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Abstract

In this paper we propose a new framework for
studying Markov decision processes (MDPs),
based on 1deas from statistical mechanics. The
goal of learning in MDPs is to find a policy
that yields the maximum expected return over
time. In choosing policies, agents must there-
fore weigh the prospects of short-term versus
long-term gains. We study a simple MDP in
which the agent must constantly decide be-
tween exploratory jumps and local reward min-
ing in state space. The number of policies to
choose from grows exponentially with the size
of the state space, N. We view the expected re-
turns as defining an energy landscape over pol-
icy space. Methods from statistical mechanics
are used to analyze this landscape in the ther-
modynamic limit N — oco. We calculate the
overall distribution of expected returns, as well
as the distribution of returns for policies at a
fixed Hamming distance from the optimal one.
We briefly discuss the problem of learning op-
timal policies from empirical estimates of the
expected return. As a first step, we relate our
findings for the entropy to the limit of high-
temperature learning. Numerical simulations
support the theoretical results.

1 Introduction

Many real-world tasks in machine learning, particularly
those in navigation and control, require agents with
decision-making abilities. Markov decision processes
(MDPs) [3] provide a theoretical framework for mod-
eling tasks in which an agent must constantly monitor
its environment and take appropriate courses of action.
The fundamental problem in MDPs is one of tempo-

ral credit assignment—determining which actions have
important long-term consequences. The goal of learn-
ing is to find a policy, or set of actions, that yields the
maximum expected return over time. Successful strate-
gies for learning must therefore look beyond immediate
rewards and concentrate on long-term gains.

There is a large literature on methods for finding opti-
mal policies in MDPs [3, 2, 6]. If a model of the Markov
environment is assumed known, then there exist classi-
cal methods such as value iteration for finding optimal
policies in polynomial time [11]. For many problems of
interest, a model of the environment is not available.
In this case, there are two basic strategies—direct and
indirect—for finding optimal policies [2]. Direct meth-
ods attempt to learn good approximations to optimal
policies without estimating a model of the environment.
Reinforcement learning algorithms, such as TD(X) [10]
and Q-learning [13, 14], are examples of direct meth-
ods. The main results for these algorithms are that they
converge with probability one in the limit of infinite ex-
perience; no rate of convergence results are available.
Unlike direct methods, indirect methods attempt to es-
timate a model of the Markov environment and then
derive control policies from the estimated model. Re-
cently, Fiechter [4] has studied the problem of model es-
timation in MDPs and given a PAC-learning algorithm
for finding near-optimal policies.

In this paper we propose an alternative framework for
studying MDPs, based on ideas from statistical mechan-
ics. Our approach draws on previous work in statistical
mechanics and computational learning theory [5, 9, 12].
We have not made an effort to be rigorous, relying in-
stead on numerical simulations to check the soundness of
our methods. The main contributions of this paper are
the following: to view the expected returns as defining
an energy landscape over policy space, to analyze this
landscape with tools from statistical mechanics, and to
introduce a particularly tractable example that makes
this analysis possible. The main shortcomings, on the
other hand, are that our methods do not generalize to
arbitrary MDPs and that we do not adequately address
the problem of learning. Real-world problems in deci-
sion and control necessarily involve a large number of
degrees of freedom. Our motivation was to build a sta-



tistical mechanical framework for these problems, simi-
lar to ones that exist for other problems in memory and
learning [1, 12]. This paper does not achieve this goal,
but should be viewed as a first step in this direction.

The organization of the paper is as follows. Section 2
reviews the basic elements of MDPs: rewards and tran-
sitions in state space, value functions, and the special
consequences of the Markov property. It also introduces
the problem that serves as a focus for the rest of the
paper. This particular example was chosen because it
epitomizes the dilemma of balancing short-term versus
long-term payoffs. What makes it especially tractable is
a simple, closed-form expression for the expected return.

Section 3 uses techniques from statistical mechanics to
analyze the distribution of expected returns over policy
space. Here, we introduce the important role of entropy
and the thermodynamic limit. We also examine how the
metric of Hamming distance relates to the landscape of
expected returns. In particular, we calculate the typ-
ical loss in expected return as a function of Hamming
distance from the optimal policy, as well as upper and
lower bounds on this loss. In the last part of the sec-
tion, we discuss the problem of learning optimal policies
from empirical estimates of the expected return. We re-
late our findings for the entropy to the well-known limit
of high temperature learning [9]. Numerical evidence is
presented to support the theoretical results.

