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Abstract

Reinforcement learning (RL) algorithms have tra-
ditionally been thought of as trial and error learn-
ing methods that use actual control experience to
incrementally improve a control policy. Sutton’s
DYNA architecture demonstrated that RL algo-
rithms can work as well using simulated experi-
ence from an environment model, and that the re-
sulting computation was similar to doing one-step
lookahead planning. Inspired by the literature on
hierarchical planning, I propose learning a hier-
archy of models of the environment that abstract
temporal detail as a means of improving the scala-
bility of RL algorithms. T present H-DYNA (Hier-
archical DYNA), an extension to Sutton’s DYNA
architecture that is able to learn such a hierarchy
of abstract models. H-DYNA differs from hier-
archical planners in two ways: first, the abstract
models are learned using experience gained while
learning to solve other tasks in the same envi-
ronment, and second, the abstract models can be
used to solve stochastic control tasks. Simulations
on a set of compositionally-structured navigation
tasks show that H-DYNA can learn to solve them
faster than conventional RL algorithms. The ab-
stract models also serve as mechanisms for achiev-
ing transfer of learning across multiple tasks.

Introduction

Planning systems solve problems by determining a se-
quence of actions that would transform the initial prob-
lem state to the goal state. In a similar manner,
problem-solving agents or controllers®, that have to
learn to control an external environment, incorporate
planning when they use a model of the control prob-
lem to determine an action sequence, or an open loop
control policy, prior to the actual process of control-
ling the environment. Recent work on building real-
time controllers has highlighted the shortcomings of

'n this paper I will use the terms agent and controller
interchangeably.

planning algorithms: their inability to deal with uncer-
tainity, stochasticity, and model imperfection without
extensive recomputation. Some researchers have pro-
posed reactive controllers (e.g., Schoppers 1987) that
dispense with planning altogether and determine ac-
tions directly as a function of the state or sensations.
Others (e.g., Dean & Boddy 1988) have proposed con-
trol architectures that use anytime algorithms; i.e., use
the results of partial planning to determine the action
in a given state.

Sutton (1991) has noted that reactive controllers
based on reinforcement learning (RL) can plan con-
tinually, caching the results of the planning process to
incrementally improve the reactive component. Sut-
ton’s (1990) DYNA architecture is one such controller
that learns a control policy as well as a model of the
environment. Whenever time permits, simulated ex-
perience with the model is used to adapt the control
policy (also see Barto et al. 1991). As noted by Sutton
(1991), the computation performed by the RL algo-
rithm on simulated experience is similar to executing
a one-step lookahead planning algorithm. The differ-
ence between traditional planning algorithms and RL
is that in RL the results are cached away into an eval-
uation function that directly and immediately affects
the control policy.

The inability of RL-based controllers to scale well
to control tasks with large state or action spaces has
limited their application to simple tasks (see Tesauro
1992 for an exception). An approach to scaling RL
algorithms can be derived from the research on hierar-
chical planning (e.g., Sacerdoti 1973). Most hierarchi-
cal planners assume access to a hierarchy of abstract
models of the problem state-space. They first plan in
the highest level, and then move down the hierarchy
(and if necessary back up) to successively refine the
abstract plan until it is expressed solely in terms of
primitive actions. Although using abstract models is
not new to RL (e.g., Chapman & Kaelbling 1991), such
research has focussed on abstracting structural detail.
I present a RL-based control architecture that learns
a hierarchy of abstract models that, like hierarchical
planners, abstract temporal detail.



Scaling Reinforcement Learning
Algorithms

Unlike planning-based controllers, RL-based con-
trollers are embedded in an optimal control framework
(Barto et al. 1990). Thus, the RL agent has to learn a
sequence of actions that not only transforms an exter-
nal dynamic environment to a desired goal state?, but
also improves performance with respect to an objective
function. Let .S be the set of states of the environment
and A; be the set of primitive actions® available to the
agent in each state. In this paper, I focus on RL agents
that have to learn to solve Markovian Decision Tasks
(MDTs), where at each time step ¢ the agent observes
the state of the environment, s;, and executes an ac-
tion, a;. As a result, the agent receives payoff R; and
the state of the environment changes to s;+1 with prob-
ability Pg, s,,,(a). The objective function, J, consid-
ered in this paper 1s the discounted sum of payoff over
an infinite horizon, i.e., J(i) = Zzgo v'Ry. The dis-
count factor, 0 < v < 1 causes immediate payoffs to
be weighted more than future payoffs. A closed loop
control policy, which is a function assigning actions to
states, that maximizes the agents objective function is
an optimal control policy.

