
Using Eligibility Traces to Find the Best Memoryless Policy in
Partially Observable Markov Decision Processes

John Loch
Department of Computer Science

University of Colorado
Boulder, CO 80309-0430

loch@cs.colorado.edu

Satinder Singh
Department of Computer Science

University of Colorado
Boulder, CO 80309-0430
baveja@cs.colorado.edu

Abstract

Recent research on hidden-state reinforce-
ment learning (RL) problems has concen-
trated on overcoming partial observability by
using memory to estimate state. However,
such methods are computationally extremely
expensive and thus have very limited appli-
cability. This emphasis on state estimation
has come about because it has been widely
observed that the presence of hidden state
or partial observability renders popular RL
methods such as Q-learning and Sarsa use-
less. However, this observation is misleading
in two ways: first, the theoretical results sup-
porting it only apply to RL algorithms that
do not use eligibility traces, and second these
results are worst-case results, which leaves
open the possibility that there may be large
classes of hidden-state problems in which RL
algorithms work well without any state esti-
mation.
In this paper we show empirically that
Sarsa(λ), a well known family of RL algo-
rithms that use eligibility traces, can work
very well on hidden state problems that have
good memoryless policies, i.e., on RL prob-
lems in which there may well be very poor
observability but there also exists a mapping
from immediate observations to actions that
yields near-optimal return. We apply conven-
tional Sarsa(λ) to four test problems taken
from the recent work of Littman, Littman
Cassandra and Kaelbling, Parr and Russell,
and Chrisman, and in each case we show that
it is able to find the best, or a very good,
memoryless policy without any of the com-
putational expense of state estimation.

1 Introduction

Sequential decision problems in which an agent’s sen-
sory observations provide it with the complete state
of its environment can be formulated as Markov deci-
sion processes, or MDPs, for which a number of very
succesful planning (Sutton & Barto, 1998) and rein-
forcement learning (Barto et al., 1983; Sutton, 1988;
Watkins, 1989) methods have been developed. How-
ever, in many domains, e.g., in mobile robotics, and
in multi-agent or distributed control environments,
the agent’s sensors at best give it partial informa-
tion about the state of the environment. Such agent-
environment interactions suffer from hidden-state (Lin
& Mitchell, 1992) or perceptual aliasing (Whitehead
& Ballard, 1990; Chrisman, 1992) and can be formu-
lated as partially observable Markov decision processes,
or POMDPs (e.g., Sondik, 1978). Therefore, finding
efficient reinforcement learning methods for solving in-
teresting sub-classes of POMDPs is of great practical
interest to AI and engineering.

Recent research on POMDPs has concentrated on
overcoming partial observability by using memory to
estimate state (Chrisman, 1992; McCallum, 1993; Lin
& Mitchell, 1992) and on developing special purpose
planning and learning methods that work with the
agent’s state of knowledge, or belief state (Littman
et al., 1995). In part, this emphasis on state esti-
mation has come about because it has been widely
observed and noted that the presence of hidden state
renders popular and succesful reinforcement learning
(RL) methods for MDPs, such as Q-learning (Watkins,
1989) and Sarsa (Rummery & Niranjan, 1994), use-
less on POMDPs (e.g., Whitehead, 1992; Littman,
1994; Singh et al., 1994). However, this observation
is misleading in two ways: first, the theoretical re-
sults (Singh et al., 1994; Littman, 1994) supporting it
only apply to RL algorithms that do not use eligibility



traces, and second, these results are worst-case results
which leaves open the possibility that there may be
large classes of POMDPs in which existing RL algo-
rithms work well without any state estimation.

The main contribution of this paper is to show empir-
ically that Sarsa(λ), a well known family of reinforce-
ment learning algorithms that use eligibility traces,
can work very well on POMDPs that have good mem-
oryless policies, i.e., on problems in which there may
well be very poor observability but there also exists a
mapping from the agent’s immediate observations to
actions that yields near-optimal return. We also show
how this can be extended to low-order-memory-based
policies. This contribution is significant, because it
may be that most real-world engineering problems that
are well designed have good memoryless or good low-
order-memory-based policies. We apply conventional
Sarsa(λ) on four test problems taken from recent pub-
lished work on POMDPs and in each case show that
it is able to find the best, or a very good, memory-
less policy without any of the computational expense
of state estimation. However, these results have to
be interpreted with caution for the problem of finding
optimal memoryless policies in POMDPs is known to
be computationally challenging (Littman, 1994); they
are evidence that Sarsa(λ) is at least competitive to
and at best better than other existing algorithms for
solving POMDPs when good low-order-memory-based
policies exist.

