
Comparing Action-Query Strategies in Semi-Autonomous Agents

Robert Cohn
Computer Science and Engineering

University of Michigan
rwcohn@umich.edu

Edmund Durfee
Computer Science and Engineering

University of Michigan
durfee@umich.edu

Satinder Singh
Computer Science and Engineering

University of Michigan
baveja@umich.edu

Abstract

We consider settings in which a semi-autonomous agent has
uncertain knowledge about its environment, but can ask what
action the human operator would prefer taking in the current
or in a potential future state. Asking queries can improve be-
havior, but if queries come at a cost (e.g., due to limited oper-
ator attention), the value of each query should be maximized.
We compare two strategies for selecting action queries: 1)
based on myopically maximizing expected gain in long-term
value, and 2) based on myopically minimizing uncertainty in
the agent’s policy representation. We show empirically that
the first strategy tends to select more valuable queries, and
that a hybrid method can outperform either method alone in
settings with limited computation.

1 Introduction
A semi-autonomous agent acting in a sequential decision-
making environment should act autonomously whenever it
can do so confidently, and seek help from a human opera-
tor when it cannot. We consider settings where querying the
operator is expensive, for example because of communica-
tion or attentional costs, and design algorithms to find the
best query to ask the operator. Operator responses to agent
queries can improve the agent’s ability to behave as the oper-
ator would. Of the many types of queries one could consider
asking the operator, action-queries (asking what action the
operator would take if teleoperating the agent in a particular
state) are arguably quite natural for a human to respond to.
Our goal, then, is to design an agent that can (1) select which
action-queries are most useful for efficiently mimicking op-
erator teleoperation, and (2) elect not to query when its cost
exceeds its benefit. Here we focus on (1), while our previous
work (Cohn et al. 2010) contains insights addressing (2).

When teleoperating, the operator chooses actions accord-
ing to her model of the world. We assume that the agent fully
knows the operator’s model of world dynamics, but has an
incomplete model of the operator’s rewards, and thus risks
acting counter to the operator’s true rewards. The agent rep-
resents its uncertainty as a probability distribution over re-
ward functions, and the only information it can acquire to
improve its behavior is operator responses to its queries.

Copyright c© 2011, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Our objective is for the agent to identify the query that will
maximize its gain in expected long-term value with respect
to the operator’s true rewards and the agent’s current state.
This objective is myopic because it ignores future queries
that could be made, such as if the agent could ask a sequence
of queries, or wait to query later. Although desirable, non-
myopic optimization would require solving an intractable
sequential decision-making problem (see Duff 2003) to find
an optimal action-query policy.

Our contributions in this paper are threefold. First, we
adapt the Expected Myopic Gain (EMG) algorithm (Cohn
et al. 2010), which had hitherto been applied to selecting
transition-probability and reward queries, to create a new
EMG algorithm for Action-Query Selection (EMG-AQS).
Second, we compare our algorithm with an alternative algo-
rithm called Active Sampling (AS) (Lopes, Melo, and Mon-
tesano 2009) that applies directly to our problem setting, but
selects action-queries based on maximally reducing uncer-
tainty in policy representations. EMG-AQS is computation-
ally expensive but directly optimizes our objective, while AS
is computationally inexpensive but only indirectly optimizes
our objective. We exploit this fact through our third contribu-
tion, which is a new hybrid algorithm combining EMG-AQS
and AS, that we show in computation-time-limited problems
to perform better than either method alone.

This paper is organized as follows. We provide back-
ground on the EMG and AS algorithms, derive our adap-
tation of EMG to action-query evaluation, and then provide
an empirical comparison spanning two domains, where the
second motivates the introduction of our hybrid algorithm.

2 Related Work
Our problem is related to that of apprenticeship learning
(Abbeel and Ng 2004) where the agent is provided with
a trajectory of teleoperation experience, and charged with
learning by generalizing that experience. The difference is
that rather than passively obtaining teleoperation experience,
our agent is responsible for actively requesting such infor-
mation. In our setting, the agent can even ask about potential
future states that may never be experienced.