If a model of the environment is available, i.e., the
transition probabilities and the payoff function are
known, conventional dynamic programming (DP) algo-
rithms (e.g., Ross 1983) can be used to find an optimal
policy. If a model of the environment is not available to
the agent, RL algorithms that approximate DP, such as
Sutton’s (1988) temporal differences (TD), can be used
to approximate an optimal policy. An essential com-
ponent of all DP-based algorithms* for solving MDTs
is determining an optimal value function V* : S — 3},
that maps states to scalar values such that in each state
the actions that are greedy with respect to V* are opti-
mal. DP-based RL algorithms use repeated experience
at controlling the environment to incrementally update
V, an estimate of the optimal value function.

The basic algorithmic step common to most DP-
based learning algorithms is that of a “backup” in
which the estimated value of a successor state is used
to update the estimated value of the predecessor state.
For example, the TD algorithm uses the state tran-
sition at time ¢t to update the estimate as follows:

f/H_l(xt) = (1.0—oz)f/t(xt)—i—a[Rt—l—’th(xtH)], where o
is the learning rate parameter. Bertsekas and Tsitsiklis
(1989) show that under certain conditions the order of

the backups over the state space is not important to

?In some optimal control problems the goal is to follow
a desired state trajectory over time. I do not consider such
tasks in this paper.

®For ease of exposition I assume that the same set of
actions are available to the agent from each state. The
extension to the case where different sets of actions are
available in different states is straightforward.

* Algorithms based on policy iteration are an exception.

the convergence of some DP algorithms (also see Barto
et al. 1991) to the optimal value function. The rate
of convergence, though, can differ dramatically with
the order of the backups, and a number of researchers
have used heuristics and domain knowledge to change
the order of backups in order to accelerate learning
of the value function (e.g., Kaelbling 1990; Whitehead
1991).

While the inability of RL algorithms to scale well in-
volves many issues (Singh 1992a; Barto & Singh 1990),
the one of relevance to this paper is that most RL al-
gorithms perform backups at the scale of the primitive
actions, 1.e., actions executable in one-time step in the
real world. At that fine a temporal scale problems
with large state spaces can require too many backups
for convergence to the optimal value function. To do
backups at longer time scales requires a model that
makes predictions at longer time scales, i.e., makes pre-
dictions for abstract actions that span many time steps
in the real world.

One way to abstract temporal detail would be to
simply learn to make predictions for all possible se-
quences of actions of a fixed length greater than one.
However, the combinatorics of that will outweigh any
resulting advantage. Furthermore, it 1s unlikely that
there is a single frequency that will economically cap-
ture all that is important to predict. In different parts
of the state space of the environment-model, “inter-
esting” events, 1.e., events that merit prediction, will
occur at different frequencies. Any system identifica-
tion technique that models the environment at a fixed
frequency will be inefficient as compared to a system
identification technique that can construct a variable
temporal resolution model (VITRM), i.e., a model with
different temporal resolutions in different parts of the
state space.

Learning Abstract Models for Multiple
Tasks

If the agent is to simply learn to solve a single
task, the computational cost of constructing a VIRM
may not be worthwhile (see Barto and Singh 1990).
My approach to the scaling problem is to consider
problem-solving agents that have to learn to solve mul-
tiple tasks and to use repeated experience at solv-
ing these tasks to construct a hierarchy of VIRMs
that could then be used to accelerate learning of sub-
sequent tasks. Besides, building sophisticated au-
tonomous agents will require the ability to handle mul-
tiple tasks/goals (Singh 1992b). Determining the use-
ful abstract actions for an arbitrary set of tasks is dif-
ficult, if not impossible.

