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Abstract

The TAC supply-chain game presented automated trad-
ing agents with a challenging strategic problem. Embed-
ded within a high-dimensional stochastic environment was
a pivotal strategic decision about initial procurement of
components. Early evidence suggested that the entrant field
was headed toward a self-destructive, mutually unprofitable
equilibrium. Our agent, Deep Maize, introduced a pre-
emptive strategy designed to neutralize aggressive procure-
ment, perturbing the field to a more profitable equilib-
rium. It worked. Not only did preemption improve Deep
Maize’s profitability, it improved profitability for the whole
field. Whereas it is perhaps counterintuitive that action de-
signed to prevent others from achieving their goals actu-
ally helps them, strategic analysis employing an empirical
game-theoretic methodology verifies and provides insight
about this outcome.

1. Introduction

The TAC Supply Chain Management (TAC/SCM)
scenario [9] defines a complex six-player game with
severely incomplete and imperfect information, and high-
dimensional strategy spaces.1 Like the real supply-chain en-
vironments it is intended to model, the TAC/SCM game
presents participants with challenging decision prob-
lems in a context of great strategic uncertainty. This pa-
per is a case study of a strategic issue that arose in
the first TAC/SCM tournament. We present our reason-
ing about the issue, and our effort to perturb the environ-
ment from an “equilibrium” we considered undesirable, to
another more profitable domain of operation. In the full pa-
per [11], we recount the experience as it played out in

1 We assume familiarity with TAC/SCM-03 game rules. For details, see
the specification document [1].

the competition, and analyze the outcome of this natu-
ralistic experiment. Here we report on a more controlled
experimental analysis of the issue, applying empiri-
cal game-theoretic methods to produce compelling results,
narrow in scope but arguably accounting well for strate-
gic interactions.

The direct result of this study is validation of the in-
sight behind our particular policy for strategic procurement
in the TAC/SCM game. Our experimental analysis verifies
that the predominant patterns we observed among agents
in the tournament reflect strategically rational behavior for
this issue. It also confirms the surprising phenomenon in
which a tactic designed to preempt the actions of others ac-
tually leads to global welfare improvements. More broadly,
we view this exercise as illustrating a general approach by
which agent designers can reason through pivotal strategic
issues in a principled way, despite computational and ana-
lytical intractability of their environments.

2. Deep Maize

The University of Michigan’s entry in TAC-03/SCM is
an agent called Deep Maize [5]. The agent is organized
in modular functional units controlling procurement, man-
ufacturing, and sales. Its behavior is based on distributed
feedback control, in that it acts to maintain a reference zone
of profitable operation. To coordinate the distributed mod-
ules,Deep Maize employs aggregate price signals, derived
from a market equilibrium analysis and continual Bayesian
demand projection. The design of Deep Maize optimizes
for performance in the steady-state, with little explicit atten-
tion to transient or end-game behaviors. In the present study
we focus on one pivotal feature of Deep Maize’s strategy,
described below.



3. Day-0 Procurement Strategies

Close examination of the game rules reveals that there
are major advantages to procuring a large number of com-
ponents on day 0. Indeed, all agent developers noticed this,
and pursued this approach to some degree in the tourna-
ment. We call this strategy aggressive day-0 procurement,
or simply aggressive. From each agent’s perspective, the
main effect of being aggressive is on its own component
procurement profile. If every agent is aggressive, however,
it can significantly change the character of the game envi-
ronment.
An aggressive day-0 procurement commits to large com-

ponent orders before overall demand over the game hori-
zon is known. This leaves agents with little flexibility to re-
spond to cases of low demand, except by lowering PC prices
to customers. Since component costs are sunk at the begin-
ning, there is little to keep prices from dropping below (ex
ante) profitable levels.
As more agents procure aggressively, several factors

