Intra-Option Learning about Temporally Abstract
Actions

Richard S. Sutton, Doina Precup
Department of Computer Science
University of Massachusetts
Ambherst, MA 01003-4610

Satinder Singh
Department of Computer Science
University of Colorado
Boulder, CO 80309-0430

Abstract

Several researchers have proposed modeling temporally abstract actions
in reinforcement learning by the combination of a policy and a termination
condition, which we refer to as an “option”. Value functions over options and
models of options can be learned using methods designed for semi-Markov
decision processes (SMDPs). However, these methods all require an option
to be executed to termination. In this paper we explore methods that learn
about an option from small fragments of experience consistent with that op-
tion, even if the option itself is not executed. We call these methods “intra-
option” learning methods because they learn from experience within an op-
tion. Intra-option methods are sometimes much more efficient than SMDP
methods because they can use off-policy temporal-difference mechanisms to
learn simultaneously about all the options consistent with an experience, not
just the few that were actually executed. In this paper we present intra-option
learning methods for learning value functions over options and for learning
multi-step models of the consequences of options. We present computational
examples in which these new methods learn much faster than SMDP methods
and learn effectively when SMDP methods cannot learn at all. We also sketch
a convergence proof for intra-option value learning.

Keywords: Reinforcement Learning, Temporal Abstraction, Hierarchical Learning
Semi-Markov Decision Processes, Model Learning

E-mail: rich@cs.umass.edu

Phone: 978-897-6174

Multiple submission statement: This paper contains results that are also being
prepared to form part of a larger paper to be submitted for journal publication.

1 Introduction

The incorporation of temporally extended courses of actions into reinforcement
learning algorithms has been one of the focuses of recent research in the field
(e.g. Dayan, 1993;; Dayan and Hinton, 1992;; Dietterich, 1997, Huber and Gru-
pen, 1997;; Kaelbling, 1993; Mahadevan and Connell, 1992; McGovern, Sutton
and Fagg, 1997; Parr and Russel, 1998; Precup & Sutton, 1998; Precup, Sutton &
Singh, 1998; Singh, 1992Sutton, 1995). A temporally extended course of action is
defined by a set of states in which it applies, an internal policy that it executes and
a termination condition. We will use the term “option” to denote such a course of
action.

Options define a more abstract temporal level for planning and learning. SMDP
learning and planning methods can be applied at this higher level, in order to obtain
significant speed improvements over one-step methods. However, SMDP methods
treat temporally extended course of action as opaque black boxes. Therefore, a
learning agent has to actually execute each option to completion in order to gather
information about its outcomes. Because of this property, SMDP methods can only
be used for terminating courses of action, and can only learn about one such option
at one time.

In this paper, we present learning algorithms that circumvent these inconve-
niences, by taking advantage of the observation that the SMDP generated by the
options is based in an inderlying MDP. Therefore, we can learn about the effects
of temporally extended actions by relying on temporal difference methods, without
requiring that an option is executed to completion. We such learning methods intra-
option methods because they learn from experience within a single option. Intra-
option methods can even be used to learn about the model of an option without ever
executing the option, as long as some selections are made that are consistent with
it. Intra-option methods are examples of off-policy learning methods (Sutton and
Barto, 1998) because they learn about the consequences of one policy while actu-
ally behaving according to another, potentially different policy. They can be used
simultaneously to learn about several different options at the same time.

We present intra-option learning algorithms both for learning the values of the
options and for learning their models. We give a proof sketch for the convergence
of intra-option learning. The flexibility and speed gains of these methods are illus-
trated through small computational experiments.

2 Reinforcement Learning (MDP) Framework

First we briefly summarize the mathematical framework of the reinforcement learn-
ing problem that we use in the paper. In this framework, a learning agent interacts
with an environment at some discrete, lowest-level time scale ¢t = 0,1,2,.... At
each time step, the agent perceives the state of the environment, s;, and on that
basis chooses a primitive action, a,. In response to each primitive action, a;, the en-
vironment produces one step later a numerical reward, 1,1, and a next state, ;1.
We denote by A = U,cs A, the union of the action sets. If S and A, are finite,
then the environment’s transition dynamics are modeled by one-step state-transition
probabilities, and one-step expected rewards,

Pty =Pr{s;1 =5 |s,=s,a,=a} and r?=FE{ri,|s =s,a =a}, (1)
forall s,s" € S and a € A (it is understood here that p?,, = 0 for a ¢ A;). These
two sets of quantities together constitute the one-step model of the environment.