Chernova and Veloso (2009) address a version of the
action-query selection problem, where unlike our setting, the
agent has neither a model of dynamics nor a prior distribu-
tion over reward functions, and decides whether or not to

query only the current state. Since our focus is on select-
ing the best action-query from a space of possible action-
queries, we do not include their method in our comparisons.

Our problem is related to preference elicitation in the
presence of utility uncertainty (Chajewska, Koller, and Parr
2000). In fact, our action-queries can be viewed as choice
queries as in Viappiani and Boutilier (2010), but in a se-
quential decision making setting. Indirect information pro-
vided by action-queries in this setting requires the applica-
tion of Bayesian Inverse Reinforcement Learning to update
the agent’s reward belief, which we describe in Section 4.

More generally, our problem is related to Active Learning
(Cohn, Atlas, and Ladner 1994), where the learner seeks to
induce the correct hypothesis that maps datapoints to a label
space, and may request labels for datapoints. However, our
MDP setting introduces significant structure and emphasizes
that the agent maximize its long-term value at its current
state, as opposed to its expected label accuracy.

3 Background
MDPs and Bayesian MDPs: In a Markov Decision Pro-
cess (MDP), the agent’s environment is modeled as a tuple
M = 〈S,A, T,R〉 where the components represent the state
space, action space, transition function, and reward function,
respectively. At each time step, the agent observes its current
state s, takes action a, probabilistically transitions to state s′
according to T (s′|s, a), and receives reward R(s′). A policy
π maps S → A, and the expected value of acting according
to π in MDP M beginning from state s is denoted V πM (s)
and defined as E[

∑∞
t=1 γ

trt], where γ is a discount factor
∈ [0, 1] and rt is the reward received at time t. The optimal
policy for MDP M , π∗M , can be computed by algorithms
such as value or policy iteration.

In this paper, we focus on the case of uncertainty only
over a discrete set of reward functions. The agent repre-
sents its uncertainty as a probability distribution over pos-
sible reward functions and thus over MDPs. We denote
that distribution, or interchangeably the parameters that de-
fine that distribution, as ψ. For state s under a policy π,
the expected value over distribution ψ is the expected dis-
counted sum of rewards when the MDP is drawn from ψ,
the start state is s, and the agent behaves according to pol-
icy π, i.e., EM∼ψ[V πM (s)] where M ∼ ψ denotes a ran-
dom MDP M drawn from ψ. The Bayes-optimal policy
is optimal in expectation over ψ, denoted π∗ψ , and satisfies
π∗ψ(s) = arg maxπ EM∼ψ[V πM (s)].

Active Sampling
Lopes et al. (2009) introduce Active Sampling (AS), a
method that selects action queries in a Bayesian MDP set-
ting with a distribution over reward functions but knowledge
of all other components of the MDP. Intuitively, AS reduces
the agent’s uncertainty about the operator’s policy by query-
ing the state that has maximum mean entropy (uncertainty)
in its action choices. Next we describe AS in more detail.

Each MDP has a stochastic optimal policy (stochastic
only in that ties between actions are broken with uniform
probability), and the action-choice probability for a state for

each action is binned into K uniform intervals between 0
and 1. Given a current distribution over rewardsψ, the mean-
entropy for state s, H̄(s), is given by

H̄(s) = − 1

|A|
∑
a∈A

K−1∑
k=0

µsa(k)log µsa(k), where

µsa(k) =
∑
r∈R

{
π∗(a|r; s) ∈ Ik

}
Pr(r|ψ).

Here Ik = (kK ,
k+1
K] for k 6= 0 and I0 = [0, 1

K], Pr(r|ψ)
is the probability of reward function r given distribution ψ
over rewards, and {π∗(a|r; s) ∈ Ik} is 1 if the probability
of action a in state s under the optimal policy given r falls
in the interval Ik and 0 otherwise. The AS algorithm queries
the state with maximum mean-entropy.