Finally, section 4 presents our conclusions and ideas for
future work. The appendix contains technical details of
the calculations that appear in section 3.

2 Markov Decision Processes

This section presents a brief review of MDPs, concen-
trating on those aspects most relevant to our work. A
more thorough introduction may be found in [3].

2.1 Background

A Markov decision process (MDP) models an agent’s
environment by a set of N states. In each of these states,
the agent is required to choose from a set of possible
actions. Here, we focus on MDPs in which the agent
must decide on one of two possible actions. In this case,
a policy 7 is an N-bit string that assigns an action to
each state in the environment. We denote the prescribed
action at state 7 by a;, so that 7 = {aj,as,...,an} €
{0, 1}V,

At each time step, the agent executes an action and
receives a positive or negative reward from the environ-
ment. The reward R; depends on the current state and
the selected action, so that

Ri = (1 — a;) + riai, (1)

where 7; is the reward that results from taking action
a; = 0, and r; the reward for a; = 1. The agent’s
actions also lead to stochastic changes in the state of the

environment. In particular, the probability of making a
transition from state ¢ to state j is given by

Pij = pij(1 — a;) + pijai, (2)
where p;; represents the transition probability that re-
sults from taking action a; = 0, and p;; the probability

for a; = 1. The actions thus determine both the re-
wards and the transition probabilities at each time step.

The usual goal of learning in MDPs is to find a policy
that yields the maximum expected return over time.
For a fixed policy w, the value function, or the expected
return as a function of the start state, is given by the
expected sum of discounted rewards

Vi =E li 7' Ri,
t=0

when the agent starts in state ¢ and executes policy 7
forever. The expectation is taken over all possible paths
{i:}52, through state space that start at state i and
result from actions dictated by x. The discount factor
0 < v < 1 causes rewards later in time to be weighted
less than rewards earlier in time. In particular, eq. (3)
weights the reward at time ¢ by 7, setting an effective
horizon time

i = Z] , (3)

= 4 =01-7" (4)

t=0

for the decision process. The Markov property leads to
a recurrence relation for the value functions [3]:

Vi =Ri+v) PyVy. (5)
J
Note that the rewards R; and the transition probabili-
ties P;; implicitly depend on the policy m through egs.
(1) and (2). Solving for V;™ gives

VI =Y (I-vP);' R (6)
J
where [ stands for the N x N identity matrix and the
exponent denotes a full matrix inversion.

For concreteness, let us suppose that the agent starts the
decision process with equal probability in each state .
Then the normalized return

1—
=T”Zv (7)

provides a reasonable measure-of-goodness for policy 7:
it 1s simply the total expected return divided by the
effective horizon time of the decision process.

2.2 Example

In this section, we introduce the MDP that will serve as
an example for the rest of the paper. The two actions
in this MDP correspond to exploratory jumps and local
reward-mining in state space. In particular, the action
a; = 0 causes the agent to jump with equal probability



to any state in state space, while the action a; = 1
causes the agent to remain in place. Eq. (2) gives the
transition matrix

1

v (1 —a)+8ja;, (8)
where 6;; is the Kronecker delta function. The agent
receives zero reward 7; = 0 for exploratory actions and
a state-dependent reward r; for remaining in state i.
The task for the agent is to choose a high-reward state
at which to stop exploring. The rewards r; are assumed
to be independently chosen from a distribution p(r) and
remain fixed for all time. Following eq. (1), we have

R; = r;a;, 9)

where r; varies from state to state according to the dis-
tribution p(r).

Py =

A basic strategy for maximizing the expected return,
defined by eq. (3), is to jump out of states with low
rewards and remain at states with high rewards. The
dilemma is that the agent has an effective lifetime set
by the discount factor v. If v < 1, then the agent must
hope to quickly find a state with positive reward. On
the other hand, if 7 is close to unity, then the agent can
afford to ignore modest rewards and explore the state
space until it “hits the jackpot”. The optimal expected
return thus depends crucially on the effective horizon
time and the distribution of rewards p(r).