The agent’s objective is to learn a policy 7, which is a mapping from states to
probabilities of taking each action, that maximizes the expected discounted future
reward from each state s:

VW(S)ZE{TI‘F’YTQ—F’YZT;),—F""SQZS,W},

where v € [0,1) is a discount-rate parameter. The quantity V™ (s) is called the
value of state s under policy 7, and V'™ is called the value function for policy 7.
The optimal value of a state is denoted

V*(s) = max V" (s)

Particularly important for learning methods is a parallel set of value functions
for state—action pairs rather than for states. The value of taking action a in state s
under policy 7, denoted Q™ (s, a), is the expected discounted future reward starting
in s, taking a, and henceforth following 7:

Q" (s,a) = E{rt+1 + Y + VP ‘ Sp = 8,a; = a,ﬁ} 2)

This is known as the action-value function for policy w. The optimal action-value
function is

Q*(s,a) = max Q" (s, a)

3

The action value functions satisfy the Bellman equations:

Q"(s,a) = ri+yY ply Y 7(s,0)Q7(s' d) 3)
Q(s,a) = r{+73 plymaxQ"(s,d) (4)

S

3 Options

We use the term options for the generalization of primitive actions to include tempo-
rally extended courses of action. In this paper, we focus on Markov options which
consist of three components: a policy 7 : S x A +— [0, 1], a termination condition
B :8 —[0,1],and an input set Z C S. An option < 7, 3,Z > is available in state
s if and only if s € Z. If the option is taken, then actions are selected according
to 7 until the option terminates stochastically according to (3. In particular, if the
option taken in state s, is Markov, then the next action a; is selected according to
the probability distribution 7 (s, -). The environment then makes a transition to state
S¢11, wWhere the option either terminates, with probability (3(s;, 1), or else continues,
determining a;,, according to 7 (s, -), possibly terminating in s;,» according to
B(st42), and so on. When the option terminates, then the agent has the opportunity
to select another option.

The input set and termination condition of an option together restrict its range
of application in a potentially useful way. In particular, they limit the range over
which the option’s policy need be defined. For example, a handcrafted policy 7 for
a mobile robot to dock with its battery charger might be defined only for states 7
in which the battery charger is within sight. The termination condition 3 would be
defined to be 1 outside of Z and when the robot is successfully docked. For Markov
options it is natural to assume that all states where an option might continue are
also states where the option might be taken (i.e., that {s : 5(s) < 1} C Z). In this
case, m need only be defined over Z rather than over all of S.

Given a set of options, their input sets implicitly define a set of available options
O, for each state s € S. O, are much like the sets of available actions, .A,. We can
unify these two kinds of sets by noting that actions can be considered a special case
of options. Each action a corresponds to an option that is available whenever a is
available (Z = {s : a € A,}), that always lasts exactly one step (3(s) = 1, Vs €
S), and that selects a everywhere (7(s,a) = 1, Vs € 7). Thus, we can consider

4

the agent’s choice at each time to be entirely among options, some of which persist
for a single time step, others which are more temporally extended. The former we
refer to as one-step or primitive options and the latter as multi-step options.

Because options terminate in a well defined way, we can consider sequences of
them in much the same way as we consider sequences of actions. We can consider
policies that select options instead of primitive actions, and we can model the con-
sequences of selecting an option much as we model the results of an action. When
initiated in a state s;, the Markov policy over options p : S x O +— [0, 1] selects
an option o € O; according to probability distribution /(s -). The option o is then
taken in s;, determining actions until it terminates in s, , at which point a new op-
tion is selected, according to y(s¢4,), and so on. In this way a policy over options,
u, determines a conventional policy over actions, or flat policy, = = f(u). Hence-
forth we use the unqualified term policy for policies over options, which include flat
policies as a special case.