Note that the dynamics of the world may dictate that some
states are less likely to be reached than others, especially
when taking into account the agent’s current state. Also, tak-
ing the wrong action in some states may be catastrophic,
whereas in others benign. Directly reducing policy uncer-
tainty does not consider these factors, and thus is only a
proxy for achieving our objective.

Expected Myopic Gain
Expected Myopic Gain (EMG) (Cohn et al. 2010) is a my-
opic Expected Value of Information (EVOI) technique for
assessing the goodness of a query in terms of how much
long-term value the agent is expected to gain from it. EMG
can be split into two parts. First, for a query q (in gen-
eral about any aspect informative about the distribution over
MDPs) in current state sc, define the expected gain if the
answer to the query is o as follows:

Gain(〈q, o〉|ψ, sc) = EM∼ψpost [V
π∗
ψpost

M (sc)]

− EM∼ψpost [V
π∗
ψ

M (sc)], (1)
where ψ is the agent’s knowledge before the query and
ψpost = ψ, 〈q, o〉 is the agent’s knowledge after receiving
response o to query q. Intuitively, Equation 1 states that the
value of knowing that o is the answer to query q is the differ-
ence between the expected value at the current state of the
policy calculated according to the new information and the
policy calculated beforehand, evaluated on the MDP distri-
bution induced by the new information.

Since the agent does not know which response o ∈ O it
will receive to its query q, EMG computes an expectation
over the possible responses to q:

EMG(q|ψ, sc) =

∫
o

Gain(〈q, o〉|ψ, sc)P (o |ψ; q)do. (2)

The query selected is arg maxq∈QEMG(q|ψ, sc) which
will, in expectation, most increase the agent’s long-term
value (Cohn et al. 2010). Thus EMG achieves our objec-
tive, but in our previous work we only showed how to com-
pute EMG for transition queries and reward queries, which
give direct information about the MDP’s transition or reward
function respectively, and did not address the more challeng-
ing case of the more natural action-queries, which reveal in-
direct information about the underlying reward function.

4 EMG-based Action-Query Selection
Adapting the EMG algorithm of Equations 1 and 2 for
action-queries requires a method to update the distribution
over reward functions, given the operator’s preferred action
at a state. This is exactly the problem solved in Bayesian In-
verse Reinforcement Learning (BIRL) (Ramachandran and
Amir 2007), and like Lopes et al. (2009) we use BIRL to
perform belief updates over the reward space.

In BIRL, the starting assumption is a noisy-model of the
operator’s action selection. For the MDP given by reward
function r ∈ R, there is an associated action-value func-
tionQ∗ such thatQ∗(s, a, r) is the expected long-term value
obtained when the start state is s, the first action is a, and
the optimal policy is followed thereafter. The operator is as-
sumed to respond with action a to an action-query for state
s with probability

P (a|r; s) =
1

Zr
eαQ

∗(s,a,r), (3)

where Zr is the normalization term and α is a noise (or con-
fidence) parameter such that the larger the α, the more con-
fident the agent is that the response received is indeed opti-
mal for the operator. Setting α lower can help in situations
in which the operator’s responses are noisy, or inconsistent
with respect to all rewards in the reward space; this is a de-
parture from our assumption in Cohn et al. (2010) that the
operator acts optimally with respect to at least one model
within the agent’s MDP distribution. Given a response a to
query s, and a current distribution over rewards ψ, the poste-
rior distribution over rewards is defined by the Bayes update
P (r|ψ, a; s) = 1

ZP (a|r; s)P (r|ψ), where again Z is the ap-
propriate normalization term.