2 POMDP Framework

In this section we briefly describe the POMDP frame-
work. An environment is defined by a finite set of
states S, the agent has recourse to a finite set of ac-
tions A, and the agent’s sensors provide it observa-
tions from a finite set X . On executing action a ∈ A
in state s ∈ S the agent receives expected reward ra

s

and the environment transits to a random state s′ ∈ S
with probability P a

ss′ . The probability of the agent ob-
serving x ∈ X given that the environment’s state is s
is O(x|s). In the reinforcement learning (RL) problem
the agent does not know the transition and observation
probabilities P and O and its goal is to learn an ac-
tion selection strategy that maximizes the return, i.e.
the expected discounted sum of rewards received over
an infinite horizon, E{

∑∞
t=0 γtrt}, where 0 ≤ γ < 1

is the discount factor that makes immediate reward
more valuable than reward more distant in time, and
rt is the reward at time step t.

In fully observable RL problems or MDPs it is known

that there exists an optimal policy that is memory-
less, i.e., is a mapping from states to actions, S → A.
RL algorithms such as Q-learning and Sarsa are able
to provably find such memoryless optimal policies in
MDPs. It is known that in POMDPs the best memo-
ryless policy can be arbitrarily suboptimal in the worst
case (Singh et al., 1994). We ask below if these same
RL algorithms can find the best memoryless policy
in POMDPs (Jaakkola et al., 1995; Littman, 1994),
regardless of how good or how bad it is; for if they
are able to find it, then they can at least be useful
in POMDPs with good memoryless policies. We note
that the success of RL algorithms when using com-
pact function approximation in fully observable prob-
lems (Barto et al., 1983; Tesauro, 1995) provides some
evidence that this is possible because the use of com-
pact function approximation introduces hidden state
into otherwise completely observable MDPs.

3 Eligibility Traces and Sarsa(λ)

In MDPs reinforcement learning algorithms such as
Sarsa(λ) use experience to learn estimates of optimal
Q-value functions that map state-action pairs, s, a, to
the optimal return on taking action a in state s. The
transition at time step t, < st, at, rt, st+1 >, is used to
update the Q-value estimate of all state-action pairs
in proportion to their eligibility. The idea behind the
eligibilities is very simple. Each time a state-action
pair is visited it initiates a short-term memory or trace
that then decays over time (exponentially with param-
eter 0 ≤ λ ≤ 1). The magnitude of the trace deter-
mines how eligible a state-action pair is for learning.
So state-action pairs visited more recently are more
eligible.

In POMDPs the transition information available to the
agent at time step t is < xt, at, rt, xt+1 >. A straight-
forward way to extend RL algorithms to POMDPs
is to learn Q-value functions of observation-action
pairs, i.e., to simply treat the agent’s observations
as states. Below we describe standard Sarsa(λ) ap-
plied to POMDPs in this manner. At step t the Q-
value function is denoted Qt and the eligibility trace
function is denoted ηt. On experiencing transition
< xt, at, rt, xt+1 > the following updates are per-
formed in order:

ηt(xt, at) = 1
∀ (x %= xt or a %= at); ηt(x, a) = γληt−1(x, a)
∀x and a;

Qt+1(x, a) = Qt(x, a) + α ∗ δt ∗ ηt(x, a) (1)



where δt = rt + γQt(xt+1, at+1) − Qt(xt, at), and α
is the step-size. The eligibility traces are initialized
to zero, and in episodic tasks they are reinitialized
to zero after every episode. The greedy policy at
time step t assigns to each observation x the action
a = argmaxbQt(x, b). Note that the greedy policy is
memoryless.

3.1 Using Sarsa(λ) with Observation
Histories

The Sarsa(λ) algorithm can also be easily used to de-
velop memory-based policies by simply learning a Q-
value function over estimated-states and actions, and
by keeping eligibility traces for estimated-state and ac-
tion pairs. So for example, we could augment the im-
mediate observation with the past K observations to
form the estimated-state and derive a memory-based
policy that maps K + 1 observations to actions. The
only change to the equations in (1) would be that the
immediate observations (x’s) would be replaced by the
estimated states.