The definitions of state and action values can be generalized to apply to general
policies and options. The value of a state s under a flat policy 7 is the expected
return if the policy is started in s:

V7(s) def E{Tt+1 + Vrip2 + Y Ty + o ‘ E(m, s, t)}’)

where £(, s,t) denotes the event of 7 being initiated in s at time ¢. The value of a
state under a general policy p can then be defined as the value of the state under the

corresponding flat policy: V#(s) def 1 i),

It is natural to the generalize action-value function to an option-value function.
We define Q*(s, 0), the value of taking option o in state s € Z under policy /i, as

QN(S7 O) déf E{TH—I + TYTrt+2 + 72Tt+3 + - ‘ g(olua S, t)}a (6)

where oy, the composition of o and p, denotes the policy that first follows o until it
terminates and then initiates j in the resultant state.

4 SMDP (Option-to-Option) Learning

Options are closely related to the actions in a special kind of decision problem
known as a semi-Markov decision process,or SMDP (e.g., see Puterman, 1994). In
fact, any MDP with a fixed set of options is an SMDP.

5

Planning with options of course requires a model of their effects. Fortunately,
the appropriate form of model for options, analogous to the r? and p¢,, defined
earlier for actions, is known from existing SMDP theory. For each state in which
an option may be started, this kind of model predicts the state in which the option
will terminate and the total reward received along the way. These quantities are
discounted in a particular way. For any option o, let £(o, s, t) denote the event of o
being taken in state s at time ¢. Then the reward part of the model of o for state s is

10 = Blri +ama + 25 | £0,5,0),)

where ¢ + k is the random time at which o terminates. The state-prediction part of
the model of o for state s is

Pl = nyj Pr{k = j, 5115 =5 | E(o,5,1)} = E{fykés,sHk | £(o, s,t)},)

=0

for all s’ € S, under the same conditions, where d,, is an identity indicator, equal
to 1 if s = s, and equal to O else. Thus, p?,, is a combination of the likelhood that
s’ is the state in which o terminates together with a measure of how delayed that
outcome is relative to v. We call this kind of model a multi-step model because
it describes the outcome of an option not at a single time but at potentially many
different times, appropriately combined. Using these models we can write Bellman
equations for general policies and options. For the purpose of this paper, we focus
on the Bellman equation for the value of an option o in state s € Z under a Markov
policy p:

Q"(s,0) =1+ > P2 > u(s,0)Q (s, o).)

s’ '€

This equation specializes to (3) in the special case in which p is a conventional
policy and o is a conventional action.

The optimal value functions and optimal Bellman equations can also be gener-
alized to options and to policies over options. Of course, the conventional optimal
value functions V* and Q* are not affected by the introduction of options; one can
ultimately do just as well with primitive actions as one can with options. Neverthe-
less, it is interesting to know how well one can do with a restricted set of options
that does not include all the actions. For example, one might first consider only
high-level options in order to find an approximate solution quickly. Let us denote
the restricted set of options by O and the set of all policies selecting only from op-
tions in O by I1(O). Then the optimal value function given that we can select only

6

from O is

* def I _ ky (!
Vi(s) = Mrerg%)V (s) = roré:a(E{r—l—’y V(s

E(0,5)} (10)

where & (0, s) denotes the event of starting the execution of option o in state s. The
optimal option values are defined as:

* def *
Q(’)(sa 0) = urer}laz)(’()) QH(S, 0) = E{T + 7k O,ggit)i-k Q(’)(sla 0,)

& (o, s)}

Given a set of options, O, a corresponding optimal policy, denoted (i, is any
policy that achieves V3, i.e., for which V#o (s) = V3(s) in all states s € S. If V3
and models of the options are known, then optimal policies can be formed by choos-
ing in any proportion among the maximizing options in (10). Or, if @}, is known,
then optimal policies can be formed by choosing in each state s in any propor-
tion among the options o for which Q%,(s,0) = max) Q% (s, 0'). Thus, computing
approximations to V5 or (), become the primary goals of planning and learning
methods with options.