We have shown how to utilize BIRL to perform poste-
rior updates given query responses, which allows the cal-
culation of the distribution ψpost from distribution ψ and
query-response pair 〈s, a〉. We now turn to simplifying the
terms of Equation 1, for which the agent must compute the
expected value of a policy over ψ for the current state, as
well as compute the Bayes-optimal policy for ψ. For gen-
eral sources of uncertainty this would be a computationally
prohibitive calculation, but in our case of uncertainty only
in rewards, drastic simplification applies. Specifically, the
expected value of a policy over a reward distribution is its
value for the single mean-reward function ψ̄, which implies
that the Bayes-optimal policy for ψ is the optimal policy for
ψ̄. (See proof of Thm. 3 in Ramachandran and Amir 2007.)

Thus, Equation 1 can be simplified as

Gain(〈s, a〉|ψ, sc) = V
π∗
ψpost

ψpost
(sc)− V

π∗
ψ

ψpost
(sc).

With Equation 1 made tractable, we examine P (a|ψ; s) in
Equation 2, which represents the probability that the opera-
tor would respond with a for query s given ψ:

P (a|ψ; s) =
∑
r∈R

P (a|ψ, r; s)P (r|ψ) =
∑
r∈R

P (a|r; s)P (r|ψ).

Notice that we already defined P (a|r; s) using the above
model, and that P (r|ψ) is the prior probability of reward

function r. This completes the description of how the agent
updates its reward function distribution after each query,
and utilizes the properties of reward function distributions
to compute Equations 1 and 2. Our resulting algorithm is
called EMG-based Action-Query Selection (EMG-AQS).

Reward Parameter Distributions. Parameterizing the re-
ward function allows for a compact representation of the re-
ward function distribution, even when defined over an infi-
nite state space. Consider a distribution over a discrete pa-
rameter space W and a function f that maps w ∈ W to
a reward function Rw ∈ R. We can use the mean reward
function for computing optimal policies and value functions
with respect to a reward distribution, but we can use the
reward function associated with the mean reward parame-
ters instead only when E[f(w)] = f(E[w]) (an extension of
Theorem 3 in Ramachandran and Amir 2007). Due to linear-
ity of expectation, this equality holds when f(w) is a linear
function of w, but not necessarily otherwise. Therefore we
use the mean reward parameters when this equality holds,
but otherwise use the mean reward function, calculated as
E[f(w)] =

∑
w∈W f(w)P (w)dw. We make use of param-

eterized reward functions in all experiments in this paper.

Finite Reward Sets. We have assumed a finite reward
function set, and accordingly, maintain a categorical re-
ward parameter distribution which we update exactly ac-
cording to the equations presented above. The finiteness of
the reward set allows EMG-AQS and AS to precompute (or
cache) value functions for each reward parameter, resulting
in substantial computational savings when updating the re-
ward distribution. Although continuous reward spaces can
account for more behaviors, and thus in theory fit agent be-
havior more closely to operator behavior, performing BIRL
in continuous reward spaces comes at a significant com-
putational cost. (See Lopes et al. 2009 and Ramachandran
and Amir 2007 for Monte Carlo methods for approximating
BIRL in continuous reward spaces.)

5 Comparisons
We now empirically compare the relative suitability of
EMG-AQS versus AS for choosing the most valuable
queries to pose to the operator. Prima facie, one might ex-
pect EMG-AQS to perform better, as it is Bayes-optimal
(Cohn et al. 2010) for selecting a single query. However,
neither method is Bayes-optimal when selecting a sequence
of queries, or when limited computation time is available so
that only some of the possible queries can be evaluated. We
test the former condition in our first experiment, the latter
condition in our second experiment, and both combined in
our third experiment.

The principal metric of comparison that we use is pol-
icy loss, which is the difference in long-term value for the
current state between the operator’s policy and the policy
based on uncertain knowledge (evaluated on the operator’s
rewards). In the experiments that follow, we report average
policy loss over trials (error bars shown are 95% confidence
intervals), where each trial uses a reward function whose pa-
rameters are uniformly randomly drawn from the uniform-
prior reward parameter space.