4 Empirical Results

The Sarsa(λ) algorithm was applied in an identical
manner to four POMDP problems taken from the re-
cent literature and described below. Here we describe
the aspects of the empirical results common to all four
problems. At each step, the agent picked a random ac-
tion with a probability equal to the exploration rate,
and a greedy action otherwise. Except where explic-
itly noted, we used an initial exploration rate of 20%
decreasing linearly with each action (step) until the
200000th action from where onwards the exploration
rate was 0%. Q-values were initialized to 0. The agent
starts each episode in a problem specific start state
or a randomly selected start state as specified by the
originators of the problems. Both the step-size (α) and
the λ values are held constant in each experiment. We
did a coarse search over α and λ for each problem but
present results only for λ = 0.9 and α = 0.01 which
gave about the best performance across all problems.
In all cases, a value of λ between 0.8 and 0.975 worked
the best. This is qualitatively similar to the results
obtained for MDPs, and a bit surprising given that
Sarsa(1) (or Monte-Carlo) has been recommended as
the way to deal with hidden state (Singh et al., 1994).

The data for the learning curves is generated as fol-
lows: after every 1000 steps (actions) the greedy pol-
icy is evaluated offline to generate a problem specific
performance metric. All the learning-curves below are

plotted after smoothing this data by doing a running
average over 30 data points.

For each POMDP we first present its structure by
defining the states, actions, rewards, and observations
and then we present our results.

4.1 Sutton’s Grid World

Sutton’s grid world problem (see Figure 1A) is from
Littman (1994) who took a navigation gridworld from
Sutton (1990) and made it a POMDP by not allowing
its exact position to be known to the agent.

States: This POMDP is a 9 by 6 grid with several
obstacles and a goal in the upper right corner (see Fig-
ure 1A). The state of the environment is determined by
the grid square the agent occupies. State transitions
are deterministic.

Actions: The agent can choose one of 4 actions: move
north, move south, move east, and move west.

Observations: The agent can observe its 8 neigh-
boring grid squares yielding 256 possible observations.
Only 30 (of the 256 possible) unique observations oc-
cur in the gridworld. Observations are deterministic.
Figure 1A shows the gridworld with observations indi-
cated by the number in the lower right corner of each
square.

Rewards: The agent receives a reward of −1 for each
action that does not transition to the goal state. A
reward of 0 is received for any action leading to the
goal state.

When the agent reaches the goal state it transitions to
a uniformly random start state.

4.1.1 Sarsa(λ) Results

After every 1000 steps of experience in the world, the
greedy policy is evaluated to determine the total num-
ber of steps required to reach the goal from every possi-
ble non-goal start state (46 start states). The agent is
limited to a maximum of 1000 steps to reach the goal.
Thus a policy which cannot reach the goal from any
start state would have a total steps to goal of 46, 000.

Sarsa(λ) converged to the 416 total step policy shown
with arrows in Figure 1A; the learning-curve is shown
in Figure 1B. The total steps to the goal for the opti-
mal policy in the underlying MDP is 404, and so in this
case a very good memoryless policy was found. This
416 step policy matches exactly with the 416 step pol-
icy Littman (1994) found using an expensive branch



A

B

0.0 100000.0 200000.0 300000.0
Number of Actions

0.0

10000.0

20000.0

30000.0

40000.0

50000.0

To
ta

l s
te

ps
 to

 g
oa

l

Sutton’s Gridworld
lambda = 0.9 alpha = 0.01

0.0 150000.0 300000.0

400.0

420.0

440.0

460.0

480.0

500.0

Figure 1: Sutton’s Grid World (from Littman, 1994).
A) The grid world environment. The numbers on the
lower right are the observations. The arrows show the
optimal memoryless policy found by Sarsa. B) The
total steps to goal of the greedy policy as a function
of the amount of learning steps. The inset plot shows
the same data at a different scale.

and bound method that searches directly in memory-
less policy space and is guaranteed to find the optimal
memoryless policy. Note that the number of possi-
ble memoryless policies is (4 actions, 30 observations)
430 = 1.2 × 1018 policies.

Observe that in Figure 1A the agent learns to go left
in the state just to the left of the goal. This is because
it has to go up in the state immediately below (obser-
vation 18) because of its aliasing with the state 4 steps
below the goal (both states have 3 walls to the right).