The problem of finding an optimal policy over a set of options O can be ad-
dressed by learning methods. Because the MDP augmented by the options is an
SMDP, we can apply SMDP learning methods as developed by Bradtke and Duff
(1995), Parr and Russell (1998; Parr, 1998), Mahadevan (1997), and McGovern,
Sutton and Fagg (1997). Each option is viewed as an indivisible, opaque unit. When
the execution of option o is started in state s, we next jump to the state s’ in which o
terminates. Based on this experience, an option-value function ()(s, 0) is updated.
For example, the SMDP version of one-step Q-learning (Bradtke and Duff, 1995),
which we call SMDP Q-learning, updates after each option termination by

Q(S,O) — Q(S,O) +oa|r+ fyk rt?ea(%{ Q(Sla a) - Q(Sa O)) (11)

where k denotes the number of time steps elapsing between s and s, r denotes
the cumulative discounted reward over this time, and it is implicit that the step-
size parameter o may depend arbitrarily on the states, option, and time steps. The
estimate ()(s, o) converges to Q% (s,0) for all s € S and 0 € O under conditions
similar to those for conventional Q-learning (Parr, 1998).

5 Intra-Option Value Learning

One drawback to SMDP learning methods is that they need to execute an option to
termination before they can learn about it. Because of this, they can only be applied
to one option at a time—the option that is executing at that time. More interesting
and potentially more powerful methods are possible by taking advantage of the
structure inside each option. In particular, if the options are Markov and we are
willing to look inside them, then we can use special temporal-difference methods
to learn usefully about an option before the option terminates. This is the main idea
behind intra-option methods.

Intra-option methods are examples of off-policy learning methods (Sutton and
Barto, 1998) because they learn about the consequences of one policy while actually
behaving according to another, potentially different policy. Intra-option methods
can be used to simultaneously learn about many different options from the same
experience. Moreover, they can learn about the values of executing certain options
without ever executing those options.

Intra-option methods for value learning are potentially more efficient than SMDP
methods because they extract more training examples from the same experience.
For example, suppose we are learning to approximate @, (s, o) and that o is Markov.
Based on an execution of o from ¢ to ¢t 4+ k£, SMDP methods extract a single train-
ing example for Q5 (s, 0). But because o is Markov, it is, in a sense, also initiated
at each of the steps between ¢ and ¢t + k. The jumps from each intermediate s;
to s;1 are also valid experiences with o, experiences that can be used to improve
estimates of Q0% (s;,0). Or consider an option that is very similar to o and which
would have selected the same actions, but which would have terminated one step
later, at ¢ 4+ k& + 1 rather than at ¢ 4+ k. Formally this is a different option, and
formally it was not executed, yet all this experience could be used for learning rele-
vant to it. In fact, an option can often learn something from experience that is only
slightly related (occasionally selecting the same actions) to what would be gener-
ated by executing the option. This is the idea of off-policy training—to make full
use of whatever experience occurs in order to learn as much possible about all op-
tions, irrespective of their role in generating the experience. To make the best use
of experience we would like an off-policy and intra-option version of Q-learning.

It is convenient to introduce new notation for the value of a state—option pair

given that the option is Markov and executing upon arrival in the state:
Qo(s,0) = (1 = B(5))Qo(s, 0) + B(s) max Qo (s, o), (12)

Then we can write Bellman-like equations that relate Q% (s, 0) to expected values
of Q5 (', 0), where s is the immediate successor to s after initiating Markov option
o=<m,[3,Z>ins:

Qo(s,0) = > W(S,G)E{T +7Q% (s, 0) ‘ s,a}

a€A;

= Zw@@ﬁ+2mﬂa%ﬂ, (13)

a€A;

where r is the immediate reward upon arrival in s'. Now consider learning methods
based on this Bellman equation. Suppose action a; is taken in state s, to produce
next state s;1; and reward 7,1, and that a;, was selected in a way consistent with the
Markov policy 7 of an option o =< 7, 3, Z >. That is, suppose that a; was selected
according to the distribution 7(s;,-). Then the Bellman equation above suggests
applying the off-policy one-step temporal-difference update:

Q(54,0) < Q(s1,0) + 04[(7”t+1 + 7@3(8t+1, 0)) — Q(s, 0)], (14)

The method we call one-step intra-option Q-learning applies this update rule to
every option o consistent with every action taken a;.