An attractive feature of this MDP is that the expected
return for a fixed policy 7« has a simple closed form. In

particular, let
1
=g e 19
be the fraction of states where the agent chooses not to
explore under policy #. Then the normalized return,
defined by eq. (7), is given by

LS pgs
o = N DLiliti (1)

L=y +yp”
Note that all dependence on 7 enters through the frac-
tion p™ and the weighted sum )", r7;a;. To prove this

result, let

Aj =) (I-7P)5" (12)
Taking the product (I — yP)T A and substituting eq. (8)
for the transition matrix gives a set of linear equations

for Aj:
> [t =ra) - L —ap| A =1 (13)

J
The solution to these equations,
(1=t + (1 —aj)
L=y +ypm

may be verified by substitution. Noting from eq. (7)
that v™ = N=1(1—%) >_; Aj R;, and substituting eq. (9)
for the rewards, one arrives at the desired expression
for v™.

Aj = ) (14)

3 Statistical Mechanics

The simple result, eq. (11), makes it possible to study
the structure of this MDP in detail. This structure is
encoded in the distribution of expected returns and may
be analyzed independent of any particular learning al-
gorithm. For the example of the previous section, the
analysis simplifies considerably in the limit N — oo.
This 1s the thermodynamic limit of an infinitely large
state space, and it leads naturally to the formalism of
statistical mechanics.

3.1 Entropy

A fundamental point of interest is how the normalized
returns v”™ are distributed over policy space. Let

Qv) = _bv—v"), (15)

where 6(v) is the Dirac delta function, and the sum
over 7 traces over all 2%V policies in {0,1}". Properly
smoothed for finite NV, the function (v) becomes a his-
togram of v over policy space. The entropy

s(v) = J\;I_I};o %ln Qv) (16)

corresponds to this histogram on a log scale. As N —
o0, there emerges a continuum of expected returns, and
we expect s(v) to be a smooth function of v. The func-
tion s(v) also characterizes the optimal return, v* =
max,v™: assuming there exists a unique optimal policy,
then v* may be found by solving for the largest root of
s(v) = 0.

The entropy can be calculated from eq. (15) by rewrit-
ing the sum as an integral and using the method of sad-
dlepoint integration [7]. The details of this calculation
are presented in the appendix. There we show that

s(v) = min {_¢(1 — )+ /dr p(r)In [14 40 -70)] } .
(17)

Given a discount factor v and a reward distribution p(r),
eq. (17) can be solved numerically for s(v). Figure 1
shows a plot of s(v) for discount factors v = 0.75 and
v = 0.95 and the box distribution

L for |r| < 1.
- 3

plr) = { 0 otherwise. (18)
The asymptotic behavior of s(v) for (v* —v) < 1 may
be calculated by performing a Sommerfeld expansion [7]
in the parameter ¢ of eq. (17). The results

s(v) ~ (v —v)'? (19)
v = 7—2[2—7—2 1—7] (20)

are derived in the appendix for the box distribution of
rewards, eq. (18). The exponent of eq. (19) determines
the asymptotic behavior for learning curves in the limit
of high temperature learning [9]. We will return to this
point in section 3.3, where we also provide numerical
evidence for the predicted form of s(v).
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Figure 1: Plots of entropy, s(v), versus normalized re-
turn, v, for discount factors v = 0.75, and v = 0.95.
The right and left roots of s(v) = 0 indicate the best
and worst possible returns.

3.2 Hamming Shells

The entropy s(v) characterizes the overall distribution
of returns in policy space. The structure of this dis-
tribution is based on eq. (11), which identifies the two
trademarks that determine a policy’s expected return:
the fraction of states devoted to reward-mining, and the
policy-weighted sum over rewards. How well do other
metrics over policy space succeed in characterizing this
structure?

In this section, we analyze the Hamming metric in the
neighborhood of the optimal policy, 7*. Let

di(r,7) =Y [ai(l—af) + (1 —a)af] (21
denote the Hamming distance between = and 7*. We
refer to f* = N~=ldg(m,7*) as the Hamming radius
of m: 1t 1s the fraction of bits that differ between 7 and
7*. Analogous to eq. (15), the function

Zév—v 5(f—f7) (22)

counts the number of policies with normalized return v
and Hamming radius f. As N — 00, we expect a contin-
uum of Hamming shells, i.e. sets of policies equidistant
from 7*; we define the corresponding entropy by

s5(0) = Jim < InQ(v). (23)
The entropy curves s¢(v) characterize the distributions
of expected returns on concentric Hamming shells about
the optimal policy. For large N, the histogram Qf( v)
is sharply peaked about the Value of v that maximizes
s¢(v). In the limit N — oo, the typical return for poli-
cies with Hamming radius f thus occurs at

vf = maxsy (v). (24)

Equivalently, (v* — vy) represents the typical loss for
these policies. In the example from section 2.2, there

f=0.05
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Figure 2: Plots of entropy, s;(v), versus normalized re-

turn, v, for Hamming radii f = 0.05,0.25, and 0.75.

