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Abstract

Markov decision processes (MDPs) with undis-
counted rewards represent an important class
of problems in decision and control. The goal
of learning in these MDPs is to find a policy
that yields the maximum expected return per
unit time. In large state spaces, computing
these averages directly is not feasible; instead,
the agent must estimate them by stochastic
exploration of the state space. In this case,
longer exploration times enable more accurate
estimates and more informed decision-making.
The learning curve for an MDP measures how
the agent’s performance depends on the al-
lowed exploration time, 7. In this paper we
analyze these learning curves for a simple con-
trol problem with undiscounted rewards. In
particular, methods from statistical mechan-
ics are used to calculate lower bounds on the
agent’s performance in the thermodynamic lim-
it 7T — oo, N — o0, @« =7T/N (finite), where
T is the number of time steps allotted per pol-
icy evaluation and N is the size of the state
space. In this limit, we provide a lower bound
on the return of policies that appear optimal
based on imperfect statistics.

1 Introduction

Many problems in decision and control can be modeled
as Markov decision processes (MDPs)[2]; applications
include game-playing, network routing, robot naviga-
tion, elevator scheduling, and shortest-path problems.
The goal of learning in MDPs is to discover the course
of actions, or policy, that yields the maximum expected
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return over time. There are many classical algorithms
for finding optimal policies given a complete description
of the Markov environment. Based on this description,
these algorithms compute the temporal statistics that
reveal which actions lead to consistent, long-term gains.

The classical algorithms for solving MDPs do not apply
in two important situations: (i) when the parameters of
the Markov environment are not a priori known, and (ii)
when it is not feasible (due to the size of the state space)
to perform the required matrix operations. In these
cases, one may devise stochastic approximations[l, 11,
13] to these algorithms that estimate the required statis-
tics rather than computing them exactly. These approx-
imationsrely on stochastic exploration of the state space
to measure the returns attached to particular courses of
action. In MDPs, these returns are the sums of rewards
that the agent accumulates over time.

In general, longer exploration times lead to more accu-
rate estimates and more informed decision-making. The
learning curve for an MDP measures how the agent’s
performance depends on the allowed exploration time,
T, per policy evaluation. An important question for
solving MDPs is how these stochastic approximations
converge to the correct answer as the exploration time
tends to infinity.

Most work on this issue has focused on MDPs whose
rewards are attenuated with time. This is done by in-
troducing a discount factor, 0 < v < 1, and weighting
the rewards at time ¢ by 4'. The discount factor is
convenient for bounding estimation errors, as it sets an
effective horizon time 7, = (1 —+)~! for the decision
process. In particular, actions beyond this horizon have
relatively little effect on the agent’s performance. If we
demand a fixed level of performance and allow v to vary,
the required exploration times scale as 7 ~ 7,. Like-
wise, for fixed v, one can relate the agent’s performance
to the allowed exploration time. This was done in a
PAC framework by Fiechter[4].

Less is known about MDPs with undiscounted rewards.
In this case, the goal of the agent is to find the pol-
icy that yields the maximum expected return per unit
time. Here the prescription 7 ~ 7, is vacuous, as undis-
counted rewards correspond to the limit 7, — oco. The



size of the state space also figures differently in MDPs
with discounted and undiscounted rewards. Roughly
speaking, in the former the only important states are
those that can be reached within 7, actions of likely
initial states. Hence, the effective number of accessible
states may be much smaller than the size of the state
space. These considerations do not apply to MDPs with
undiscounted rewards.

Our analysis employs a particular limiting method—the
so-called thermodynamic limit—developed in the sta-
tistical physics literature[9, 12]. For MDPs, this is the
combined limit that the allowed exploration time, 7,
and the size of the state space, NV, grow to infinity at a
fixed rate: 7 — oo, N — 00,7 /N = « (finite). Ref. [5]
gives a rigorous treatment of this method from the view-
point of computational learning theory. Though formu-
lated originally for problems in supervised learning, it
can also be used to study problems in decision and con-
trol. Of course, important differences between these two
types of problems must be kept in mind. In MDPs, indi-
vidual rewards are temporally correlated by the agent’s
path through state space—a path over which the agent,
by virtue of its actions at each time step, exerts a direct
influence. This fundamentally distinguishes the learn-
ing problem in MDPs, one of decision and control, from
problems in supervised learning where the goal is func-
tion approximation based on an ¢.1.d. set of training
examples.

In this paper we analyze the agent’s performance on a
simple control problem with undiscounted rewards. In
general, this performance depends on both the allowed
exploration time, 7, and the size of the state space,
N. The thermodynamic limit has two main virtues: it
simplifies our task by collapsing these parameters into a
single one, @« = T /N, and it focuses our attention on the
limit of large state spaces. This limit seems appropriate,
since it 1s precisely for large state spaces that stochas-
tic approximations are necessary to solve MDPs. This
paper extends earlier work[8] in which we introduced
a thermodynamic limit for MDPs with discounted re-
wards. Focusing on undiscounted rewards has enabled
us to derive much stronger results. In particular, here
we account explicitly for the temporal correlations in-
troduced by the agent’s path through state space, and
we also derive learning curve bounds without taking any
additional limits. Notwithstanding these improvements,
the present work is essentially self-contained.