In this paper, I consider an agent that has to learn to
solve a set of undiscounted (y = 1), compositionally-
structured MDTs labeled 17,75, ...,T,. Each task re-
quires the agent to learn the optimal path through a
sequence of desired states. For example, task T; =
[129 - &), where z; € S for 1 < j < m. Task



T; requires the agent to learn the optimal trajectory
from any start state to x, via intermediate states
X1,%T2,...,Tm_1 1n that order. The MDTs are com-
positionally structured because they can be described
as a temporal sequence of simpler tasks each of which
is an MDT in itself. Thus, the task of achieving desired
intermediate state x optimally is the elemental MDT
X = [#] defined over the same environment. Without
loss of generality, I will assume that the n composite
MDTs are defined over a set of N intermediate states
labeled x1,xs,...,2y. Equivalently, the n compos-
ite MDTs are defined over N elemental MDTs labeled
X1, Xo, .., XN

The payoff function has two components: C(x,a),
the “cost” of executing action a in state x, and r(z),
the “reward” for being in the state z. It is assumed
that C'(z,a) <0, and is independent of the task being
performed by the control agent, while the reward for
being in a state will in general depend on the task. For
task 7;, the expected payoff for executing action a in
state « and reaching state y is R;(z,a,y) = r(y) +
C(z,a). Further, T assume that r;(y) > 0 iff y is the
final goal state of task T5; r;(y) = 0, elsewhere.

For a set of compositionally-structured MDTs, de-
termining the abstract actions for the hierarchy of
VTRMs is relatively straightforward. The abstract ac-
tions for the second level® VITRM should be the el-
emental MDTs X, X,,..., Xny. Thus, the abstract
action Xy would transform the environment state to
z1 € 5. The expected payoff associated with this ab-
stract action can be acquired using experience at solv-
ing MDT X;. Note that these abstract actions are a
generalized version of macro-operators (Iba 1989; Korf
1985) because unlike macros which are open loop se-
quences of primitive actions that transform the initial
state to a goal state and can handle only deterministic
tasks, the abstract actions I define are closed loop con-
trol policies that transform the environment from any
state to a goal state and can handle stochastic tasks.
Furthermore, unlike macro-operators, these abstract
actions are embedded in an optimal control framework
and could be learned incrementally.

Consider two levels of the hierarchy of VI RMs: M-1,
the lowest level VITRM whose action set A; is the set
of primitive actions, and M-2, the second level VTRM
whose action set Ay = {X1, Xo,..., Xn}. The set of
states remains S at all levels of abstraction. Note,
that predicting the consequences of executing an ab-
stract action requires learning both the state transition
for that abstract action and its expected payoff. Un-
der the above conditions the following restatement of
a proposition, proved in Singh 1992a, is true:

Proposition: If the abstract environment-
model (M-2) is defined with the abstract actions

®Given the recursive nature of the definition of compos-
ite tasks, the abstract actions for levels higher than two can
be defined as the composite tasks themselves.

X1, Xs,..., Xn, and the costs assigned to the ab-
stract actions are those that would be incurred
under the optimal policies for the corresponding
MDTs, then for all composite tasks 7T;, Vs € 9,
Vit(s) = Vi (s).

VZ»2 1s the value function for task 7; that is learned
by doing DP backups exclusively in the abstract model
M-2, and V;* is the optimal value function for task 7j.
The above proposition implies that after learning the
abstract model, backups can be performed in the ab-

stract model alone to learn the optimal value function.

Hierarchical DYNA

The Hierarchical DYNA (H-DYNA) architecture is an
extension of Sutton’s (1990) DYNA architecture. H-
DYNA, shown in Figure 1, consists of a hierarchy of
VTRMs, a policy module for each level of the hierarchy,
and a single evaluation function module. Note that the
actual environment itself is shown in parallel with the
M-1 to emphasize their interchangeability. The evalu-
ation module maintains an estimate, V;, of the optimal
value function for each task 7;. Let the action set for

the VIRM at level i be denoted A;. For task T;, let

R;;(x,a;j,y) denote the estimate of the expected payoff
for executing action a; € Aj; in state x and reaching
state y. For the VTRM at level one the backups will
be over state pairs connected by primitive actions, and
the payoffs are available directly from the environment.
For VI'RMs at levels > 1, the payoffs associated with
the abstract actions will have to be learned over time
using experience with the tasks corresponding to the
abstract actions. The policy module at level j keeps
a weight function for each task T;, w;; : S x A; — R.
For level j, the probability of executing action a for
task 7; is:

e’w,j(l‘,a)

ewij(w,a’)’
ZG’E.A]'