 0

 0.0001

 0.0002

 0.0003

 0.0004

 0.0005

 0.0006

 0.0007

 0 1 2 3 4 5

P
ol

ic
y

lo
ss

Number of queries made

Puddle World: Discount=0.2

"EMG-AQS"
"AS"

"Random"

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0 1 2 3 4 5

P
ol

ic
y

lo
ss

Number of queries made

Puddle World: Discount=0.9

"EMG-AQS"
"AS"

"Random"

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0 1 2 3 4 5

P
ol

ic
y

lo
ss

Number of queries made

Puddle World: Discount=0.99

"EMG-AQS"
"AS"

"Random"

 0

 10

 20

 30

 40

 50

 0 1 2 3 4 5

P
ol

ic
y

lo
ss

Number of queries made

Puddle World: Discount=0.999

"EMG-AQS"
"AS"

"Random"

Figure 1: Average policy loss for EMG-AQS, AS, and Random on the Puddle World across a sequence of queries shown, from
left to right, for discount 0.2, 0.9, 0.99, and 0.999. Error bars are 95% confidence intervals.

Puddle World
We conducted our first set of experiments in the Puddle
World, as used in the evaluations of Lopes et al. (2009).
The puddle world is a 21x21 gridworld, and so has 441
states (locations). The agent can move (deterministically)
in any of the 4 cardinal directions to a neighboring state
(unless it bumps into a grid edge in which case it does
not change state). The agent acts over an infinite time hori-
zon, with discount factor γ ∈ [0, 1). The reward function
is f(w, s) = r1 exp(−||s1−s||2σ2) + r2 exp(−||s2−s||2σ2), where
s1,s2 in w represent the centers of reward emitting regions,
and r1,r2 in w constitute the sign and magnitude of reward
emitted from each. The pre-set scalar σ determines the rate
of decay of the magnitude of reward emitted from each cen-
ter. The parameterization permits cases with one “goal” and
one “puddle” (one of the r parameters is positive and the
other is negative), and similarly two goals or two puddles.

As in Lopes et al.’s experiments, our agent’s start state
is always (0, 0). While their formulation uses a continu-
ous state space, their deterministic direction and distance
of movement actions resulted in a de facto discretization
of space. Thus, we explicitly represent the state space dis-
cretely, which also allows for much more accurate and rapid
Q-value approximations than would be computed through
function approximation. We discretized the parameter space
to allow the reward decay scalars to independently take on
values−1 or 1 and the centers of the reward emitting regions
to be located on a 5x5 discretization of the state space. This
results in a set of reward parameters of size 2500.

The “operator” in this experiment is modeled as the op-
timal policy given the actual reward parameters for the par-
ticular trial: a response to a query is the action in this policy
corresponding to the state being asked about.

Experiment 1. Here we perform our comparison across a
space of discount factors. Since the agent’s value is always
measured with respect to the start state, a smaller discount
factor reduces the benefit of collecting rewards in the future
– good queries will inform the agent how to behave near
the start state. As the discount factor increases, however, re-
wards the agent receives in the future are increasingly impor-
tant. We test over a range of discounts to gain insights into
each method’s proficiency in exploiting domain properties.

Figure 1 shows the performance of each method for a se-
quence of queries, across discount factors 0.2, 0.9, 0.99, and
0.999. Note the different scales of the y-axes: a smaller dis-

count factor leads to lower policy values, which in turn leads
to lower policy loss magnitudes.

On all graphs, EMG-AQS shows the best performance for
its first query. This is expected because EMG-AQS’s first
query choice is Bayes-optimal, so no method can do better
in expectation for the first query. For the low discount factor
of 0.2, EMG-AQS significantly outperforms AS across the
entire sequence. In fact, AS’s performance is comparable
to Random, a strategy that simply selects random queries.
Because EMG-AQS directly aims to increase the agent’s
expected discounted reward, it outperforms AS which in-
stead improves decisions that are most uncertain regardless
of when those decisions might be needed. Similarly, for dis-
count 0.9, which is the exact (discretized) setting Lopes et
al. (2009) use to test their method, EMG-AQS outperforms
AS for queries 2-4.