We focus on a simple example that makes our analysis
tractable. Our example has three features that make it
desirable for study. First, it captures the basic problem
of temporal credit assignment; actions that yield short-
term gains can have negative long-term consequences.
Second, the policy space, though it consists of expo-
nentially many distinct policies, has a simple topology
that can be visualized in two dimensions. Third, even
from this simple example, we have discovered asymp-
totic rates of convergence that would be difficult to ex-
plain otherwise.

The rest of the paper is organized as follows. In sec-
tion 2, we review the basic elements of MDPs and in-
troduce the example that serves as our case study. In
section 3, we examine a particular representation of the
policy space for this example; this leads to the notion
of entropy and the limit of large state spaces, N — oo.
In section 4, we use tools from large deviation theory
to bound the probability of error in estimating value
functions. In particular, for estimates based on ran-
dom walks of length 7, we calculate the asymptotic
(T — o0) error rates when policies are ranked on the
basis of sampled returns. Section 5 combines the results
of the two previous sections to compute lower bounds
on the agent’s performance as a function of the allowed
exploration time. This 1s done for the thermodynamic
limit, 7 — oo, N — oo, @« = T /N (finite). Finally,
section 6 contains our conclusions, as well as issues for
future research.

2 Markov Decision Processes

This section presents a brief review of MDPs, concen-
trating on those aspects most relevant to our work. A
more thorough introduction may be found in ref. [2].

2.1 Background

A Markov decision process (MDP) models an agent’s
environment by a set of N states. In each of these states,
the agent is required to choose from a set of possible
actions. Here, we focus on MDPs in which the agent
must decide on one of two possible actions. In this case,
a policy 7 is an N-bit string that assigns an action to
each state in the environment. We denote the prescribed
action at state ¢ by a;, so that 7 = {ay1,as,...,an} €
{0, 1}V,

At each time step, the agent executes an action and
receives a positive or negative reward from the environ-
ment. The reward R} depends on the current state and
the selected action, so that

R :fi(l—ai)—l—riai, (1)

where 7; 1s the reward that results from taking action
a; = 0, and r; the reward for a; = 1. The agent’s
actions also lead to stochastic changes in the state of the
environment. In particular, the probability of making a
transition from state ¢ to state j is given by

Pl = pij (1 — a;) + pija, (2)

where p;; represents the transition probability that re-
sults from taking action a; = 0, and p;; the probability
for a; = 1. The actions thus determine both the re-
wards and the transition probabilities at each time step.

The goal of learning in MDPs is to find a policy that
yields the maximum expected return over time. This
return is just the sum of rewards accumulated at each
time step. In MDPs with discounted rewards, a dis-
count factor 0 < v < 1 is introduced to attenuate the



rewards with time. In this case, the value function, or
the expected return as a function of the start state, is
defined as the expected sum of discounted rewards:

T
T _ . ¢ L
V= lim E LZ_;’Y RY,| i l] , (3)

when the agent starts in state ¢ and executes policy
7« forever. The expectation is taken over all possible
paths {#;}52, through state space that start at state ¢
and result from actions dictated by x. The discount
factor v causes rewards later in time to be weighted
less than rewards earlier in time. In particular, eq. (3)
weights the reward at time ¢ by v, setting an effective
horizon time

=y 7 =0-7" (4)

for the decision process.

In this paper we shall focus on MDPs with undiscounted
rewards. In this case, the above definitions need to
be slightly modified. For MDPs with undiscounted re-
wards, the goal of the agent is to maximize the expected
return per unit time. The value function

1 T
72T

measures this time-averaged return for fixed policy 7
and 1nitial state 7. An equivalent definition for the value
function is given by:

v = lim E
T—oc0

10 = z] , (5)

T 7

E [Zt:l pthit
T

Zt:l Pyt

which makes plain the limiting (v — 1) relationship be-
tween the case of discounted and undiscounted rewards.
Note that the expectation in eq. (5) is independent of
the initial state ¢ provided that the policy = has an er-
godic transition matrix P. This will be true for all the
examples we discuss. For simplicity, then, we shall drop
the subscript labeling the initial state and denote the
value functions by »7™.

iozi]

= lim lim
T —o00vy—1

™
v;

;o (6)

2.2 Gibbs learning

There are many algorithms for learning optimal poli-
cies based on stochastic estimates of the value func-
tions. These algorithms have two goals: first, to ef-
ficiently search through the space of 2V policies, and
second, to discriminate (based on imperfect statistics)
which policies are best. Since it is this second goal we
wish to focus on, we will study an algorithm that has
unlimited resources for search, but limited resources for
policy evaluation.