make aggressiveness even more compelling. The aggressive
agents reserve significant fractions of supplier capacity, thus
reducing subsequent availability and raising prices, accord-
ing to their pricing function. A natural response might in-
duce a “race” dynamic, where agents issue day-0 RFQs in
increasingly large chunks, ultimately requesting all compo-
nents they expect to be able to use over the entire game hori-
zon. Not only does this exacerbate the risk of locking in ag-
gregate oversupply, it also produces a more unbalanced dis-
tribution of components, especially at the beginning of the
game. This in turn can prevent many agents from being able
to acquire key components needed for particular PC mod-
els until relatively far into the production year.
For all these reasons, the aggressive strategy is appeal-

ing to individual agents, yet potentially quite damaging for
the agent pool overall. We considered this situation partic-
ularly bad for our agent, which was designed for high per-
formance in the steady state [5]. Deep Maize devotes con-
siderable effort to developing accurate demand projections,
and thus is quite responsive to actual demand conditions. If
most of the game’s component procurement is up front, we
never reach a steady state, and the ability to respond to de-
mand conditions is much less relevant.

3.1. Deep Maize Preemptive Strategy

After much deliberation, we decided that the only way
to prevent the disastrous rush toward all-aggressive equilib-
rium was to preempt the other agents’ day-0 RFQs. By re-
questing an extremely large quantity of a particular compo-
nent, we would prevent the supplier from making reason-
able offers to subsequent agents, at least in response to their
requests on that day. Our premise was that it would be suf-

ficient to preempt only day-0 RFQs, since after day 0 prices
are not so especially attractive.
The Deep Maize preemptive strategy operates by sub-

mitting a large RFQ to each supplier for each component
produced. The preemptive RFQ requests 85000 units—
representing 170 days’ worth of supplier capacity—to be
delivered by day 30. See Figure 1. It is of course impossi-
ble for the supplier to actually fulfill this request. Instead,
the supplier will offer us both a partial delivery on day 30
of the components they can offer by that date (if any), and
an earliest-complete offer fulfilling the entire quantity (un-
less the supplier has already committed 50 days of capac-
ity). With these offers, the supplier reserves necessary ca-
pacity. This has the effect of preempting subsequent RFQs,
since we can be sure that the supplier will have committed
capacity at least through day 172. (The extra two days ac-
count for negotiation and shipment time.)We will accept the
partial-delivery offer, if any (and thereby reject the earliest-
complete), giving us at most 14000 component units to be
delivered on day 30, a large but feasible number of compo-
nents to use up by the end of the game.
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Figure 1. Deep Maize’s preemptive RFQ.

In the situation that our preemptive RFQ gets considered
after the supplier has committed 50 days of production to
other agents, we will not receive an offer, and our preemp-
tion is unsuccessful. For this reason, we also submit backup
RFQs of 35000 to be delivered on day 50, and 15000 to be
delivered on day 70.
The TAC/SCM designers anticipated the possibility of

preemptive RFQ generation, (there was much discussion
about it in the original design correspondence), and took
steps to inhibit it. The designers instated a reputation mech-
anism, in which refusing offers from suppliers reduces the
priority of an agent’s RFQs being considered in the future.
This is accomplished by adjusting agent �’s selection prob-
ability �� as follows [1, Section 5.1]:

weight� � max

�
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�
�

�� �
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� weight�

�

Even with this deterrent, we felt our preemptive strat-
egy would be worthwhile. Since most agents were focusing
strongly on day 0, priority for RFQ selection on subsequent
days might not turn out to be crucial.



3.2. TAC-03 Tournament

In a nutshell, our tactic succeeded in the 2003 TAC/SCM
tournament. The preemptive strategy had its intended effect
of inhibiting day-0 procurement, and enabled Deep Maize
to place second in the final round. The most interesting re-
sult, however, was that by preempting aggressive procure-
ment, the strategy improved profitability for the entire field
of agents, on average. For a detailed analysis of this phe-
nomenon in the official TAC event, see the full version of
our report [11].