Theorem 1 (Convergence of intra-option Q-learning) For any set of determinis-
tic Markov options O, one-step intra-option Q-learning converges w.p.1 to the opti-
mal Q-values, (Q¢,, for every option regardless of what options are executed during
learning provided every primitive action gets executed in every state infinitely often.

Proof: (Sketch) On experiencing < s,a,r,s >, for every option o that picks
action « in state s, intra-option Q-learning performs the following update:

QO(87 0) A QO(Sa 0) + Oé(S, 0) [7” + 7@0(8,5 0) - Q(’)(sa 0)]7 where

Qols',0) = (1= B()Qo(s',0) + A(s') max Qo(s', o).

Let 7(s) be the action selection by deterministic Markov option 0 =< 7, 3,7 >.
Our result follows directly from Theorem 1 of Jaakkola et al. (1994) and the ob-
servation that the expected value of the update operator r + ’y@o(s’ ,0) yields a
contraction, as shown below:

B{r +1Qo(s0)} =Qb(s.0)| = 1T +32p["Qo(s.0) = Qo(s.0)|
= +Zpssf Qo(s',0) —rT Zpss' 0)|
< 120 [(1 B @l 0) — Qo)
+63(s') (max Qo (s, o) — max Qp(s', o))
< 2 max|Qo(s",o") - Qb (",)|

< vmaXIQo(s 0") = Qo (s",0")] o

S” /!

6 Illustration

As an illustration of the intra-option value learning method, we will use the grid-
world environment shown in Figure 1. The cells of the grid correspond to the states
of the environment. From any state the agent can perform one of four actions, up,
down, left or right, which have a stochastic effect. With probability 2/3, the
actions cause the agent to move one cell in the corresponding direction, and with
probability 1/3, the agent moves instead in one of the other three directions, each
with 1/9 probability. If the movement would take the agent into a wall, then the
agent remains in the same cell. There are small negative rewards for each action,
with means uniformly distributed between O and -1. The rewards are also perturbed
by gaussian noise with standard deviation 0.1. The environment also has a goal
state, labeled “G”. Whenever the agent enters “G”, it gets a reward of 1 and transi-
tions from into a terminal state. The discount parameter was v = 0.9.

In each of the four rooms we provide two built-in hallway options designed
to take the agent from anywhere within the room to one of the two hallway cells
leading out of the room. The policies underlying the options allow the agent to take
the shortest path to the hallway.

For the first experiment, we applied the intra-option method in this environment,

10

4 stochastic
HALLWAYS — primitive actions
| up
. Fail 33%
left right of the time
f 0> G down
| Gy 8 multi-step options
/ o 2\ (to each room’s 2 hallways)
. —

Figure 1: The rooms example is a gridworld environment with stochastic cell-to-
cell actions and room-to-room hallway options. Two of the hallway options are
suggested by the arrows labeled o, and 0,. The label G indicates the location used
as goal in experiments described in this section.

without ever selecting the hallway options. On each episode, the agent starts at
a random state in the environment and selects primitive actions randomly, with
equal probability. This is a case in which SMDP methods would not be able to
learn anything about the hallway options, since these options are never executed.
However, intra-option learning can learn the values of these actions successfully, as
shown in Figure 2. The left panel shows the absolute error between the learned and
true values of ()}, , averaged over Z, and over 30 repetitions of the whole experiment,
for each of the eight hallway options. The right panel shows the correct and learned
values for the two hallway options that apply in the state marked as S in Figure 1.
Similar convergence to the true values can be observed for any of the states and
options in the environment.

