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RL is Learning from Interaction

  

Environment

actionperception

reward
Agent

• complete agent

• temporally situated

• continual learning and planning

• object is to affect environment

• environment is stochastic and uncertain

RL is like Life!



RL (another view)

Agent chooses actions so as to maximize expected 
cumulative reward over a time horizon

Observations can be vectors or other structures
Actions can be multi-dimensional
Rewards are scalar but can be arbitrarily uninformative

Agent has partial knowledge about its environment

Agent’s life Unit of experience



Key Ideas in RL

• Temporal Differences (or updating a guess on the
basis of another guess)

• Eligibility traces

• Off-policy learning

• Function approximation for RL

• Hierarchical RL (options)

• Going beyond MDPs/POMDPs towards AI



Demos...



Stone & Sutton



Stone & Sutton



Keepaway Soccer (Stone & Sutton)

• 4 vs 3 keepaway

• Learned could keep the ball for 10.2 seconds

• Random could keep the ball for 6.3 seconds

• 5 vs 4 keepaway

• Learned could keep the ball for 12.3 seconds

• Random could keep the ball for 8.3 seconds



Stone & Sutton



Tetris Demo

Learned

by
J Bagnell & 
J Schneider



History & Place
(of RL)



Place

Reinforcement 
Learning

Control Theory 
(optimal control)(Mathematical)

Psychology

Artificial
Intelligence

Operations 
Research

Neuroscience



(Partial) History
• “Of several responses made to the same situation, those which

are accompanied or closely followed by satisfaction to the
animal will, other things being equal, be more firmly connected
with the situation, so that, when it recurs, they will be more
likely to recur; those which are accompanied or closely followed
by discomfort to the animal will, other things being equal, have
their connections with that situation weakened, so that, when it
recurs, they will be less likely to occur.  The great the
satisfaction or discomfort, the greater the strengthening or
weakening of the bond.”

• (Thorndike, 1911, p. 244)

• Law of Effect



(Partial) History...

Idea of programming a computer to learn by trial and error (Turing, 1954)

SNARCs (Stochastic Neural-Analog Reinforcement Calculators) (Minsky, 54)

Checkers playing program (Samuel, 59)

Lots of RL in the 60s (e.g., Waltz & Fu 65; Mendel 66; Fu 70)

MENACE (Matchbox Educable Naughts and Crosses Engine (Mitchie, 63)

RL based Tic Tac Toe learner (GLEE) (Mitchie 68)

Classifier Systems (Holland, 75)

Adaptive Critics (Barto & Sutton, 81)

Temporal Differences (Sutton, 88)



RL and Machine Learning

1. Supervised Learning (error correction)

• learning approaches to regression & classification
• learning from examples, learning from a teacher

2. Unsupervised Learning
• learning approaches to dimensionality reduction, density

estimation, recoding data based on some principle, etc.

3. Reinforcement Learning
• learning approaches to sequential decision making
• learning from a critic, learning from delayed reward



(Partial) List of Applications
• Robotics

• Navigation, Robosoccer, walking, juggling, ...

• Control
• factory processes, admission control in telecomm, resource

control in multimedia networks, helicopters, elevators, ....

• Games
• Backgammon, Chess, Othello, Tetris, ...

• Operations Research
• Warehousing, transportation, scheduling, ...

• Others
• HCI, Adaptive treatment design, biological modeling, ...



List of Conferences and Journals

• Conferences

• Neural Information Processing Systems (NIPS)

• International Conference on Machine Learning (ICML)

• AAAI, IJCAI, Agents,COLT,...

• Journals
• Journal of Artificial Intelligence Research (JAIR) [free online]

• Journal of Machine Learning Research (JMLR) [free online]

• Neural Computation, Neural Networks

• Machine Learning,  AI journal, ...



Model of Agent-Environment Interaction

Model?



Markov Decision Processes
(MDPs)

Markov Assumption:
Markov Assumption



MDP Preliminaries

• S: finite state space
A: finite action space
P: transition probabilities P(i|j,a)  [or Pa(ij)]
R: payoff function R(i) or R(i,a)
  : deterministic non-stationary policy S -> A
       :return for policy  when started in state i

Discounted framework

Also, average framework: Vπ = LimT → ∞ Eπ1/T {r0 + r1 + … + rT}



MDP Preliminaries...