4.2 Littman, Cassandra, and Kaelbling’s 89
State Office World

States: The gridworld for Littman et al.’s (1995) 89
state office problem is shown in Figure 2A. The state of
the environment is the combination of the grid square
that the agent is occupying and the direction that the
agent is facing (N, S, E, W). The are 22 possible agent
locations times 4 directions for 88 states plus the goal
state for 89 total states. State transitions are stochas-
tic.

Actions: The agent can choose one of 5 actions: stay
in place, move forward, turn right, turn left, and turn
around. Both the state transitions and the observa-
tions are noisy with the agent getting the correct ob-
servation only 70% of the time.

Observations: The agent can observe the relative
position of obstacles in 4 directions: front, back, left
and right. There are 16 possible observations plus the
goal observation.

Rewards: The agent receives a reward of +1 for any
action leading to the goal observation with all other
rewards equal to 0.

After reaching the goal observation the agent transi-
tions to a uniformly random start state.

4.2.1 Sarsa(λ) Results

After every 1000 steps of experience the greedy policy
is evaluated. As in Littman et al., for each evalua-
tion 251 trials are run using the greedy policy with a
maximum step cutoff at 251 steps. Two performance
metrics are used: the median number of steps to the
goal for the 251 trials, and the percent of the 251 trials
which reach the goal state within 251 steps.

The best memoryless policy found by Sarsa(0.9) was
able to reach the goal on average 77% of the 251 tri-
als (see Figure 2B) with a median number of steps
to goal of 73 steps (see Figure 2C). The best policy



A

B

0.0 500000.0 1000000.0 1500000.0 2000000.0
Number of Actions

0.00

0.20

0.40

0.60

0.80

1.00

Pe
rc

en
t S

uc
ce

ss
 in

 re
ac

hi
ng

 G
oa

l

Littman’s 89 state office problem
lambda = 0.9 alpha = 0.01

C

0.0 500000.0 1000000.0 1500000.0 2000000.0
Number of actions

0.0

100.0

200.0

300.0

M
ed

ia
n 

st
ep

s 
to

 g
oa

l

Littman’s 89 state office problem
lambda = 0.9, alpha = 0.01

Figure 2: Littman et al.’s 89 state office world. A)
The office world environment where the goal state is
denoted with a star. The state of the environment is
the combination of the grid square that the agent is
occupying and the direction that the agent is facing (N,
S, E, W). B) The percentage of trials with the greedy
policy that succeed in getting to the goal in less than
251 steps. C) Median number of steps to goal of the
greedy policy as a function of the number of learning
steps.

found by Sarsa(0.9) outperformed all of the memory-
based policies found by Littman et al. in their Table
3. Their best policy was able to reach the goal in only
44.6% of the 251 trials with a median steps to goal of
> 251 steps and was found using truncated value it-
eration algorithm on belief states. Littman et al. also
presented a hybrid method that finds a policy that
reached the goal in 58.6% of the trials (still below the
percentage for the best memoryless policy found by
Sarsa(0.9) with median steps to goal of 51 steps (this
is better than Sarsa(0.9)’s 73 steps).

There are 516 = 1.53× 1011 possible memoryless poli-
cies for this problem. Therefore it is not practical to
enumerate the performance of every possible policy to
verify if the policy found by Sarsa(0.9) is indeed the
optimal memoryless policy, but its performance vis-a-
vis the state-estimation based methods of Littman et
al. was encouraging.

4.3 Parr and Russell’s Grid World

States: Parr and Russell’s (1995) gridworld consists
of 11 states in a 4 by 3 grid with a single obstacle
(see Figure 3A). The state of the environment is de-
termined by the grid square occupied by the agent.

Actions: The agent can choose one of 4 actions: move
north, move south, move east, and move west. State
transitions are stochastic with the agent moving in the
desired direction 80% of the time and slipping to either
side 10% of the time.

Observations: The agent can only observe if there
is a wall to its immediate left or right. There are 4
possible observations corresponding to the combina-
tions of left and right obstacles plus two observations
for the goal and penalty states yielding a total of 6
observations. Observations are deterministic.

Rewards: There is a goal state in the upper right cor-
ner with a penalty state directly below the goal state.
The agent receives a reward of −0.04 for every action
which does not lead to the goal or penalty state. The
agent receives a reward of +1 for any action leading
to the goal state and a reward of −1 for any action
leading to the penalty state.