So far we have illustrated the success of intra-option learning in a task in which
SMDP methods do not apply. But how do intra-option methods compare to SMDP
methods when both are applicable? In order to investigate this question, we used
the same environment, but now we allowed the agent to choose among the prim-
itives, as well as the hallway options. In this case, SMDP methods can be ap-
plied, since all the options are actually executed. We experimented with two SMDP
methods: SMDP Q-learning (Bradtke and Duff, 1995) and a form of hierarchical

11

Average absolute error over input set

Intra-option value learning while taking primitive actions 0
T T T T

4.5 ! Correct value, G2, goto-down-hallway ——
"error-down-to-left-sum.dat" — 05 1 Learned value, G2, goto-down-hallway —— |
4 r "error-down-to-right-sum.dat" ------ q L Correct value, G2, goto-right-hallway -
"error-left-to-down-sum.dat" - | Learned value, G2, goto-right-hallway
35 | "error-left-to-up-sum.dat" i A L d
i "error-right-to-down-sum.dat" ----
) "error-right-to-up-sum.dat" ---- 4
31 "error-up-to-left-sum.dat" -~~~ 7 o 1.5 F 4 B
"error-up-to-right-sum.dat" -~ 3
25 1 2
c 2 1
kel
) s}
< 25 1
15 1
31 1
0.5] -3.5
0 ST 4
0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000
Number of trials Trials

Figure 2: The learning of option values by intra-option methods without ever se-
lecting the options. [Note: I’'m polishing the figures in Adobe Illustrator now]

Q-learning, called macro Q-learning (McGovern, Sutton and Fagg, 1997). The dif-
ference between the two methods is that, when taking a multi-step option, SMDP
Q-learning only updates the multi-step option, whereas macro Q-learning also up-
dates the primitive actions that are actually executed along the way.

The learning agents start at the same states (chosen at random) and act by select-
ing options, according to an e-greedy method. That is, given the current estimates
Q(s,0), let 0o* = argmax,co, Q(s,0) denote the best valued action (with ties bro-
ken randomly). Then the policy used to select options was

l—e+ 57 ifo=0

10T otherwise,

(s, 0) = { (15)

forall s € S and o € O. The probability of a random action, €, was set at 0.1 in all
cases.

Figure 3 illustrates the performance of each learning algorithm, measured in two
different ways. The left panel measures the average absolute error in the estimates
of ()¢, for the hallway options, averaged over the input sets Z, the eight hallway
options and 30 repetitions of the whole experiment. The intra-option method shows
significantly faster convergence than any of the SMDP methods. The right panel
shows the quality of the greedy policy learned by each method, measured as the av-
erage value over the state space. The intra-option method is the fastest to converge
to the correct optimal value.

12

10000

Average absolute error in option values

Intra —
SMDP ——
3k MacroQ - 7

Average On-line reward

-3.8

0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000
Trials Trials

Figure 3: Comparison of SMDP, intra-option and hierarchical Q-learning. [Note:
the right panel will change to an estimate of quality of the greedy policy]

7 Intra-Option Model Learning

The value of executing each option in each state can be used to determine the policy
that the system is following. However, in many situations one would like to have
the ability to use options during planning as well. The models of an option, r¢ and
P2, can be learned from experience given knowledge of the option (i.e., of its 7, 3,
and 7).

A general approach for learning the model of an option is to execute the option
to termination many times in each state s, recording in each case the resultant next
state ', cumulative discounted reward 7, and elapsed time k. These outcomes are
then averaged to approximate the expected values for r¢ and p?,, given by (7) and
(8). For example, an incremental learning rule for this could update its estimates 7
and p?_, for all x € S, after each execution of o in state s, by

722 = 722 + Oé[T - 72;)]? and ﬁgm = ﬁgm + O[h/k&m' - ﬁgm]’ (16)

where the step-size parameter, or, may be constant or may depend on the state, op-
tion, and time. For example, if « is 1 divided by the number of times that o has
been experienced in s, then these updates maintain the estimates as sample aver-
ages of the experienced outcomes. However the averaging is done, we call these
SMDP model-learning methods because, like SMDP value-learning methods, they
are based on jumping from initiation to termination of each option, ignoring what

13

10000

might happen along the way. In the special case in which o is a primitive action, note
that SMDP model-learning methods reduce exactly to those used to learn conven-
tional one-step models of actions (e.g., Moore and Atkeson, 1994; Sutton, 1990).