We expected that by raising the discount factor closer to
1, the relative benefits of EMG-AQS would diminish. We in-
deed see that with a discount of 0.99, the difference between
EMG-AQS and AS shrinks. In fact, AS outperforms EMG-
AQS for queries 4 and 5. This is not entirely surprising: both
approaches make myopic decisions based on different crite-
ria, so even though EMG-AQS will greedily make Bayes-
optimal decisions at each point in the query sequence, the
combination of queries asked by AS can be better.

Surprisingly, though, this trend does not persist as we con-
tinue to raise the discount factor to 0.999: EMG-AQS once
again outperforms AS. By investigating the queries being
asked, we discovered that the explanation for this is essen-
tially the other side of the coin for the larger discount fac-
tors. That is, when the discount factor is high enough, the
penalties incurred by, for example, wandering too near the
puddle on the way to the goal location become negligible
compared to the accumulation of reward the agent gets as it
hovers around the goal. Because of this, EMG-AQS focuses
on queries that effectively map the goal region rather than
the puddle region, while AS is not biased either way.

Hence, in the Puddle World, EMG-AQS effectively bi-
ases its queries towards the start state (for low discounts)
or towards finding the best region to occupy in steady state
(for high discounts), while AS is more evenhanded. These
results suggest that EMG-AQS often makes better choices
by exploiting domain properties, though in a balanced situ-
ation where no obvious properties can be exploited, AS can
be better. Our next experiments additionally account for the
computational efficiency of the methods.

Driving Domain
To test the robustness of the trends we observed in the Pud-
dle World, and to take computation efficiency into account,
we ran additional comparisons between EMG-AQS and AS
in our implementation of the Driving Domain (Figure 2a),
which is a traffic navigation problem often used in studies of
apprenticeship learning (Abbeel and Ng 2004).

Dynamics. At each discrete time step the agent controls a
car on a highway by taking one of three actions: move left,
null action, or move right. Attempting to move off the edge
results in a null action. Other cars are present, which move at
random continuously-valued constant speeds (this makes the
state space infinite) and never change lanes. The agent lacks
an explicit transition function, but can simulate to sample
trajectories influenced by its choices of actions.

State Features. The agent represents state as a vector of
68 features, consisting of three parts. The first has 5 bi-
nary features to specify the agent’s current lane. The sec-
ond contains 3 binary features to specify whether the agent
is colliding with, tailgating, or trailing another car. The third
part consists of 3 sets of features, one for the agent’s cur-
rent lane, and one for each adjacent lane, each containing
20 binary features specifying whether the agent’s car (disre-
garding lane) will collide with another car in 2X time steps,
where X ranges from 0 to 19. This part encodes the agent’s
view of traffic, taking into account car velocities.

Rewards. The reward function is parameterized by a
weight vector w as f(w, s) = φ(s) ·w, where φ(s) is a vec-
tor of reward features corresponding to state s. In particular,
φ(s) contains four binary features, which specify whether
the agent is colliding with, tailgating or trailing another car,
and whether the agent is currently driving on the shoulder.
In our experiments, the agent has a priori knowledge that
the reward weight corresponding to driving on the shoulder
is −0.2, but must learn which of 1000 possible assignments
of the other parameters best encodes operator preferences.

Practicality of Action-Queries. Since in our evaluations
the “operator” is a policy, queries can be answered by in-
voking the operator policy. However, in a practical scenario
with a human operator, the agent should translate its repre-
sentation of state into one that a human could more easily
understand. Since a hypothetical state includes information
about car positions and velocities as well as the agent car’s
position, the agent could present a state to the human opera-
tor as a simulated video clip, or an annotated picture.

Value Calculations. Due to the infinite state space, the op-
timal value function for a given reward parameter can no
longer be calculated exactly, and so we employ Sarsa(λ)
(Sutton and Barto 1998) with linear function approximation
to approximate value functions. This often makes the oper-
ator suboptimal with respect to the reward function chosen
for a particular trial. We accordingly set α in Equation 3 to
40.0, which represents relatively high confidence in operator
responses but allows robustness to possible inconsistencies
in responses. Unlike our experiments in the Puddle World,

the agent makes action-queries to learn the operator’s driv-
ing preferences before it enters the world. As a result, there
is no notion of current or start state, and so policy values,
including those used in our policy loss performance metric,
are computed as an expectation over possible start states.