4. Game-Theoretic Model

4.1. Normal-FormModel Structure

As noted at the outset, TAC/SCM defines a six-player
game of incomplete and imperfect information, with an
enormous space of available strategies. The game is sym-
metric [3], in that agents have identical action possibilities,
and face the same environmental conditions. In our stylized
model, we restrict the agents to three strategies, differing
only in their approach to day-0 procurement. Each strategy
is implemented as a variant of Deep Maize. By basing the
strategies on a particular agent, we clearly cannot capture
the diversity of approaches to all aspects of TAC/SCM. Fix-
ing much of the behavior, however, enables our focus on the
particular issue of strategic procurement.
In strategy A (aggressive), the agent requests large quan-

tities of components from every supplier on day 0. The
specific day-0 RFQs issued correspond to aggressive day-0
policies we observed for actual TAC-03/SCM participants.
We encoded four of these as RFQ quantity lists:

1. (4250,5000,5000,2500,1250), based on TacTex [7].

2. (3000,3000,3000,3000,3000), based on UMBCTAC.

3. (4000,3000,8000), based on HarTac.

4. (1672,1672,1672,1672,1672), and double this for CPU
components, based on Botticelli [2].

Strategy A randomly selects among these at the beginning
of each game instance.
In strategy B (baseline), the agent treats day 0 just like

any other day, issuing requests according to its usual pol-
icy of serving anticipated demand and maintaining a buffer
inventory [5]. Strategy P (preemptive) is actually Deep
Maize as we ran it in the tournament, with preemptive day-
0 procurement as described above.
We consider three versions of this game in our analysis.

The first is an unpreempted six-player game, where agents
are restricted to playing A or B. The second is a five-player
game, with the sixth place taken up by a fixed agent playing
strategy P. We refer to this as the single-preemptor game.

The third is the full six-player game where agents are al-
lowed to play any of the three strategies A, B, or P.
Since the three strategies incorporate specified policies

for conditioning on private information, we represent the
game in normal form. By symmetry there are only seven
distinct profiles for the unpreempted game, corresponding
to the number � of agents playing A, � � � � �. There are
six distinct profiles for the single-preemptor game, and a to-
tal of twenty-eight for the full game (including the thirteen
from the more restricted games). Payoffs for each profile
represent the expected profits for playing A, B, or P, respec-
tively, given the other agents, with expectation taken over
all stochastic elements of the game environment.

4.2. Demand Adjustment

It is apparent to any observer of TAC/SCM games that
performance is highly sensitive to underlying demand. This
is the case with or without preemption, although the relation
is attenuated by preemption. Given that the primary effect
of preemption is to inhibit early commitment to large sup-
plies, we would expect that preemption should be beneficial
when demand is low, and detrimental in the highest-demand
games. This is indeed what we observed in the 2003 tourna-
ment. Given the high variability of demand, and its appar-
ently important influence, we developed a more elaborate
mechanism to control for demand in our analysis of tourna-
ment games as well as our post-competition experiments.
Given a sufficient number of random instances, the prob-

lem of variance due to stochastic demand would subside,
as the sample means for outcomes of interest would con-
verge to their true expectations. However, for TAC/SCM,
sample data is quite expensive, as each game instance takes
approximately one hour. (55 minutes of game simulation
time, plus a few minutes for pre- and post-game process-
ing) Therefore, datasets from tournaments and even offline
experiments will necessarily reflect only limited sampling
from the distribution of demand environments.
To address this issue, we can calibrate a given sam-

ple with respect to the known underlying distribution of
demand ( ��). Our approach is closely related to the stan-
dard method of variance reduction by conditioning [8, Sec-
tion 11.6.2]. Given a specification for the expectation of
some game statistic � as a function of ��, its overall expec-
tation accounting for demand is given by

���� �

�
��

���� ��� ��	 ��
� ��� (1)

Although we do not have a closed-form characterization of
the density function ��	 ��
, we do have a specification of
the underlying stochastic demand process. From this, we
can generate Monte-Carlo samples of demand trajectories
over a simulated game. We then employ a kernel-based den-



sity estimationmethod using Parzen windows [4] to approx-
imate the probability density function for ��. This distri-
bution is shown in Figure 2. Its mean is 196, with a stan-
dard deviation of 77.4. Note that much of the probability
is massed at the extremes of demand, with a skew toward
the low end. The tendency toward the extremes comes from
the combination of trend (	 ) momentum and bounding of
�. The skew toward the low end comes from the fact that
the trend is multiplicative, so the process tends to transition
more rapidly while at the higher levels of demand.