The so-called Gibbs algorithm[5] works as follows. For
each policy w, it selects a random initial state, then
estimates the value function v™ by the time-averaged

return from a random walk of 7 steps:

1 T
ot = 2D R (7)
t=1

This is done in parallel for each of the 2V policies,
7 € {0,1}V. Having collected empirical estimates o™
for the true value functions v™, the Gibbs algorithm
then outputs the policy 78 with the highest empiri-
cal return: .
78S — arg max o™, (8)
™
Thus the Gibbs algorithm selects the policy that ap-
pears best based on random walks of length 7.

The Gibbs algorithm is highly idealized in that it per-
forms an exhaustive search over all policies 7 € {0, 1}.
Direct methods based on policy iteration[2] are more
practical for MDPs with large state spaces; roughly
speaking, they search through policy space in a step-
wise manner, favoring moves that lead to policies with
higher returns. These methods approximate the exhaus-
tive search of the Gibbs algorithm with a narrower (but
more deliberate) hunt for the optimal policy. Focus-
ing on the Gibbs algorithm allows us to avoid the com-
plicated issue of how any particular algorithm searches
through the policy space. Instead, we can concentrate
on the more universal 1ssue of decision and control based
on imperfect statistics.

We measure the performance of the Gibbs algorithm
by comparing the expected return of the Gibbs pol-
icy, m8°Ps with that of the optimal one, 7*. As 7 — oo,
the estimated value functions approach the true ones,
and we expect the return of the Gibbs policy to converge
to the optimal expected return. The learning curve plots
the difference between these two returns, (v* — v&Pbs)
as a function of the exploration time allotted per pol-
icy evaluation, 7. Qur goal is to provide upper bounds
on this difference and thus guarantee a minimal level of
performance from the Gibbs algorithm.

2.3 Example

In this section, we introduce the MDP that will serve
as an example for the rest of the paper. The two ac-
tions in this MDP correspond to exploratory jumps and
local reward-mining in state space. In particular, the
EXPLORE action a; = 0 causes the agent to jump with
equal probability to any state in state space, while the
MINING action a; = 1 causes the agent to remain in
place with probability A < 1. Eq. (2) gives the transi-
tion matrix

. 1 1-—A
Pi =y (—a)+ [Mz’j + ] ai, (9)
where 6;; is the Kronecker delta function. Note that P{;
has no zero elements, and hence it describes an ergodic
transition matrix for any policy .

The rewards in our example are designed to set up a
classic dilemma in decision and control: exploration



versus exploitation. In particular, the agent receives
zero reward 7#; = 0 for exploratory actions and a state-
dependent reward r; for choosing to mine the ith state.
The task for the agent is to choose which states to mine
and which to ignore. The rewards r; are assumed to
be independently chosen from a distribution p(r) and
remain fixed for all time. Following eq. (1), we have

RZT = r;a;, (10)
where r; varies from state to state according to the dis-
tribution p(r).

A basic strategy for maximizing the expected return per
unit time, defined by eq. (5), is to MINE the states with
high rewards and jump out of the states with low ones.
The dilemma is knowing how to classify the states as
rich or poor based on the distribution of rewards, p(r),
and the mining probability A. The mining probabil-
ity defines an effective lifetime, 7o = (1 — A)~!, during
which the agent reaps its rewards. If 74 is of order unity,
then the agent does not lose much return by mining a
state with low rewards. On the other hand, if 7o > 1,
then the agent must learn to pass on states with mod-
est rewards; the same time is better spent looking for
more profitable states. The optimal strategy thus de-
pends crucially on the mining probability A and the
distribution of rewards p(r).

Value functions

Let us now compute the value functions v™ for this ex-
ample. For MDPs with undiscounted rewards, this is
done by finding the stationary distribution of the tran-
sition matrix P[;. The stationary distribution ¢7 obeys
the left eigenvalue equation

D OTPG = 9] (11)

and the normalization condition )", ¢7 = 1. It is straight-
forward to show that
x a; + (1 —AY1 — q;
o = =B ) (12)
N({1—A+ Aum)

satisfies these conditions, where
. 1
Ho= N Z a; (13)

denotes the fraction of states in which the agent chooses
to MINE under policy 7.

The value function v™ measures the time-averaged re-
turn from policy 7. As the transition matrix P} is er-
godic, the expected return is found by averaging the
agent’s rewards over the stationary distribution, v™ =

> #T RT. Combining egs. (10) and (12), we find:
V= (14)
where

W' == am (15)

is a simple reward-weighted sum over state space. Note
that the value function »™ depends on 7 only through
the two parameters p™ and w™.

Optimal policy

The optimal policy for this problem has a simple form:
it 1s to EXPLORE at states for which r; is less than some
critical value, r., and to MINE at all the rest. Of course,
the precise value of r. depends on the mining probabil-
ity, A as well as the rewards, r;. In particular, to find
r¢, Wwe must maximize eq. (14) subject to the constraint
that a; = ©(r; — r.), where ©(-) is the Heaviside step
function.