The discount factor is v = 0.95; the optimal return is
* = 0.66791.

are unique policies in each Hamming shell that yield
the best and worst expected returns. Lower and upper
bounds on the loss are therefore given by the right-most
and left-most roots of s¢(v) = 0.

The entropy curves for fixed Hamming radius are de-
rived in the appendix. The final result is

sp(0) = min{=(1= o +(f — ")

—+ /dr p(r)In [1 + e¢(r—7v)+w5gn(7“—7v*)]} (25)

where p* is the fraction of states in 7* devoted to reward-
mining, and sgn(x) denotes the sign (£1) of z. Plots of
s¢(v) may be computed by numerically minimizing the
right hand side of eq. (25) over the parameters ¢ and w.

Figure 2 shows three overlaid plots of s;(v) for Ham-
ming radii f = 0.05, 0.25, and 0.75, discount factor
v = 0.95, and the box distribution of rewards, eq. (18).
Each value of f has a range of possible returns, with
vs bounded on either side by the minimum and maxi-
mum loss. Of course, as f goes from 0 to 1, the peak
of the entropy curve (and hence v;) shifts away from
v*. The range of possible returns increases with f for
small f, but eventually contracts, until at f = 1 only
one policy in {0, 1}*¥ remains to be counted, namely the
complement of 7*.

Figure 3 shows plots of the best, worst, and typical re-
turn versus Hamming radius. For the box distribution,
eq. (18), the typical return is given by

_ (=201 =)
22—y — 7% (1 =2f)]

Empirical results for the typical return are also plot-
ted in figure 3. The empirical results were obtained in
finite-size MDPs by sampling policies on constant Ham-
ming shells and averaging the returns computed from
eq. (11). We approximated the box distribution for
rewards by setting r; at N equally spaced intervals be-
tween -1 and 1. Note that even for finite-size MDPs

(26)
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Figure 3: Plots of the best, worst, and typical return
(normalized by v*) versus Hamming radius from the
optimal policy. The circles are empirical results from
finite-size MDPs (N = 128).

(N =128), there is good agreement with the results for
the thermodynamic limit.

3.3 High Temperature Learning

Several algorithms have been proposed for learning op-
timal policies from empirical estimates of the expected
return. In this section, we examine a stochastic search
algorithm in which the agent learns from repeated tri-
als of the decision process. Our goal is not to introduce
yvet another algorithm for solving MDPs,; but to study
how inferences about the optimal policy improve with
sample size, i.e. the number of trials available to the
agent. For this purpose, we will borrow a framework
from statistical mechanics [9], originally developed to
analyze learning curves in simple perceptrons.

Our algorithm takes the following form. We suppose
that, for each policy w, the agent is allowed to deter-
mine an estimate of the expected return by executing
m trials of the decision process. In each of these tri-
als, the agent begins from a random initial state of the
MDP and accumulates the sum of discounted rewards
under the chosen policy. Let o7 label the return sam-
pled from the ¢** trial® under policy 7. The sum of
sampled returns

m

Er=—> if (27)

=1
defines an energy landscape over policy space; the neg-
ative sign is introduced so that high returns correspond
to low energies. We imagine learning as a process in
which the agent traverses this landscape, looking for
policies with low energies.

For simplicity, we assume that each trial of the decision
process steps through an infinite sequence of state-action
pairs. Taking only a finite number of steps introduces a
truncation error into the discounted sum of rewards. For v <
1, however, the magnitude of this error is trivially bounded
by v¥(1 —4)7'R, where K is the number of steps and R =
max; |rs].

Stochastic exploration of this landscape may be done
by Monte Carlo simulation [8], in which policies are up-
dated by the following rule. Let F denote the energy
of the agent’s current policy m, and E’ the energy of
a nearby policy #’ with dg (7, 7') = 1. Then the agent
changes from policy 7 to 7’ with probability

p 1 if AE <0.
Wir—r) = { e PAE otherwise. (28)
where AF = E' — E. Here, 3 is a noise parameter that
determines how often the agent opts for policies with
higher energies. We assume that, during the course of
exploration, the agent is able to keep a record of energies
from previous trials; as a result, it does not need to
resample the decision process in the event that it returns
to a previously visited policy.