50 100 150 200 250 300 350

1

2

3

4

5

6

7

8
x 10

−3

Figure 2.
Probability density for average RFQs per

day ( ��).

Given this distribution,we define demand-adjusted profit
(DAP) as the expected profit, adjusted for demand. We
calculate this by substituting the per-agent profit for � in
Eq. (1). Using this formula requires an estimate for prof-
its as a function of ��, which we obtain by linear regression
from the sample data. Although the actual relationship is
not linear, the fitted line represents an unbiased estimate of
the mean. For limited samples, adjusting for �� in this man-
ner indeed produces a substantial reduction in variance.

4.3. Simulation Results

To estimate our game’s expected payoff function, we
sampled an average of around 30 game instances for each
strategy profile—834 in total. For each sample, we col-
lected the average profits for the As, Bs, and Ps, as well as
the demand level, ��. We then used the demand-adjustment
method described above to derive DAP for each strategy,
which we take as its payoff in that profile.
From this data, we verify that increasing the prevalence

of aggressiveness degrades aggregate profits. We show that
inserting a single preemptive agent neutralizes the effect
of aggressiveness, diminishing the incentive for aggressive

procurement, and ameliorating its negative effects. More-
over, the presence of a preemptor tends to improve perfor-
mance for all agents in profiles containing a preponderance
of agents playing A. We then study the equilibrium behav-
ior of each of the three versions of the game. From the em-
pirical game models, we derive asymmetric pure-strategy
equilibria, as well as symmetric mixed-strategy equilibria,
for each of the games.2 Comparison of the features of equi-
librium behavior in the respective games confirms our find-
ings about the effects of strategic preemption.
To test our hypothesis that aggressive strategy has a neg-

ative effect on total profits, we regressed total DAP for each
profile on the number of aggressive agents in the profile.
For profiles without preemption, the linear relationship was
quite strong (
 � ������, �� � ����), with each A in the
profile subtracting $20.9M from total profits, on average.
In the single-preemptor game, the effect of number of ag-

gressive agents on average profits was statistically insignif-
icant, explaining little variance (
 � ���, �� � ����).
In unpreempted profiles with four or more aggressive play-
ers, agents playing either strategy would benefit substan-
tially (at least $6.5M on average) from one of the others (ei-
ther type) switching to play P. Thus, preemption appears to
eliminate the detrimental effect that aggressive agents ex-
ert on total profits, and for individual profits as well com-
pared to profiles with a predominance of strategy A.
We also confirmed that preemption levels the playing

field, as the difference in average profits between aggres-
sive and baseline agents was on the order of $10M for the
unpreempted profiles, as compared to $1M for the single-
preemptor case. Examining the variance across agents in
each particular game, we observe that average variance for
unpreempted profiles was an order of magnitude larger than
that for profiles with preemption. See Table 1.

4.4. Pure Strategy Equilibria

A pure-strategy Nash equilibrium is a strategy profile
such that no agent can improve its payoff by changing
strategies, assuming all other agents play according to the
profile. We identify pure strategy Nash equilibria for both
two-strategy games, as well as the full three-strategy game.

4.4.1. Two-StrategyGames In a two-strategy (�A,B�)
symmetric game, a profile is defined by the number of As.
Profile � � � � � is a Nash equilibrium if and only if:

1. the payoff to A in � exceeds the payoff to B in ��� (or
� � �), and

2. the payoff to B in � exceeds that to A in � � � (or � �
� ).

2 It can be shown that for any� -player two-strategy symmetric game,
there must exist at least one equilibrium in pure strategies, and there
also must exist at least one symmetric equilibrium (pure or mixed) [3].