Let us denote the optimal policy by #* and the optimal
value function by v*. In the limit of large state spaces,
N — oo, we have:

W= e - )

w' = %Zrk)(m —r) — /Toodr rp(r). (17)

c

_ /mwpwy (16)

Te

Note how sums over r; converge to integrals over p(r):
this is because the rewards r; are sampled independently
from the distribution p(r). Tt follows that the optimal
expected return

w*

= 1
1 - A+ Ap~ (18)

*

becomes an intrinsic property of the reward distribution
p(r) (as opposed to sampled values of r;) in the limit
N — 0.

To illustrate this, let us calculate v* for the MDP whose
mining rewards r; are uniformly distributed over [0, 1]:

pu(r) = { é

For this reward distribution, it is straightforward to
evaluate the integrals in egs. (16-17); substituting the
results into eq. (18) gives:

1 1 — 2
e o ——2 ). 2
! 2(1—Arc) (20)

Maximizing this with respect to r., one obtains the final

result:
. 1—V1I-AZ
v — (21)
Az
with r. = Av*. This is the optimal value function for
the reward distribution p, (r) and arbitrary A < 1. The
calculation is equally straightforward for many other re-

ward distributions.

for 0 <r<1.
otherwise (19)

3 Policy space

The form of the value function, eq. (14), gives rise to
a simple two dimensional representation of the policy
space. The coordinates in this representation are the
parameters u™ and w™, and each of the 2V policies rep-
resents a point in the pw-plane. Note that different
policies may map into the same point. Possible values
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Figure 1: pw-representation of policy space. The lines
represent policies with the same expected return. The
asterisk denotes the location of the optimal policy.

of pu™ range from zero to one, with the extreme val-
ues corresponding to policies that uniformly EXPLORE
or MINE. The range of w™ in general depends on the
values of the mining rewards, r;. As mentioned ear-
lier, we are interested in the limit of large state spaces,
N — oo. In this limit, the parameters 4™ and w™ as-
sume a continuum of values, with the range of w™ (for
fixed p™) determined completely by the reward distri-
bution, p(r). The effect of this is that the policy space
“fills in” a two dimensional region in the pw—plane.

Figure 1 shows this region for the MDP with mining
probability A = 0.75 and reward distribution p, (r). In
this case the region is bounded by parabolas that delimit
the minimum and maximum values of W™ = % > ar;
for fixed pu™ = % > a;. These values correspond to poli-
cies whose MINE actions occur in the pth fraction of
states with the lowest or highest rewards:

WwhIn () = /Oudr r= % (22)
wh () = /1_ drr= w (23)

As before, we have used the limit N — oo to replace
sums over r; by integrals over the reward distribution—
in this case, py(r) from eq. (19).

In this two-dimensional representation of policy space,
there 1s an interesting geometric relationship among poli-
cies with the same expected return. In particular, from
eq. (14) we see that all policies with ™ = v lie on the
line with slope Av and intercept (1 — A)v in the puw—
plane. Some of these lines are shown in figure 1.

Entropy

Let us now examine the distribution of policies in the
pw—plane. In particular, consider the indicator function

Qp,w) =Y 8(p— p")(w —w"), (24)

where 8(-) is the Dirac delta function, and the sum
over 7 traces over all 2V policies in {0,1}". Properly
smoothed for finite N, the function Q(y,w) defines a

0.7,

Figure 2: Cross-sectional plots of the entropy, s(y,w),
versus pu along lines of constant expected return

v o= 1—507+Au in the pw-plane.

two-dimensional histogram that counts the number of
policies with ™ = g and w™ = w. The entropy

1
s(p,w) = J\;I_I};o ¥ In Q(p, w) (25)

corresponds to this histogram on a log scale. In the
limit N — oo, there emerges a continuum of values for
p and w, and we expect s(y,w) to be a smooth function
of its arguments.

The entropy can be calculated from eq. (24) by rewriting
the sum as an integral and using the method of saddle-
point integration [6]. A calculation similar to the one in
ref. [8] gives:

s(p,w) = n}ip{—ﬁﬂ —Ow + /dr p(r)In [1+ eﬂ'i":”] } .
oo

(26)
Given a reward distribution p(r), eq. (26) can be solved
numerically for s(p,w). Figure 2 shows some cross-
sectional plots of s(p,w) for the uniform distribution
of rewards in eq. (19). These entropy curves are plotted
along lines of constant expected return in the pw-plane:
thus, the horizontal axis labels the u coordinate while
w is determined implicitly by eq. (14).

Let us summarize the main points of this section. The
policy space of the EXPLORE/MINE MDP can be rep-
resented as a two dimensional region in the pw-—plane.
The shape of this region, in the limit N — oo, is a
property of the reward distribution p(r) and the mining
probability A. Policies with the same expected return v
lie on straight lines of slope Av and intercept (1 — A)w.
Finally, the entropy s(p,w), provides a smooth logarith-
mic measure of the number of policies with u™ = p and
w' = w.