Pj(i, Cl) =

for z € S and a € A;

When solving task 7;, the primitive control actions
to be executed are always determined by the policy
module at level 1. Whenever time permits, a backup
is performed using experience in any one of the hierar-
chy of environment models. For both real (level = 1)
and simulated experiences on task T; the evaluation
function and the policy module involved (say level j)
are updated as follows:

Vi(z) = Vi(z) +afR;

wij(z,a) = wi(z,a)+ o
—Vi()],

where a € A; transforms state z € S to state y € S

iz, a,y) +Vily) — Vi(z)}
[Rij(z,a,y) +7Vi(y)

and results in a payoff of Rij(x, a,y). For real expe-
riences, the task T; is automatically the current task
being performed by the agent and the state z is the



current state. However, for simulated experience in
the abstract models, an arbitrary task and an arbi-
trary state can be chosen. If there is no data available
for the chosen state-task pair in the abstract model, no
backup is performed.

In addition, for every real experience, i.e., after ex-
ecuting a primitive action, the transition probabilities
for that action in M-1 are updated using a supervised
learning algorithm. Cumulative statistics are kept for
all the states visited while performing the task 7; in
the real environment. When the agent finishes task
T;, i.e., when the final state for task 7; is achieved,
all the environment models that have that task as an
abstract action are updated. For example, after the
agent finishes elemental task X;, the abstract model
M-2 is updated because X; € Ay. See Appendix for
details.
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Figure 1: The Hierarchical Dyna (H-DYNA) architec-
ture.

Multiple Navigational Tasks

I illustrate the advantages of the H-DYNA architec-
ture on a set of deterministic navigation tasks. Fig-
ure 2 shows an 8 x 8 grid room with three goal lo-
cations designated A, B and C'. The robot is shown
as a filled circle and the filled squares represent ob-
stacles. In each state the robot has 4 actions: UP,
DOWN, LEFT and RIGHT. Any action that would
take the robot into an obstacle or boundary wall does
not change the robot’s location. There are three el-
emental tasks: “visit A7, “visit B”  and “visit (7,
labeled [A], [B] and [C] respectively. Three compos-
ite tasks: Ty = [AB], Ty = [BC], and T5 = [ABC]
were constructed by temporally concatenating the cor-
responding elemental tasks. It is to be emphasized
that the objective is not merely to find any path that
leads to the goal state, but to find the least-cost path.
The six different tasks, along with their labels, are de-
scribed in Table 1.

Table 1: Task Set

Label | Description Decomposition
A] visit A A]

B visit B B

C visit C C

Ty visit A and then C AC]

T visit B and then C B(C]

Ts visit A, then B and then C ABC]

The cost associated with all the state-action pairs
was fixed at —0.25 for all tasks. For each task a value
of 1.0 was associated with the final goal state for that
task. Thus, no intermediate reward was provided for
successful completion of subtasks. In the simulations,
I will consider only two levels of the hierarchy, i.e.,

VTRMs M-1 and M-2.
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Figure 2: The Grid Room: See text for details.

Simulation 1

This simulation was designed to illustrate two things:
first, that 1t 1s possible to solve a composite task by
doing backups exclusively in M-2, and second, that it
takes fewer backups to learn the optimal value function
by doing backups in M-2 as compared to the number of
backups it takes in M-1. To learn M-2, I first trained
H-DYNA on the three elemental tasks [A4], [B] and [C].
The system was trained until M-1 had learned the ex-
pected payoffs for the primitive actions and M-2 has
learned the expected payoffs for the three elemental
tasks. This served as the starting point for two sepa-
rate training runs for task 75.

For the first run, only M-1 was used to generate
information for a backup. For the second run the same
learning parameters were used, and only M-2 was used
to do the backups. To make the conditions as similar
as possible for the comparison, the order in which the
states were updated was kept the same for both runs by
choosing predecessor states in a fixed order. After each
backup, the absolute difference between the estimated
value function and the previously computed optimal
value function was determined. This absolute error
was summed over all states for each backup and then
averaged over 1000 backups to give a single data point.
Figure 3 shows the learning curves for the two runs.
The dashed line shows that the value function for the
second run converges to the optimal value function.
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Figure 3: Learning curves: See text for details

The two curves show that it takes far fewer backups in
M-2 than M-1 for the value function to become very
nearly-optimal.