4.3.1 Sarsa(λ) Results

Every 1000 steps the greedy policy was evaluated and
the learning curve is presented in Figure 3B. The av-
erage reward per step was computed for 101 trials of
up to 101 steps per trial. There are 46 = 4096 pos-
sible memoryless policies for this problem. We veri-



A

B

0.0 100000.0 200000.0 300000.0
Number of Actions

0.10

0.08

0.06

0.04

0.02

0.00

0.02

0.04

Av
er

ag
e 

R
ew

ar
d 

pe
r A

ct
io

n

Parr and Russell’s 4x3 maze
lambda = 0.9 alpha = 0.01

Figure 3: Parr & Russell’s Grid World. A) The grid-
world environment. The numbers in the lower right
are the observations. The arrows show the optimal
memoryless policy found by Sarsa. B) The average re-
ward per action of the memoryless greedy policy as a
function of the number of learning steps.

A

0.0 200000.0 400000.0 600000.0
Number of actions

0.05

0.00

0.05

0.10

0.15

0.20

Av
er

ag
e 

re
w

ar
d 

pe
r a

ct
io

n

Parr and Russell’s 4x3 maze: 2 observations
lambda = 0.9, alpha = 0.001

B

0.0 200000.0 400000.0 600000.0
Number of actions

0.05

0.00

0.05

0.10

0.15

0.20

Av
er

ag
e 

re
w

ar
d 

pe
r a

ct
io

n

Parr and Russell’s 4x3 maze: 3 observations
lambda = 0.9, alpha = 0.001

Figure 4: Parr & Russell’s Grid World. A) We add
one past observation to the immediate observation.
The performance of the greedy policy. B) We add two
past observations to the immediate observation. The
performance of the greedy policy. Note the different
scales.



fied that Sarsa(0.9) found the optimal memoryless pol-
icy by evaluating the performance of all 4096 possible
policies. In this problem, the best memoryless policy
is rather poor compared to policies which use mem-
ory. The best memoryless policy yields an average re-
ward per step of 0.024 compared to the memory-based
policy found by the Witness algorithm (Littman et
al., 1995) which yields an average reward per step of
0.1108.

Parr & Russell’s SPOVA-RL (Smooth Partially Ob-
servable Value Approximation Reinforcement Learn-
ing) algorithm learns a value function over belief states
and did even better yielding an average reward per
step of 0.12 with a memory-based policy1.

The poor relative performance of the optimal memory-
less policy is due to the non-optimal actions the agent
must take in the aliased states. For example observa-
tion 0 (see Figure 3A) is observed for 3 states in the
grid. The state to the left of the penalty state is ob-
served as observation 0 and causes the optimal action
in observation 0 to be move north instead of move east.
This causes the agent to continuously bump into the
upper left corner wall until the transition noise causes
a transition to the state to the east.

We investigated the performance improvement ob-
tained by Sarsa(λ) when the immediate observation
is augmented with 1 and with 2 previous observations.
The performance of the policy using 1 previous obser-
vation yielded an average reward per step of 0.1124
(see Figure 4A) which is better than the policy found
by the Witness algorithm and almost as good as the
policy found by SPOVA-RL. Sarsa(λ) required fewer
than 60 CPU seconds to find its policy compared to
the 42 CPU minutes for SPOVA-RL and the 12 CPU
hours required by the Witness algorithm (Parr & Rus-
sell, 1995). The 3-observation performance is shown
in Figure 4B and is the same as the 2-observation per-
formance.

We were able to verify that the policy found by
Sarsa(λ) using 1 previous observation was indeed the
optimal policy in that space. Only ten 2-observation
sequences are encountered in the gridworld leading to
410 = 1, 048, 576 possible 2 observation policies. We
evaluated the performance of all possible 2-observation
policies and again verified that the policy found by
Sarsa(λ) was the same as the best 2-observation pol-

1Parr and Russell state that their implementation of the
Witness algorithm did not converge on this problem, which
probably accounts for the better performance of SPOVA-
RL relative to the exact Witness algorithm.

icy.

4.4 Chrisman’s Shuttle Problem

States: Chrisman’s (1992) shuttle problem involves
an agent operating in an environment with 8 states,
3 actions, and 5 observations. The scenario consists
of two space stations with loading docks. The task is
to transport supplies between the two docks. There is
noise in both the state transitions and observations.

Actions: The agent can execute one of 3 actions: go
forward, backup, and turn around.