Intra-option methods for learning models were introduced by Sutton (1995) , but
only for a prediction problem with a single unchanging policy, not the full control
case we consider here. The idea is to use Bellman equations for the model, just as
we used the Bellman equations in the case of learning value functions. The correct
model of a Markov option 0 =< 7, 3, Z > is related to itself by

reo= Y w(s, a)E{r + (1 — ﬂ(s'))rs,} (17)
acAs
= X (s |+ Tt 8. (13)
acAs s

where 7 and s are the reward and next state given that action a is taken in state s,
and

P = Y (s,)y E{(1 = B(s)p% + B(s)Ova) (19)
a€A;
= Z 71'(8, a) Zp(sls’(l - ﬂ(SI))pg/x + 5(81)68'1‘ (20)
a€A; s

for all s,z € S§. How can we turn these Bellman equations into update rules for
learning the model? First consider that action a, is taken in s;, and that the way it
was selected is consistent with o =< m, 3,Z >, that is, that a; was selected with
the distribution 7 (s, -). Then the Bellman equations above suggest the temporal-
difference update rules

P 0 [rm + (1 = B(si41))P%,, — r] Q1)

and
ﬁgtl' < ﬁ(s)m + «Q |:7(]‘ - /B(St+1))ﬁgt+1x + 75(8t+1)55t+1$ - ﬁgtq;]) (22)

where p?,, and 7? are the estimates of p?,, and r?, respectively, and « is a positive
step-size parameter. The method we call one-step intra-option model learning ap-
plies these updates to every option consistent with every action taken a,. Of course,
this is just the simplest intra-option model-learning method. Others may be possi-
ble using eligibility traces and standard tricks for off-policy learning (see Sutton,
1995; Sutton and Barto, 1998).

14

Average of absolute reward error

08 F T . .
i Intra average ——
07 [Intra max - |
el SMDP average -
| SMDP max
g o6 1
§ H
o
o
Q
c
kel
k]
c
g
=
8
w
. 0 \
0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90
Number of Options (x 1000) Options (x 1000)

Figure 4: Learning curves for model learning by SMDP and intra-option methods.
[Note: I am supposed to add 2 panel here with the graph for state S

The intra-option learning methods should have the same advantage over SMDP
methods as the ones that we have seen in the case As an illustration, consider the
application of SMDP and intra-option model learning to the rooms example. As
before, we assume that the eight hallway options are given, but their models are not
given and must be learned. Experience is generated by selecting randomly in each
state among the two possible options and four possible actions, with no goal state.
In the SMDP model-learning method, equations (16) and (16) were applied when-
ever an option was selected, whereas, in the intra-option model-learning method,
equations (21) and (22) were applied on every step to all options that were consis-
tent with the actions taken on that step. In this example, all options are determin-
istic, so consistency with the action selected means simply that the option would
have selected that action.

For the SMDP method, the step-size parameter was varied so that the model
estimates were sample averages, which should give fastest learning. For the intra-
option method, the step-size parameter was fixed, but several values were tried,
%, i, é, and %. Figure 4 shows the learning curves for both methods. The left
panel shows the average absolute error in the reward predictions, and the right panel
shows the average abslute error and the maximum absolute error in the transition
predictions, averaged over the eight options, and over 30 independent runs. The

intra-option method provides faster convergence to correct values.

o =

15

100

References

[Bradtke and Duff, 1995] Bradtke, S. J. and Duff, M. O. (1995). Reinforcement learning
methods for continuous-time markov decision problems. In Advances in Neural Infor-
mation Processing Systems, volume 7, pages 393-400, Cambridge, MA. MIT Press.