We have seen from eq. (14) that policies with the same
parameters (p,w) also have the same expected return.
The expected return, of course, only defines one statis-
tic of the distribution from which these returns are sam-
pled. One may also ask whether more general properties
of this distribution are preserved by the pw-representa-
tion of policy space. Clearly, an important property
(from the viewpoint of decision and control) is the prob-
ability that estimates of the expected return, based on



finite exploration times 7, are in large error. How are
these probabilities related for policies with the same pa-
rameters (p,w)? This is the subject of the next section.

4 Estimation errors

Consider how imperfect statistics undermine the agent’s
performance in the EXPLORE/MINE MDP with undis-
counted rewards. In particular, let #* denote the op-
timal policy, v* its value function, and v* an estimate
of this value function based on eq. (7) and a random
walk of length 7. Similarly, let v™ and ™ denote the
corresponding statistics for another policy 7. Assuming
there is a unique optimal policy, it follows that v* > v™.
For finite exploration times 7, however, it may happen
that the empirical estimates are reversed: v™ > v*. If
0, the agent may be confused into adopting a subopti-
mal policy.

What is the probability of such an error, and how does it
depend on the exploration time allowed for each policy
evaluation? The probability of error clearly vanishes
as 7 — oo, since 1n this limit the empirical estimates
converge to the true value functions. In fact, one can
show this probability obeys a large deviation principle,
decaying exponentially fast with 7:

Pr[o™ > 0] ~ e T, (27)

Here, the asymptotic notation “~” is used to hide mul-

tiplicative corrections that depend less strongly on 7;
equivalently, we may write:

T —o0

lim %ln Pr[o™ > o] = —&". (28)
The rate of decay, 7, is a function of the distributions
(and thus ultimately, the policies) that generate the esti-
mates v™ and v*; we have suppressed the dependence on
7* to avoid excessive notation. The goal of this section
is to provide a lower bound on ™ and thus an upper
bound on the “confusion” probability that appears in

eq. (27).
4.1 Large deviations

Our starting point is the following basic theorem from
the large deviation theory of Markov processes[3]. Let
Pi; be an N X N ergodic transition matrix with station-
ary distribution ¢;, and let X; be a real-valued function
over its state space. Without loss of generality, take!
>, ¢#iX; = 0. Then for the Markov chain {it}thl, the
probability of overestimating E[X] decays as:

T
1 . ~Te(6)
Pr | — ;X“ > 5] e : (29)
where
e(6) = g}gg;{l/)é —InA(¥)}, (30)

!This can always be achieved by adding a uniform con-
stant to X; (i.e. subtracting out the mean).

and A(¢) is the largest eigenvalue of the “twisted” tran-
sition matrix, e¥*iP;;. Borrowing terminology from
statistical mechanics, we will refer to matrices of the
form e¥Xi P;; as transfer matrices[6]. The rate of decay
() is also known as the large deviation rate function[3].

A straightforward extension of this theorem is to con-
sider pairs of independent Markov processes. In particu-
lar, let P;; and PZ»’]» be N x N ergodic transition matrices
with stationary distributions ¢; and ¢;, and let X; and
X! be real-valued functions over their respective state
spaces. Suppose moreover that Y . ¢;X; < > ¢;X].
Then if {i;}7_, and {i#/}7_, are two independent Markov
chains generated by P and P/,

1 & 1 &
Pr|= "X, >=Y X,| ~e 7" 31
r /Z—tz:; t>/]—; Zt € ) ( )

where

€= grplgg{—ln AN (=)}, (32)

and A(¢) and X(—1) are the largest eigenvalues of the
transfer matrices, e¥*¢ P;; and e_d’X:PZ»’». Eq. (32) may
be derived by expressing the two independent Markov
processes as a “meta-process” whose transition matrix
is the cartesian product of P and P’. The result then
follows from the previous theorem.

Let us now consider the decay rate €™ that appears in
eq. (27). The empirical estimates of the value functions,
™ and ©¢*, are sums over time with the accumulated
rewards playing the role of X; and X/ in eq. (31). Like-
wise, the paths through state space that dictate these
rewards are generated by independent Markov processes
(i.e. the random walks from 7 and #*). Applying the

previous theorem gives:
e = max{—In\"(¥)A"(=¥)]}, (33)

where A7 (1)) is the largest eigenvalue of the transfer ma-
trix eV B B[, and A" (1) is the corresponding eigenvalue
for the optimal policy, 7*.

4.2 Eigenvalues

Eq. (33) highlights the special role played by the largest
eigenvalue of the transfer matrix e¥f7 P[. The form of
the EXPLORE /MINE MDP enables one to derive a num-
ber of expressions satisfied by this eigenvalue. For ex-
ample, we may obtain A™(¢) exactly by computing the
largest solution to the equation:

/\Il—ﬂﬂ—l-(%)zi:ai [ﬁ] (34)

The proof of this identity is straightforward and given in
the appendix. In an effort to improve the readability of
eq. (34), we have suppressed the dependence of A on 7
and 1. In general, we will follow this convention for the
equations in this section while continuing to write out
the full dependencies (e.g. A™(4)) in the surrounding
text.
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Figure 3: Plot of A*(¢), the largest eigenvalue of the
optimal policy’s transfer matrix, obtained from eq. (36).