Observations: The 5 observations are: can see the
least recently visited (LRV) station; can see the most
recently visited (MRV) station; can see that we are
docked in most recently visited (MRV) station; can
see that we are docked in least recently visited (LRV)
station; and can see nothing. There is sensor noise
causing the agent to make faulty observations.

Rewards: The agent receives a reward of +10 when it
docks with the least recently visited station. The agent
must back into the dock to dock with the station. If
the agent collides with the station by moving forward
it receives a reward of −3. All other action rewards
are 0.

4.4.1 Sarsa(λ) Results

Every 1000 steps (actions) the performance of the
greedy policy is evaluated. The performance metric
is the average reward per step for 101 trials of up
to 101 steps (actions) each. There are (3 actions, 5
observations) 35 = 243 possible memoryless policies.
Sarsa(0.9) finds a memoryless policy which yields an
average reward per step of 1.02 (see Figure 5A for
the learning curve). We verified that the policy found
by Sarsa(0.9) was indeed the optimal memoryless pol-
icy by evaluating the performance of the 243 possible
memoryless policies.

The two best memory-based policies for Chrisman’s
shuttle problem found by Littman et al. (1995) were
found through truncated exact value iteration and
their Qmdp method. Truncated exact value iteration
found a policy with an average reward per step of 1.805
while Qmdp yielded 1.809. The performance of the
optimal memoryless policy is rather poor compared to
the performance of policies using memory. This is due
to the conservative nature of the optimal memoryless
policy which avoids any forward actions so as to avoid
receiving the −3 penalty for hitting the station while
moving forward.



A

0.0 150000.0 300000.0
Number of Actions

0.0

0.5

1.0

1.5

2.0

Av
er

ag
e 

re
w

ar
d 

pe
r a

ct
io

n
Chrisman’s Shuttle Problem: Memoryless

lambda = 0.9, alpha = 0.01

B

0.0 200000.0 400000.0 600000.0
Number of Actions

0.0

0.5

1.0

1.5

2.0

Av
er

ag
e 

re
w

ar
d 

pe
r a

ct
io

n

Chrisman’s Shuttle Problem: 2 observations
lambda = 0.9, alpha = 0.01

C

0.0 200000.0 400000.0 600000.0
Number of Actions

0.0

0.5

1.0

1.5

2.0

Av
er

ag
e 

re
w

ar
d 

pe
r a

ct
io

n

Chrisman’s Shuttle Problem: 3 observations
lambda = 0.9, alpha = 0.01

Figure 5: Chrisman’s shuttle problem. A) The aver-
age reward per action of the memoryless greedy policy
as a function of the number of learning steps. B) We
add one past observation to the immediate observa-
tion. The performance of the greedy policy. C) We
add two past observations to the immediate observa-
tion. The performance of the greedy policy.

We also investigated the performance improvement ob-
tained by augmenting the current observation with 1
and 2 previous observations. By including the previ-
ous observation the performance improved by 37% to
an average reward per step of 1.37 (see Figure 5B). By
including the 2 previous observations the performance
improved by 80% to an average reward per step of
1.804 (see Figure 5C). The performance of the best
policy found by Sarsa with 2 previous observations is
as good as the truncated exact value iteration method
and the Qmdp method, again at a much lower compu-
tational cost.

4.5 Discussion

In all the empirical results presented above either
we were able to confirm by enumeration that Sarsa
found the best policy representable as a mapping from
estimated-states (immediate, or immediate and past 1
or past 2 observations) to actions, or in cases where it
was not possible to enumerate we observed that Sarsa
did as well as the algorithms presented by the origina-
tors of the specific POMDPs. Speculating from these
empirical results, we conjecture that Sarsa(λ) may be
hard to beat in problems where there exists a good
policy that maps the observation space to actions.

4.5.1 Why do Eligibility Traces Work?

Consider the set of states that map onto the same ob-
servation x. The neighbours of this set of states for
some action a may map to several different observa-
tions. This can lead to conflicting pulls for the Q-
value of x, a depending on which state is providing the
experience; some may suggest a is good, some may
suggest that a is bad. However these different pulls
could get resolved if we considered what happens af-
ter n steps. Indeed if we wait until we get to the goal
(Monte-Carlo or Sarsa(1)) there would be no confu-
sion due to the hidden state at all. Eligibility traces
allow an observation-action pair to access what hap-
pens many time steps later, bridging the gap to un-
ambiguous information about the quality of an action.
This reasoning indicates that there may be a minimum
problem-specific λ that would be needed to bridge the
smallest such “gap” in each problem. Our observa-
tions during the current work support this; however a
careful analysis remains as future work.

