn-
ing control problems. IEFEE SMC, 13:835-846,
1983.

[3] A. G. Barto, R. S. Sutton, and C. Watkins. Se-
quential decision problems and neural networks.
In D. S. Touretzky, editor, NIPS 2, pages 686—
693, San Mateo, CA, 1990. Morgan Kaufmann.

[4] A.G. Barto and S.P. Singh. On the computational
economics of reinforcement learning. In Proc. of
the 1990 Connectionist Models Summer School,
San Mateo, CA, Nov. 1990. Morgan Kaufmann.

[5] R. A. Jacobs. Task decomposition through com-
petition in a modular connectionist architecture.
PhD thesis, COINS dept Univ. of Massachusetts,
Ambherst, Mass. U.S.A., 1990.

[6] S. J. Nowlan. Competing experts: An experi-
mental investigation of associative mixture mod-
els. Technical Report CRG-TR-90-5, Depart-
ment of Computer Sc., Univ. of Toronto, Toronto,
Canada, 1990.

[7] S. P. Singh. Transfer of learning by composing el-
emental sequential tasks, 1991. submitted to Ma-
chine Learning — Special Issue on Reinforcement
Learning.

[8] R. S. Sutton. Learning to predict by the methods
of temporal differences. Machine Learning, 3:9—
44, 1988.

[9] R. S. Sutton. Integrating architectures for learn-
ing, planning, and reacting based on approximat-
ing dynamic programming. In Proc. of the Sev-
enth International Conf. on Machine Learning,
pages 216-224, San Mateo, CA, 1990. Morgan
Kaufmann.

[10] C. J. C. H. Watkins. Learning from Delayed Re-
wards. PhD thesis, Cambridge Univ., Cambridge,
England, 1989.

[11] S. D. Whitehead and D. H. Ballard. Active
perception and reinforcement learning. In Proc.

of the Seventh International Conf. on Machine
Learning, Austin, TX, June 1990.