Optimal policy

Eq. (34) is particularly useful for computing A*(¢) in
the limit of large state spaces;, N — oo. In this case,
a; = O(r; — r.), where r, is the critical reward value
above which the agent decides to MINE. Substituting
this into eq. (34) and taking the limit N — oo gives:

. _ ] = Atp(r) dr
A=1—-p —I-(l—A)/TC e A (35)
For fixed A and reward distribution p(r), eq. (35) can
be solved numerically to obtain A*(¢) as a function of .

As an example, consider again the uniform distribution
of rewards from eq. (19). The value of r, for this distri-
bution was calculated at the end of section 2.3. Using
pu(r) to evaluate the right hand side of eq. (35), we find:

(L= A)  [Ar— Aevar”
-4, ‘ . (36)
A A* — Ae¥

with g* = 1 — r. and v* given by eq. (21). Figure 3

shows a plot of A*(¢) obtained by numerically solving
eq. (36) with A = 0.75.

pw—policies

Though we have used eq. (34) to evaluate A™(¢) for the
optimal policy 7%, it is clearly impractical to do this
for each of the 2V policies 7 € {0,1}V. Instead, we
shall obtain a more useful characterization of A7 (¢) by
exploiting the pw-representation of policy space intro-
duced in section 3. Our main result, proved in the ap-
pendix, is an upper bound on A™(¢) expressed in terms
of the parameters p™ and w™. There we show that if the
rewards r; are bounded between zero and one, then we
obtain an upper bound A™(¢) > A™(¢) by computing
the largest solution of the equation:

A(1=A)] . [A2(1—A)(1—e¥)
A—A]“ [(Ae—w—A)(A—A)

m

37)

Because the bound A7 (¢) depends on # only through
the parameters u™ and w™, it extends naturally to the
limit of large state spaces where we view these parame-
ters as smoothly varying coordinates in the two-dimen-
sional representation of policy space.

A:1+[
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Figure 4: Plot of A™(¢) and its upper bound A™(v) for
a randomly generated policy = € {0, 1}1°.

The accuracy of the bound is easily tested in large but
finite (N = 100) state spaces. Figure 4 plots the up-
per bound A™(¢) and the actual eigenvalue A™(¢) for a
randomly chosen policy 7 € {0, 1}1°°. Here, A™ () was
computed by solving eq. (37), while A™(¢)) was com-
puted by diagonalizing the 100 x 100 transfer matrix.
As before, we used mining probability A = 0.75 and
rewards generated from the uniform distribution, py (7).

4.3 Decay rates

We obtain a lower bound on the decay rate by perform-
ing the maximization

a(p” @) = max{—In AT (=¢)]}. (38)

The only difference between eq. (33) and eq. (38) is that
we have substituted the upper bound A™(¢) in place
of the true eigenvalue A™(¢)). Though not exact, this
suffices to obtain a lower bound, ™ > g;(p™,w™).

Like A™ (), this bound depends on m only through the
parameters p™ and w™. Hence, eq. (38) provides the
same upper bound on the decay rate for those policies
represented by the same point in the pw—plane. At the
end of section 3, we asked how the probabilities of es-
timation errors were related for policies with the same
values of (p,w). The uniformity of our bound provides
at least a partial answer to this question.

Figure 5 shows the results of one of these maximizations
for the EXPLORE/MINE MDP with A = 0.75 and reward
distribution py(r). The curve in the figure was calcu-
lated for a policy with (u#™,w™) = (0.55,0.33), as com-
pared to the optimal policy at (u*,w*) = (0.55,0.40).
As these policies are rather close in the pw—plane, the
bound on the decay rate is quite small: ; > 0.0028.
This in turn suggests that the confusion probability
Pr[o™ > ©*] ~ e~7¢~ remains substantial unless 7 >

(0.0028)~1 = 350.

5 Performance Bounds

In this section we evaluate the performance of the Gibbs
algorithm in the so-called thermodynamic limit:

T —oc0, N—oo, a= % (finite). (39)
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Figure 5: Maximization of —In[A™(¢)A*(—v)] over ¢
from eq. (38), whose result gives a lower bound on the
decay rate, .

This is the combined limit that the exploration time
per policy evaluation and the size of the state space
grow to infinity at a fixed rate. The ratio o measures
the exploration time 7 in what are natural units for
an MDP with undiscounted rewards—namely the size
of the state space, N. Why are these natural units?
The reason is that in order to accurately estimate a
policy’s expected return, it may be necessary to explore
the state space several times over. Large values of «
ensure that each policy evaluation is based on enough
steps to perform this exploration.