Query Space. The infinite state space also makes it is im-
possible to exhaustively consider and rank every possible
query with either EMG-AQS or AS. We need a means to
approximately find each query evaluation algorithm’s maxi-
mum. While various heuristics (perhaps domain dependent)
might recommend themselves, to avoid biases in our exper-
iments that might favor one approach over another, queries
to consider were simply drawn at random from the query
space. The larger the number of randomly-drawn queries,
the greater the chances of finding a good query among them.
In our experiments, we consider differently-sized sets of
randomly-drawn queries to assess the impact of the set size.

Hybrid Method. Since EMG-AQS is computationally
costly, we examine a hybrid AS-EMG-AQS approach,
where AS is given a set of random candidate queries, and
uses its less costly evaluations to pass a subset of its top-
ranked options to EMG-AQS, which then selects from those.

Experiment 2. One way to scale action-query selection to
real world problems would be to, like here, sample possible
queries instead of exhaustively evaluating them. This moti-
vates a comparison between EMG-AQS and AS on a com-
putational efficiency level: even if EMG-AQS could select a
better query than AS from the same set of candidate queries
when allowed to evaluate all of them, AS might be able to
evaluate a much larger set in the same amount of time and
select a better one. Indeed, while the computation of both
methods is linear in the number of queries considered, our
implementation of AS evaluates a single query about 200
times faster than EMG-AQS (both using precomputed value
functions), since EMG-AQS performs the time-consuming
operation of formulating hypothetical policies for each of
the answers to the query.

In this experiment, we measure the policy loss for each
method asking one query, allotting each method the same
amount of time to select from a large set of randomly-
selected candidate queries. We also test our Hybrid method,
which uses AS to rank 16 randomly-selected queries, and
then uses the remaining allotted time for EMG-AQS to eval-
uate them in order until time expires and then return the best
one found. Figure 2b shows that AS’s superior speed allows
it to find a better query more quickly than EMG-AQS, but
does not benefit from additional time unlike EMG-AQS, al-
lowing EMG-AQS to outperform AS once at least 3 seconds
are available for computation. The Hybrid algorithm, on the
other hand, gets the best of both worlds and meets or sur-
passes the performance of both methods at all points. In-
tuitively, this is due to AS’s ability to quickly find queries
whose answers are very uncertain, allowing the slower but
more effective EMG-AQS to determine which of those is
most helpful in terms of value gain.

Experiment 3. Here we test how the methods perform
over query sequences in the Driving Domain, when again

a) b)

 0

 0.5

 1

 1.5

 2

 0 1 2 3 4 5 6 7

P
ol

ic
y

Lo
ss

Computation time allowed (seconds)

Timed Single Query Driving Domain Experiment

"Hybrid"
"Random"

"EMG-AQS"
"AS"

c)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6 7

P
ol

ic
y

Lo
ss

Queries made

Sequence of Queries Driving Domain Experiment

"Hybrid-16-2"
"Random"

"EMG-AQS-2"
"AS-400"

"EMG-AQS-4"

Figure 2: a) The Driving Domain. Average policy loss for various action-query methods according to b) computation time
allotted and c) number of queries made. Error bars are 95% confidence intervals.

computation time is limited. We employ 3 methods that each
take roughly 2 seconds to select a query per step: AS ap-
plied to a set of 400 random queries, EMG-AQS applied to
a set of 2 random queries, and Hybrid where AS selects 2
queries from a set of 16 random queries and EMG-AQS se-
lects the best of those (these roughly correspond to T=2 for
each strategy on the previous graph). We also employ EMG-
AQS applied to a set of 4 random queries, which consumes
4 seconds of computation per step, as well as Random.