Simulation 2

This simulation was conducted on-line to determine
the effect of increasing the ratio of backups performed
in M-2 to the backups performed in the real world.
The robot is first trained on the 3 elemental tasks for
5000 trials. Each trial started with the robot at a ran-
domly chosen location, and with a randomly selected
elemental task. Each trial lasted until the robot had
either successfully completed the task, or until 300 ac-
tions had been performed. After 5000 trials H-DYNA
had achieved near-optimal performance on the three
elemental tasks. Then the three composite tasks (See
Table 1) were included in the task set. For each trial,
one of the six tasks was chosen randomly, the robot
was placed in a random start state and the trial con-
tinued until the task was accomplished or there was a
time out. The tasks, T} and T were timed out after
600 actions and the task 73 after 800 actions.

For this simulation it is assumed that controlling the
robot in real-time leaves enough time for the agent to
do n backups in M-2. The purpose of this simulation
is to show the effect of increasing n on the number of
backups needed to learn the optimal value function.
No backups were performed in M-1. The simulation
was performed four times with the following values of
n: 0, 1, 3 and 10. Figure 4 shows the results of the
four different runs. Note that each backup performed
in M-2 could potentially take much less time than a
backup performed in the real world. Figure 4 displays
the absolute error in value function plotted as a func-
tion of the number of backups performed. This results
of this simulation show that even when used on-line,
backups performed in M-2 are more effective in reduc-

ing the error in the value function than a backup in
the real world.
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Figure 4: On-line Performance: See text for details.

Discussion

The idea of using a hierarchy of models to do more
efficient problem solving has received much attention
in both the AT and the control engineering community.
H-DYNA is related to hierarchical planning techniques
in that search for a solution is conducted in a hierar-
chy of models. However unlike hierarchical planning,
where the models are given beforehand and the search
is conducted off-line and sequentially, H-DYNA learns
the model using on-line experience and can conduct
the search in parallel. While the connection between
DP backups and one-step lookahead planning was first
emphasized by Sutton (1991) in his DYNA architec-
ture, H-DYNA takes this one step further by demon-
strating that doing backups in an abstract model is
similar to multi-step planning in general and hierar-
chical planning in particular. H-DYNA as a hierar-
chical control architecture has the advantage of being
continually “reactive” (much like DYNA) and at the
same time performs deep lookahead searches using the
abstract models.

The use of compositionally-structured tasks made
the problem of figuring out the “interesting” subtasks
simple. In addition the optimal solutions to composite
tasks could be expressed in terms of the optimal solu-
tions to the elemental tasks. Both of the above condi-
tions will not be true for a more general set of MDTs.
However, it may still be possible to discover significant
“landmark” states using experience at solving multiple
tasks in an environment and to use these states as goal
states for the abstract actions to form VIRMs. Doing
RL backups in such VI'RMs could then quickly lead
to near-optimal solutions to new tasks. Such solutions



could then be optimized using further experience at
solving that task. Further research is needed to test
these intuitions.
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Appendix

Learning abstract environment models

I keep a list of all states visited in the real world while
performing a elemental task 7;. At each time step,
the list 18 checked to see if the current state is in the
list, if so, its cumulative cost is set to zero, else the
current state is added into the list with cumulative cost
zero. The current payoff is added into the cumulative
payoff of all the states in that list. When the goal
state 1s reached, the next state for all the states in
the list is known as well as their cumulative payoff.
As the policy evolves over time the cumulative payoff
will change, but the next state will remain fixed. In
this method the list can grow to contain the entire
state set. Furthermore, searching for the current state
is expensive, though efficient data structures (Union-
Find) algorithms can be used. This method will be
infeasible for large state sets.

A more incremental method 1s to fix the list size to,
say, k, and then only keep the last k states in that
queue and manage it in a FIFO manner. Thus when a
state x 1s moved out of the queue, the next state for x
is set to be the next state stored for the current state
in M-2 and the cumulative payoff to that stored in the
queue added to the cumulative payoff stored for the
current state in M-2.