In what follows, we focus on the long-time, or equilib-
rium, properties of this learning procedure. At long
times, the dynamics of eq. (28) generates a Gibbs prob-
ability distribution

Pﬂ. = Z_le_ﬁEW (29)

over policy space, with the noise parameter 3 = 1/T
playing the role of inverse temperature. The prefactor
Z 1s the partition function

7 =Y el (30)

that normalizes the Gibbs distribution. We may now
apply the formalism of statistical mechanics to calculate
the equilibrium properties of this learning procedure.
To obtain a proper thermodynamic limit requires the
energy function, eq. (27), to scale linearly with N. We
therefore take the combined limit

% = a (finite), (31)

m— o0, N — o0,

such that the number of trials grows in direct proportion
to the size of the state space.

The goal of this framework is to extract typical learn-
ing behaviors as a function of the parameters o and 7.
As T decreases, the agent tends to concentrate on poli-
cies with low energies. As « increases, the agent receives
more accurate estimates of the expected returns, so that
policies with low energies tend to be near-optimal. Ex-
actly how close are the agent’s choices to the optimal
policy, and to what extent do they yield a near optimal
expected return?

In general, answering these questions requires the addi-
tional step of averaging over the agent’s training data,
i.e. all possible outcomes of the trials ¢f. The reason
for this is that we do not expect the typical learning
behavior to depend on the particular estimates that the
agent receives for v™. Performing the average over these
estimates requires knowledge of the distribution from
which they are generated. Characterizing this distribu-
tion remains a current area of research. In this paper,
we therefore focus on a highly simplified limit in which
this average is unnecessary: this is the combined limit of



high temperatures and large sample size. In particular,
let
a— o0, T — oo,

2 = a (finite). (32)
This is the limit of high temperature learning [9]. In
this limit, the quantity —BF; in the exponent of the
Gibbs distribution may be replaced by Nav™, so that
the typical learning behavior becomes a function of the
single parameter &. Note that high temperature learn-
ing does not correspond to the situation in which all
policies are equally likely; rather, the combined limit,
eq. (32), ensures a non-trivial competition between en-
ergy and entropy for finite values of &.

High temperature learning is clearly an artificial para-
digm for learning in MDPs. The results are of interest,
though, for two reasons: first, because they have analogs
in the perceptron literature [9] that can guide our think-
ing, and second, because they provide a numerical check
on the entropy curves of section 3.1. In the high tem-
perature limit, the partition function reduces to

Zo = Z:eNa”/r = /dv N+l (33)

where s(v) is the entropy from eq. (16). Fluctuations
about the most probable value of v vanish in the ther-
modynamic limit, so that

L ia= 4
v—i—a 0 (34)

gives the learning curve for the normalized return as
a function of &. The asymptotic behavior for large @
follows from eq. (19):

(v* —v) ~ a2 (35)

Figure 4 compares the theoretical prediction for the en-
tire learning curve, based on egs. (17) and (34), ver-
sus the results of Monte Carlo simulations on finite-size
MDPs. These simulations were performed in the high
temperature limit, with true expected returns replac-
ing energies and the parameter & serving as an effec-
tive temperature. As before, the rewards were chosen
uniformly between -1 and 1. There is good agreement
between the theoretical and empirical results, thus val-
idating the predicted form of the entropy curve s(v).

4 Discussion

Our goal in this paper has been to explore how sta-
tistical mechanics can be applied to problems in de-
cision and control, problems which typically involve a
large number of degrees of freedom. The framework we
have presented has a number of advantages for studying
MDPs. In certain cases, it can provide a detailed under-
standing of the distribution of expected returns. It also
focuses on the limit of large state spaces, a limit which
is relevant for real-world problems. On the other hand,
our approach has clear limitations. It is unlikely that
the calculations can be done for arbitrary MDPs, since
they rely on simple forms for the rewards and transition
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Figure 4: Learning curves, v vs. @, in the high temper-
ature limit. The dashed lines indicate optimal returns.
The circles are empirical results for finite-size MDPs

(N = 128).

matrices. Moreover, there are important differences be-
tween the algorithms in this paper and the ones used by
practitioners. Why pursue a framework based on con-
trived examples and naive algorithms? The main reason
is to obtain an unambiguous benchmark against which
to evaluate the relative merits of more sophisticated al-
gorithms, such as TD(A) and @Q-learning, that exploit
the structure of the decision process. Clear theoretical
results, even on relatively simple MDPs, would be a step
in this direction.