[Dayan, 1993] Dayan, P. (1993). Improving generalization for temporal difference learn-
ing: The successor representation. Neural Computation, 5:613—-624.

[Dayan and Hinton, 1993] Dayan, P. and Hinton, G. E. (1993). Feudal reinforcement learn-
ing. In Advances in Neural Information Processing Systems, volume 5, pages 271-278,
San Mateo, CA. Morgan Kaufmann.

[Dietterich, 1997] Dietterich, T. G. (1997). Hierarchical reinforcement learning with the
maxq value function decomposition. Technical report, Department of Computer Science,
Oregon State University.

[Huber and Grupen, 1997] Huber, M. and Grupen, R. A. (1997). A feedback control struc-
ture for on-line learning tasks. Robotics and Autonomous Systems, 22:303-315.

[Jaakkola et al., 1994] Jaakkola, T., Jordan, M., and Singh, S. (1994). On the conver-
gence of stochastic iterative dynamic programming algorithms. Neural Computation,
6(6):1185-1201.

[Kaelbling, 1993] Kaelbling, L. P. (1993). Hierarchical learning in stochastic domains:
Preliminary results. In Proceedings of the Tenth International Conference on Machine
Learning ICML’93, pages 167-173, San Mateo, CA. Morgan Kaufmann.

[Mahadevan and Connell, 1992] Mahadevan, S. and Connell, J. (1992). Automatic pro-
gramming of behavior-based robots using reinforcement learning. Artificial Intelligence,
55(2-3):311-365.

[Mahadevan et al., 1997] Mahadevan, S., Marchalleck, N., Das, T. K., and Gosavi, A.
(1997). Self-improving factory simulation using continuou-time average-reward rein-
forcement learning. In Proceedings of the Fourteenth International Conference on Ma-
chine Learning (ICML’97), pages 202-210.

[McGovern et al., 1997] McGovern, E. A., Sutton, R. S., and Fagg, A. H. (1997). Roles of
macro-actions in accelerating reinforcement learning. In Grace Hopper Celebration of
Women in Computing, pages 13—17.

[Moore and Atkeson, 1993] Moore, A. W. and Atkeson, C. G. (1993). Prioritized sweep-
ing: Reinforcement learning with less data and less real time. Machine Learning,
13:103-130.

16

[Parr, 1998] Parr, R. (1998). Hierarchical control and learning for markov decision pro-
cesses. Personnal Communication.

[Parr and Russell, 1998] Parr, R. and Russell, S. (1998). Reinforcement learning with hier-
archies of machines. In Advances in Neural Information Processing Systems, volume 10,
Cambridge, MA. MIT Press.

[Precup and Sutton, 1998] Precup, D. and Sutton, R. S. (1998). Multi-time models for
temporally abstract planning. In Advances in Neural Infomation Processing Systems,
volume 10, Cambridge, MA. MIT Press.

[Precup et al., 1998] Precup, D., Sutton, R. S., and Singh, S. (1998). Theoretical results
on reinforcement learning with temporally abstract options. In Proceedings of the Tenth
European Conference on Machine Learning (ECML’98). Springer Verlag. In press.

[Singh, 1992] Singh, S. P. (1992). Scaling reinforcement learning by learning variable
temporal resolution models. In Proceedings of the Ninth International Conference on
Machine Learning ICML’92, pages 202-207, San Mateo, CA. Morgan Kaufmann.

[Sutton, 1990] Sutton, R. S. (1990). Integrating architectures for learning, planning, and
reacting based on approximating dynamic programming. In Proceedings of the Seventh
International Conference on Machine Learning ICML’90, pages 216224, San Mateo,
CA. Morgan Kaufmann.

[Sutton, 1995] Sutton, R. S. (1995). TD models: Modeling the world as a mixture of time
scales. In Proceedings of the Twelfth International Conference on Machine Learning
ICML’95, pages 531-539, San Mateo, CA. Morgan Kaufmann.

[Sutton and Barto, 1998] Sutton, R. S. and Barto, A. G. (1998). Reinforcement Learning.
An Introduction. MIT Press, Cambridge, MA.

17