Profile Variance Baseline Aggress. Preempt.
DAP DAP DAP

AAAAAA 8.37E+15 n/a –12.26 n/a
AAAAAB 8.29E+15 –9.03 –13.58 n/a
AAAABB 1.14E+16 –10.78 –1.47 n/a
AAABBB 9.70E+15 –10.36 9.73 n/a
AABBBB 6.79E+15 –2.47 19.16 n/a
ABBBBB 2.61E+15 –1.83 13.28 n/a
BBBBBB 1.84E+13 8.17 n/a n/a

PAAAAA 6.38E+14 n/a 6.86 9.98
PAAAAB 6.36E+14 7.23 8.84 10.29
PAAABB 6.50E+14 3.62 5.15 9.04
PAABBB 7.53E+14 6.06 7.34 10.96
PABBBB 1.18E+15 4.19 5.75 11.41
PBBBBB 1.03E+15 6.06 n/a 13.64

PPAAAA 5.90E+14 n/a 3.67 5.45
PPAAAB 4.24E+14 5.11 4.71 6.69
PPAABB 4.28E+14 4.55 4.70 6.71
PPABBB 4.95E+14 1.74 2.57 4.46
PPBBBB 9.03E+14 4.78 n/a 7.31

PPPAAA 2.49E+14 n/a 7.41 7.30
PPPAAB 1.75E+14 5.76 5.84 6.32
PPPABB 1.99E+14 10.10 10.14 10.08
PPPBBB 3.51E+14 3.76 n/a 4.30

PPPPAA 2.33E+14 n/a 2.26 1.50
PPPPAB 2.13E+14 6.98 7.24 6.16
PPPPBB 2.87E+14 5.77 n/a 5.69

PPPPPA 1.43E+14 n/a 7.74 6.64
PPPPPB 2.04E+14 5.46 n/a 4.39

PPPPPA 1.19E+14 n/a n/a 4.14

Table 1. Payoffs by strategy profile.

We consider the games defined by DAP payoffs, as well
as raw average profits. The full set of DAP payoffs are pro-
vided in Table 1. As we ran our simulations, we observed
that DAP results anticipated those we would obtain from
raw averages after collecting more samples. In a more sys-
tematic trial, we found that DAP estimates exhibit lower
mean-squared-error compared to sample means, for a range
of subsample sizes goingwell beyondwhat we could collect
for each profile. Given our relatively small datasets, there-
fore, we have greatest confidence in the DAP results. An ad-
vantage of the raw averages is that we have associated vari-
ance measures, enabling statistical hypothesis testing.
Let �A denote the profile with no preemption, and �

agents playing A (the rest playing B). Whether we define
payoffs by DAP or raw averages, the unique pure-strategy
Nash equilibrium is 4A. That this is an equilibrium for
DAP payoffs can be seen by comparing adjacent columns
in the bar chart of Figure 3. Arrows indicate for each col-
umn, whether an agent in that profile would prefer to stay
with that strategy (arrow head), or switch (arrow tail). Solid
black arrows denote statistically significant comparisons, as
discussed below. Profile 4A is the only one with only in-
pointing arrows.
Let P�A denote the profile with a preemptive agent, and

� As. In the game with preemption, we find several pure-

Figure 3.
DAP payoffs, unpreempted profiles.

strategy Nash equilibria. P4A and P2A are equilibria under
either DAP or raw profits, and P0A is an equilibrium in the
game defined by DAP only. The DAP comparisons are il-
lustrated by Figure 4.

Figure 4. DAP payoffs, with preemption.

To assess the robustness of these equilibria, we con-
ducted statistical tests. For each relevant comparison we
performed two-sample t-tests, using average profits, assum-
ing unequal variance. The p-values are presented in Table 2.
Whereas some of the comparisons in the unpreempted game
indicate significant differences, none of those in preemp-
tive profiles are particularly significant. Thus, the equilib-
ria we found should be considered suspect, or weak equi-
libria at best. Since payoffs in the preemptive games have
much lower variance, if anything we would expect signifi-
cant differences to show up earlier. This is consistent with



our finding above that the preemptive agent neutralizes the
difference between strategies A and B. In that respect, iden-
tifying an equilibrium is less important in this context.