Let us sketch why the combined limit in eq. (39) is nec-
essary for interesting learning behavior[5]. Recall that
the Gibbs algorithm estimates each value function »™
by a random walk of length 7, then outputs the policy
with the best empirical return, »™. As 7 — oo, the
“confusion” probability Pr[o™ > 9] becomes exponen-
tially small for any non-optimal policy 7. As N — o0,
however, there arise an exponentially large number of
non-optimal policies. Roughly speaking, in the thermo-
dynamic limit these two effects “balance out” to gen-
erate interesting learning behavior as a function of the
ratio @« = 7 /N. On the other hand, the Gibbs learner
exhibits quite trivial behavior if only 7 — oo (always
selecting the optimal policy) or N — oo (never obtain-
ing adequate statistics).

Developing these ideas further, let Pr[a&P" € (u w)]
denote the probability that the Gibbs algorithm out-
puts a policy with (¢™,w™) = (g, w). Then we have the
following chain of inequalities:

Pr [ﬂ'gibbs € (u,w)] < Pr[Em e (p,w) with o™ > %]

< DD Pt >0t (40)
TE(p,w)

The first inequality notes that at least one policy « €
(i, w) must register a higher empirical return than v*
for 78PP € (y,w). In general, however, this is not a
sufficient condition since we also require that no other
policy with different coordinates samples a higher re-
turn. The second inequality, eq. (40), follows from a
standard union bound.

Let us now recall some of our previous results. From sec-
tion 3, we know that in the limit of large state spaces,

the entropy s(y,w) provides a smooth logarithmic mea-
sure of the number of policies 7 € (y,w). From sec-
tion 4, we have a lower bound &;(p,w) on the asymp-
totic decay rate that characterizes Pr[o™ > ¢*] ~ e~ 7¢".
Roughly speaking, then, for sufficiently large values of
T and N, we have:

Z Pr[o™ > %] < eNs(w)=Talnw) (41)
TE(p,w)

More formally, we can take the thermodynamic limit in
eq. (39) to obtain:

hm{%lnpr [ﬂ-gibbs € (/’Law)]} S S(ﬂaw) - OzEl(/,L,(.d).

42
Note that if the right hand side of eq. (42) is less t(halz
zero, then the probability Pr[78P" € (u,w)] can be said
to vanish in the thermodynamic limit. In general, this
occurs at values of &« = 7 /N for which the Gibbs learner
has sufficient statistics to rule out all the (suboptimal)
policies m € (p,w).

The competition between s(y,w) and ;(y,w) to deter-
mine the sign of eq. (42) is the balancing act that gives
rise to interesting behavior in the thermodynamic limit.
Note how the parameter o modulates the relative con-
tribution of these quantities to the overall value of the
right hand side. The critical value

ol ) = S
(1w) = 20 (43)

is the value of @ above which the Gibbs learner is able to
eliminate from consideration (with probability one) all
the policies 7 € (p,w). Thus the contours of constant
ac(p,w) in the pw-plane enclose regions whose policies
have yet to be eliminated as candidates for the Gibbs
policy. In particular, a.(p,w) = 0 encloses the entire
policy space, while a.(y,w) = oo consists of a single
point—the coordinates of the optimal policy, (™, w*).
Figure 6 shows several of these contours for the EX-
PLORE/MINE MDP with A = 0.75 and reward distribu-
tion, py (7). Note how the enclosed regions shrink in size
as the value of o, 1s increased.

In analogy to eq. (43), we may also define a critical value
a(v) that suffices to rule out policies with expected
return v™ < v. Recall that policies with v™ = v lie
on lines with slope Av and intercept (1 — A)v in the
pw-plane. Hence the value of a.(v) may be found by
maximizing eq. (43) over the range of y and w that lie
on this line.

The learning curve for an MDP measures how the agent’s
performance improves with the allowed exploration time
per policy evaluation, 7. In the thermodynamic limit,
the exploration time is measured in units of the size of
the state space, or « = 7 /N. Because the Gibbs algo-
rithm is guaranteed to output a policy with v8P> > 4
for exploration times o > «.(v), we obtain a lower
bound on the agent’s performance by plotting v versus

ac(v).
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Figure 6: Contours of constant a.(y,w) in the puw—
plane. The contours enclose policies that remain can-
didates for the Gibbs policy. As o — o0, all policies
(except the optimal one) are eliminated from consider-
ation. The asterisk denotes the location of the optimal
policy.
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Figure 7: Upper bound on (1 — v8"Ps /v*) versus « for
the EXPLORE/MINE MDP with A = 0.75 and reward
distribution, p,(r). The inset shows a log-log plot ex-
tended to larger values of «.

Figure 7 shows a plot of (1 — v/v*) versus a.(v) for
the EXPLORE/MINE MDP with A = 0.75 and reward
distribution, py (7). The inset shows the plot on a log-
arithmic scale to highlight the asymptotic behavior of
the bound. In particular, as @« — oo, the upper bound
on (v* — v8P%) behaves asymptotically as

iz with z = %’ (44)
where the exponent z = 2/3 is determined by the slope
of the log-log plot at large «. The exponent can also
be verified analytically by examining the behavior of
s(p,w) and g;(p,w) in the neighborhood of the opti-
mal policy. Nevertheless, we do not know of any obvi-
ous method by which this power law could have been
guessed beforehand.