5 Conclusion

Partial observability is inevitable in many sequential
decision problems of interest to both AI and engineer-



ing. Given the worst-case computational intractabil-
ity of POMDPs, it is useful to identify sub-classes of
POMDPs and algorithms that work well in them. We
believe that eligibility trace based RL methods such as
Sarsa(λ) can be be useful in POMDPs that have good
memoryless or good low-order-memory-based policies.
We demonstrated this empirically on four POMDP
problems from the recent literature. A more power-
ful result that remains future work would be to prove
this theoretically.

Acknowledgements

Satinder Singh was supported by NSF grant IIS-
9711753. We thank Michael Littman and the anony-
mous reviewers for many valuable comments.

References

Barto, A. G., Sutton, R. S., & Anderson, C. W. (1983).
Neuronlike elements that can solve difficult learn-
ing control problems. IEEE Transactions on Sys-
tems, Man, and Cybernetics, 13, 835–846.

Chrisman, L. (1992). Reinforcement learning with per-
ceptual aliasing: The perceptual distinctions ap-
proach. In AAAI-92.

Jaakkola, T., Singh, S., & Jordan, M. I. (1995). Rein-
forcement learning algorithm for partially observ-
able Markov decision problems. In Advances in
Neural Information Processing Systems 7, pages
345–352. Morgan Kaufmann.

Lin, L. J. & Mitchell, T. M. (1992). Reinforcement
learning with hidden states. In In Proceedings
of the Second International Conference on Sim-
ulation of Adaptive Behavior: From Animals to
Animats.

Littman, M., Cassandra, A., & Kaelbling., L. (1995).
Learning policies for partially observable environ-
ments: Scaling up. In Proceedings of the Twelfth
International Conference on Machine Learning,
pages 362–370, San Francisco, CA. Morgan Kauf-
mann.

Littman, M. L. (1994). Memoryless policies: theo-
retical limitations and practical results. In From
Animals to Animats 3: Proceedings of the Third
International Conference on Simulation of Adap-
tive Behavior.

McCallum, R. A. (1993). Overcoming incomplete per-
ception with utile distinction memory. In Utgoff,

P. (Ed.), Machine Learning: Proceedings of the
Tenth International Conference, pages 190–196.
Morgan Kaufmann.

Parr, R. & Russell, S. (1995). Approximating opti-
mal policies for partially observable stochastic do-
mains. In Proceedings of the International Joint
Conference on Artificial Intelligence.

Rummery, G. A. & Niranjan, M. (1994). On-line Q-
learning using connectionist systems. Technical
Report CUED/F-INFENG/TR 166, Cambridge
University Engineering Dept.

Singh, S., Jaakkola, T., & Jordan, M. I. (1994). Learn-
ing without state-estimation in partially observ-
able Markovian decision processes. In Cohen,
W. W. & Hirsh, H. (Eds.), Machine Learning:
Proceedings of the Eleventh International Confer-
ence, pages 284–292. Morgan Kaufmann.

Sondik, E. J. (1978). The optimal control of partially
observable Markov processes over the infinite hori-
zon: discounted case. Operations Research, 26,
282–304.

Sutton, R. S. (1988). Learning to predict by the meth-
ods of temporal differences. Machine Learning, 3,
9–44.

Sutton, R. S. (1990). Integrating architectures for
learning, planning, and reacting based on ap-
proximating dynamic programming. In Proc. of
the Seventh International Conference on Machine
Learning, pages 216–224, San Mateo, CA. Morgan
Kaufmann.

Sutton, R. S. & Barto, A. G. (1998). Reinforcement
Learning: An Introduction. Cambridge, MA: MIT
Press.

Tesauro, G. J. (1995). Temporal difference learning
and td-gammon. Communications of the ACM,
38 (3), 58–68.

Watkins, C. J. C. H. (1989). Learning from Delayed
Rewards. PhD thesis, Cambridge Univ., Cam-
bridge, England.

Whitehead, S. D. & Ballard, D. H. (1990). Active
perception and reinforcement learning. In Proc. of
the Seventh International Conference on Machine
Learning, Austin, TX. M.