Comparison P-value

AAAAAA� AAAAAB 0.6595
AAAAAB� AAAABB 0.0020
AAAABB� AAABBB 0.0246
AAABBB� AABBBB 0.5123
AABBBB� ABBBBB 0.0001
ABBBBB� BBBBBB 0.2879

PAAAAA� PAAAAB 0.7678
PAAAAB� PAAABB 0.2294
PAAABB� PAABBB 0.4413
PAABBB� PABBBB 0.3436
PABBBB� PBBBBB 0.3845

Table 2. Statistical significance.

Regardless of which equilibrium is played, both A and B
agents are clearly better off in the single-preemptor game.
In all its equilibria, all agents earn over $6M profit. In the
unpreempted game equilibrium (4A), in contrast, all profits
are negative, with the B agents losing over $10M each.

4.4.2. Full Three-Strategy Game Our analysis of the
two-strategy games confirms our hypothesis that introduc-
ing a single preemptive agent neutralizes the effect of ag-
gressiveness and moves equilibrium play toward a more
profitable space. The success of preemption, however, raises
the question whether an incentive to preempt will create
a similar mutually destructive competition among preemp-
tors. To check this, we can perform the same kind of equi-
librium analysis in the three-player game, where agents are
allowed to choose strategy P. The twenty-eight profiles are
arrayed in Figure 5, with arrows indicating the transitions
between profiles induced by agents switching strategies.
The four pure-strategy Nash equilibria of this game are

indicated in bold: PAAAAB, PPBBBB, PPPAAA, and PP-
PABB. Although the average scores vary across equilibria,
in every case the A and B players earn substantial profit, un-
like the unpreempted case. Indeed, there exists only one un-
preempted profile (2A) from which an A would not deviate,
and no unpreempted profiles where playing B is stable.
We also note that as more agents adopt a preemptive

strategy, the difference in performance among strategies di-
minishes. Almost all the comparisons between preemptive
profiles are statistically insignificant, as can be seen by the
thin arrows in Figure 5. One way to quantify the indiffer-
ence between strategies given preemption is to consider the
-Nash equilibria. A profile is -Nash if no agent can im-
prove its payoff by more than  by deviating from its as-

signed strategy. In Figure 5, we display for each profile the
minimum  that would render it an -Nash equilibrium. For
example, although PPPPPA is not an equilibrium, agents
can gain at most $0.34M by deviating from their assigned
strategies. Among the 21 preemptive profiles, 17 of them are
-Nash equilibria at an  of $5.38M or less. In contrast, none
of the unpreempted profiles are -equilibria at that level.

4.5. Mixed Strategy Equilibria

Although the pure-strategy equilibria are interesting, we
might consider symmetric equilibriamore natural, given the
symmetry of the game and its lack of identifying roles [6].
In order to identify a symmetric equilibrium, we need in
general to consider mixed strategies.

4.5.1. Two-Strategy Games Let � be the total num-
ber of strategies in the profile (in our context, � � � with-
out preemption, and � � � when we include a single fixed
preemptive agent). Define DAP	�� �
 as the DAP of strat-
egy X (A or B) when � agents out of � play strategy A.
If � agents each independently choose whether to play A
with probability � (henceforth, “play �”), then the proba-
bility that exactly � will choose A is given by

��	�� �� �
 �

�
�

�

�
��	�� �
����

Let � 	���
 denote the DAP of an agent playingAwhen
the remaining agents play �:

� 	���
 �
����
���

��	�� ��� � �
DAP	�� � � �
�

Similarly, we define DAP values for playing B or �, respec-
tively, in the setting where others play �:

� 	���
 �
����
���

��	�� ��� � �
DAP	�� �
�

� 	�� �
 � �� 	���
 � 	�� �
� 	���
�

We plot these values of playing A, B, or � in response
to �, for the two games, in Figure 6. A necessary and suffi-
cient condition for a symmetric mixed-strategy equilibrium
is

� 	���
 � � 	���
�

Therefore, we can identify such equilibria by the points in
these figures where the curves intersect. For the game with-
out preemption, we have a single symmetric mixed-strategy
equilibrium, at � � ����. When the preemptive agent is
present, we find two symmetric mixed-strategy equilibria:
� � ���� and � � ����.
The expected payoff for the equilibrium strategy (neces-

sarily equal for A and B) of the game without preemption is



Figure 5.
Profiles for the full three-strategy game, with arrows indicating a desire by the associated agent

to change its strategy. Bold arrows indicate statistically significant comparisons. Values specified
for each profile represent the minimum  such that the profile constitutes an -Nash equilibrium.

a loss of $9.59M. With a single preemptor, the two equilib-
ria have expected payoffs of $5.92M and $7.01M, respec-
tively. The preemptive agent itself also does well, earning
profits of $13.3M and $9.99M in the respective equilibria.
Although we have no direct way to perform a statisti-

cal hypothesis test using demand-adjusted values, a con-
servative option is to compare the mean DAP scores us-
ing the variance of the raw averages. In this instance, DAP
for the two preemptive equilibria exceed that of the non-
preemptive equilibrium at p-values less than 0.0001.
Inspection of Figure 6 confirms our prior finding that

preemption reduces the difference between A and B strate-
gies. One way to quantify this is to identify an  � for
each game such that any mixed strategy is a symmetric -
Nash equilibrium at  � �. In our context, � is therefore
the maximum payoff difference between playing the best-
response strategy, and playing�:

� � ���
�

�
���

�����	�
� 	���
� � 	�� �


�
�

For games without preemption, � is $10.6M. With preemp-
tion, � is only $0.97M. This provides a bound on howmuch
it can matter to make the right choice about aggressiveness,
given a symmetric set of other agents.

4.5.2. Full Three-Strategy Game We were also able
to derive a symmetric mixed-strategy equilibrium for the
full three-strategy game, using replicator dynamics [10]. In
equilibrium, agents play A with probability 0.23, B with
probability 0.19, and P with 0.58. The expected payoff for
this mixed strategy is $5.78M. This is not quite as good as
the environment allowing only a single preemptor, but of
course much better than the unpreempted situation.

5. Conclusion

The TAC supply-chain game presented automated trad-
ing agents (and their designers) with a challenging strategic
problem. Embedded within a highly-dimensional stochas-
tic environment was a pivotal strategic decision about initial
procurement of components. Our reading of the game rules
and observation of the preliminary rounds suggested to us
that the entrant field was headed toward a self-destructive,
mutually unprofitable equilibrium of chronic oversupply.
Our agent, Deep Maize, introduced a preemptive strategy
designed to neutralize aggressive procurement. It worked.
Not only did preemption improve Deep Maize’s profitabil-
ity, it improved profitability for the whole field. Whereas
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Figure 6.
Response to mixed strategy �, for the unpreempted (left) and single-preemptor (right) games.

Note that the payoff scale is an order of magnitude wider in the left graph.

it is perhaps counterintuitive that actions designed to pre-
vent others from achieving their goals actually helps them,
strategic analysis explains how that can be the case.
Investigating strategic behavior in a research competi-

tion has several distinct advantages. First, the game is de-
signed by someone other than the investigator, avoiding the
kinds of bias that often doom research projects to success.
Second, the entry pool is uncontrolled, and so we may en-
counter unanticipated behavior of individual agents and ag-
gregates. Third, the games are complex, avoiding many of
the biases following from the need to preserve analytical or
computational tractability. Fourth, the environment model
is precisely specified and repeatable, thus subject to con-
trolled experimentation. We have exploited all of these fea-
tures in our study, in the process developing a repertoire of
methods for empirical game-theoretic analysis, which we
expect to prove useful for a range of problems.
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