(U* _ UgibbS) ~

6 Conclusions

In this paper we have used methods from statistical
mechanics to study the problem of decision and con-
trol based on imperfect statistics. This was done in

the framework of Markov decision processes with undis-
counted rewards.

One virtue of our approach is that for simple exam-
ples we can understand in great detail how the agent’s
performance improves with its capacity to acquire more
accurate statistics. The shrinking regions in figure 6 and
the performance curve in figure 7 reveal the learning be-
havior from start to finish—that is, from a state of im-
poverished statistics to one of perfect knowledge. They
also reveal asymptotic rates of convergence that could
not be predicted from simple statistical considerations.
This detailed picture of learning is to be contrasted
with the much weaker statement that optimal control
emerges in the limit that the agent visits each state in-
finitely often. Yet even this weaker statement remains
an open question for many simulation-based algorithms
used to solve MDPs with undiscounted rewards[10].

An important lesson from previous work in supervised
learning is that the shapes of learning curves are not
universal and vary from problem to problem. We expect
the same to be true for MDPs; thus even within the
EXPLORE/MINE MDP, it seems likely that changing the
reward distribution p(r) could affect the asymptotic rate
of convergence for our bounds on (v* — v8""). This
suggests two goals for future research: uncovering the
variety of learning behaviors that can occur in MDPs,
and understanding the features that make it easier or
harder to learn optimal policies. These issues and others
are left for future work.
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A Eigenvalues

In this appendix we derive eq. (34) for the largest eigen-
value of the transfer matrix, e¥f7 B[, and eq. (37) for
its upper bound. To this end, let & denote the elements
of the largest eigenvector of this matrix and A its corre-
sponding eigenvalue:

> eVRIPTE = 0. (45)
J

The elements of the matrix ed’RTPZ?; are all positive,

and hence by the Perron-Frobenius theorem([7], we know
that: (i) the largest eigenvalue is positive; (ii) the eigen-
vector corresponding to this eigenvalue has only positive
elements; and (iii) no other eigenvector has this prop-
erty. From (i), we can assume that the eigenvector sat-
isfies the normalization condition )", & = 1. Using
this, it is straightforward to show that

1 1 (1-A)
&= m(l —a;) + N [m] a; (46)

solves eq. (45), with A chosen in a self-consistent fashion
to satisfy >~,& = 1. Summing both sides of eq. (46)
over ¢ to enforce this constraint, we obtain:

11—y 1—A a;
I== +<N );Ae—wn_g (47)

which is equivalent to eq. (34). Hence, by solving this
equation (numerically), we obtain an eigenvalue of the
transfer matrix whose eigenvector is given by eq. (46).
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Figure 8: Graphical solution of eqs. (34) and (37).
The dashed line is the pole that occurs at A. =
max; [aiAeW’] in eq. (34). The lower point of inter-
section is the solution for the exact eigenvalue, A; the
upper point 1s the solution for its upper bound.

To ensure that our solution corresponds to the largest
eigenvalue, it is enough to show (by the Perron-Frobenius
theorem) that all the elements of &; are positive. From
eq. (46) this will be true if A > A, = max; [aiAeW’].
Note that the right hand side of eq. (34) has a pole at
A = A, and that above this value, it monotonically de-
creases, approaching a finite value as A — oo. Figure 8
illustrates this behavior, along with the graphical solu-
tion to eq. (34) for a random policy = € {0, 1}1°%; the
solution occurs where the plots of the left and right hand
sides intersect. It is easy to see from the figure that the
equation has a unique solution to the right of the pole
at A.. Hence, this largest solution corresponds to the
maximal eigenvalue of the transfer matrix, as claimed
in section 4.2.

To obtain an upper bound on this eigenvalue, we note
that the summand in eq. (47) is a convex function of
r;. In particular, suppose that r; is bounded between 0
and 1. Then:

1 < 1 1 1
Y A S AR v A a_a]™
(48)
where the upper bound in eq. (48) is the linear function
in r; that interpolates between the left hand side’s value
at r; = 0 and r; = 1. Substituting this linear function of
r; not only leads to an upper bound, but also enables one
to perform the sum over states in terms of the variables
nt = % >, a; and W™ = % >, a;r;. Thus, substituting
eq. (48) into eq. (47) and evaluating the sum over states
gives (after some algebra):

AL=NT . [A2(1 = A)(1=e¥)
/\—A] +[(Ae—w_A)(A_A)

m

A< i

Replacing this inequality by equality, we recover the pre-
scription of eq. (37) for obtaining an upper bound on the
eigenvalue A. The graphical solution to this equation is
also shown in Figure 8, where it is easily seen that it
yields an upper bound on the solution to eq. (34).