There 1s more work to be done for results that serve
this purpose. In particular, we hope to extend the
analysis of section 3.3 beyond the limit of high tem-
perature learning. It would also be interesting to con-
sider the limit v — 1, or possibly the combined limit
v — 1,N — o00,vN = %, where 0 < % < 1: this is
the limit of infinite effective horizon times. Finally, we
would like to find other MDPs, besides the example of
section 2.2, that can be analyzed with the tools of this
paper. These issues and others are left for future work.
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Appendix

In this appendix we demonstrate the methods used to
derive the entropy curves from section 3. Consider first
the distribution of expected returns, eq. (15). Substi-
tuting eq. (11) for ™, we may rewrite this as

1 + E Tid;
= dp bl p—— P L Ay
S fao- ool 155)
(36)
The constraints on g and v may be recast as integrals

using the representation 2wié(x f+modx e®* for the

Dirac delta function. Introducmg auxiliary variables fi
and v, we find

el o

—|—@<v— Nzimai)]}]\fdﬂ]\fd@

1—v+7pu 2w 2me

Note that the action variables a; in the exponent are
now factorized, making it possible to perform the sum

dp.

over policies. Tracing over the action-state pairs {a;} €

{0, 1}V gives

o) = (%) Jindnas exp G o), 39)
where

A 1 R 7“2'{}
h(fr, 0, p) = Nzln{lJrexp[—u—l_i]}

v+ yp
+ jip + oo, (39)

In the limit N — oo, the leading contribution to £(v)
may be determined by the method of saddlepoint inte-
gration [7]. The saddlepoint of h(ji, v, ) is located by
setting its derivatives equal to zero:

1
0 = K= Z 1 + eﬂ+"77'z/(1_7+7ﬂ) ’ (40)
B ri(1—v+yp)!
0 = v-— Z 1 4+ eAtori/(I—v+yu) (41)
_ yori(L =y +yu)~!
0 = n Z 1+ efitor/(I=v+vu) (42)

The entropy, defined by eq. (16), is given by the value
of h(ji,v,p) at its saddlepoint. Eliminating the vari-
able fi through egs. (41) and (42), and introducing ¢ =
—0/(1 — v+ yu), we obtain

: 1 =YV
s(v)zngn{—(/)(l—’y)v—l—ﬁzm [1+e¢(’ )]}

In the limit N — oo, the sum over states may be re-
placed by the integral over the reward distribution, p(r).
This leads to the desired result for the entropy, eq. (17).

Let v* denote the return of the optimal policy, 7*. We
now consider the asymptotic behavior of the entropy
curve for (v* — v) < 1. The value of ¢ which minimizes
the right hand size of eq. (17) satisfies

R e e )

As v approaches v* | the solution for ¢ diverges to infin-
ity. The asymptotic behavior of s(v) may be calculated
by performing a Sommerfeld expansion [7] of eq. (43) in
powers of ¢—2

72 p(yv
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where ©(z) is the unit step function. The integral in
eq. (44) can be done exactly for the box distribution of
rewards. In this case, one finds ¢ ~ (v* — v)~/2 with
v™ given by eq. (20). From eq. (17) we have that

ds

7y = e =7+, (45)

where dr p(r)
B r p(r
p= [ (46



As v — v* and ¢ — oo, the integral in eq. (46) reduces
to

= /dr p(r)O(r — v7), (47)

Hence, ds/dv ~ —(1 —~ 4+ yu*)(v* —v)~'/% and by in-
tegration, we obtain the desired result for s(v), eq. (19).

The profile of the optimal policy may also be deduced
from the saddlepoint equations. From eq. (47), the frac-
tion of states devoted to reward-mining in 7™ is given by
counting all the states with rewards greater than yv*.
FEq. (47) thus gives the following prescription for 7*: the
agent stays at state ¢ if r; > vv* and jumps out of it
otherwise. Substituting af = ©(r; — yv*) into eq. (21)
gives an expression for the Hamming distance to the
optimal policy:

dg(m,7*) = Np* — ngn(ri —yv*)a;. (48)
The steps that lead from eq. (22) for Q(v) to eq. (25)
for s¢(v) are essentially identical to those given for the
calculation of s(v). The only difference is that an ad-
ditional auxiliary variable must be introduced to han-
dle the delta function for f. The final result, eq. (25),
therefore requires a minimization over two variables, as
opposed to just one. For the box distribution of re-
wards, the entropy curve s;(v) has only one peak, so
that solving (ds;/dv)|,, = 0 yields the typical return.
As before, the required integrals can be done exactly,
ylelding eq. (26) for vy.