Figure 2c shows that AS-400 outperforms EMG-AQS-2,
but that the Hybrid method, which adds a small computa-
tional cost (about 4%) to EMG-AQS-2, outperforms both.
EMG-AQS-4, consuming twice the computation time, out-
performs the rest (except when beaten by Hybrid for the
first two queries). We also ran the methods over larger query
sets, and found that EMG-AQS and Hybrid continued to im-
prove as they were allowed to sort through more random
queries, while AS did not (not shown, due to lack of space).
These results build on the trends we observed for a single
query: EMG-AQS only outperforms AS when a certain level
of computation is available, but Hybrid’s usage of AS as a
query filter can boost EMG-AQS’s performance when com-
putation is limited to get the best of both worlds.

6 Conclusion and Future Work
In this paper, we introduced a new action-query selection
method, called Expected Myopic Gain-based Action-Query
Selection (EMG-AQS), by adapting Expected Myopic Gain
from its previous use in reward and transition queries via
Bayesian Inverse Reinforcement Learning. We then pre-
sented an empirical comparison between EMG-AQS and
an existing action-query selection method, Active Sampling
(AS). Although EMG-AQS is Bayes-optimal for a single
query, we tested the effects of two conditions under which
EMG-AQS is not Bayes-optimal: performance over a se-
quence of queries, and performance given a fixed amount
of time allotted to select queries. Under the former condi-
tion, we found that in most cases EMG-AQS outperformed
AS over a sequence of queries due to its superior ability to
exploit domain properties. Under the latter condition, we
found that when little computation time was available, AS

outperformed EMG-AQS, but once enough time was avail-
able, EMG-AQS outperformed AS. In addition, we devised
the Hybrid algorithm, which performed better than either
method alone in settings with limited computation time.

In future work we plan to apply action-query selection to
more realistic problems that include a human operator. Sam-
pling from the query space and applying our Hybrid method
within computational limits could be a way to scale to more
complex problems, along with leveraging work in the litera-
ture for efficiently calculating value functions.
Acknowledgments. Our thanks to Mike Maxim, Dave
Karmol, and the anonymous reviewers. This research was
supported in part by the Ground Robotics Reliability Cen-
ter (GRRC) at the University of Michigan, with funding
from government contract DoD-DoA W56H2V-04-2-0001
through the US Army Tank Automotive Research, Develop-
ment, and Engineering Center. UNCLASSIFIED: Dist. A.
Approved for public release.

References
Abbeel, P., and Ng, A. Y. 2004. Apprenticeship learning via inverse
reinforcement learning. In ICML.
Chajewska, U.; Koller, D.; and Parr, R. 2000. Making rational
decisions using adaptive utility elicitation. In AAAI, 363–369.
Chernova, S., and Veloso, M. 2009. Interactive policy learning
through confidence-based autonomy. J. Artif. Int. Res. 34(1):1–25.
Cohn, D.; Atlas, L.; and Ladner, R. 1994. Improving generalization
with active learning. Mach. Learn. 15(2):201–221.
Cohn, R.; Maxim, M.; Durfee, E.; and Singh, S. 2010. Selecting
operator queries using expected myopic gain. IAT 2:40–47.
Duff, M. O. 2003. Design for an optimal probe. In Fawcett, T., and
Mishra, N., eds., ICML, 131–138.
Lopes, M.; Melo, F.; and Montesano, L. 2009. Active learning
for reward estimation in inverse reinforcement learning. In ECML
PKDD, 31–46.
Ramachandran, D., and Amir, E. 2007. Bayesian inverse reinforce-
ment learning. In IJCAI, 2586–2591.
Sutton, R., and Barto, A. 1998. Reinforcement Learning: An Intro-
duction. Cambridge, MA: MIT Press.
Viappiani, P., and Boutilier, C. 2010. Optimal bayesian recom-
mendation sets and myopically optimal choice query sets. In NIPS,
2352–2360.