• In MDPs there always exists a deterministic
stationary policy (that simultaneously maximizes
the value of every state)

;



Bellman Optimality Equations

Policy Evaluation (Prediction)

Markov assumption!



Bellman Optimality Equations

Optimal Control



Graphical View of MDPs
state

state

state

state

action

action

action

Temporal Credit Assignment Problem!!

Learning from Delayed Reward

Distinguishes RL from other forms of ML



Planning & Learning
in

MDPs



Planning in MDPs

• Given an exact model (i.e., reward function, transition
probabilities), and a fixed policy

For k = 0,1,2,...

Value Iteration (Policy Evaluation)

Stopping criterion: 

Arbitrary initialization:  V0



Planning in MDPs

Given a exact model (i.e., reward function, transition
probabilities), and a fixed policy

For k = 0,1,2,...

Value Iteration (Policy Evaluation)

Stopping criterion: 

Arbitrary initialization:  Q0



Planning in MDPs

Given a exact model (i.e., reward function, transition
probabilities)

For k = 0,1,2,...

Value Iteration (Optimal Control)

Stopping criterion: 



Convergence of  Value Iteration

*

1

2

3

4

Contractions!



Proof of the DP contraction



Learning in MDPs
• Have access to the “real

system” but no model

state

state

state

state

action

action

action

Generate experience

Two classes of approaches:
  1. Indirect methods

2. Direct methods       

This is what life looks like!



Indirect Methods for Learning in MDPs
• Use experience data to estimate model

• Compute optimal policy w.r.to estimated model
(Certainly equivalent policy)

• Exploration-Exploitation Dilemma

Parametric models

Model converges asymptotically provided all state-action pairs
are visited infinitely often in the limit; hence certainty equivalent
policy converges asymptotically to the optimal policy



Direct Method:

Only updates state-action pairs
that are visited...

Q-Learning

s0a0r0 s1a1r1 s2a2r2 s3a3r3… skakrk…

A unit of experience  < sk ak rk sk+1 >

Update:

    Qnew(sk,ak) = (1-!) Qold(sk,ak) +

                             ![rk + " maxb Qold(sk+1,b)]

Watkins, 1988

step-size

Big table of Q-values?





So far...
• Q-Learning is the first provably convergent direct

adaptive optimal control algorithm

• Great impact on the field of modern
Reinforcement Learning

• smaller representation than models

• automatically focuses attention to where it is
needed, i.e., no sweeps through state space

• though does not solve the exploration versus
exploitation dilemma

• epsilon-greedy, optimistic initialization, etc,...



Monte Carlo?

Start at state s and execute the policy for a long
trajectory and compute the empirical discounted return

Do this several times and average the returns across
trajectories

Suppose you want to find            for some fixed state s

How many trajectories?

Unbiased estimate whose variance improves with n



Application: Direct Method



Dog Training Ground
by

Kohl & Stone



Before Training
by

Kohl & Stone



After Training
by

Kohl & Stone



Application: Indirect Method



by Andrew Ng and colleagues



by Andrew Ng and colleagues



Sparse Sampling

Use generative model
to generate depth ‘n’ tree 
with ‘m’ samples for each action
in each state generated

Near-optimal action at root state in
 time independent of the size of state space

(but, exponential in horizon!)
Kearns, Mansour & Ng



Classification for RL
• Use Sparse Sampling to derive a data set of

examples of near-optimal actions for a subset
of states

• Pass this data set to a classification algorithm

• Leverage algorithm and theoretical results on
classification for RL

Langford



Trajectory Trees…

Given a set of policies to
evaluate, the number of policy
trees needed to find a near-
optimal policy from the given

set depends on the “VC-dim” of
the class of policies

Kearns, Mansour & Ng



Summary
• Space of Algorithms:

• (does not need a model) linear in horizon +
polynomial in states

• (needs generative model) Independent of states +
exponential in horizon

• (needs generative model) time complexity
depends on the complexity of policy class



Eligibility Traces
(another key idea in RL)



Eligibility Traces

• The policy evaluation problem: given a (in
general stochastic) policy !, estimate

        V!(i) = E!{r0+ "r1 + "2r2 + "3r3+… | s0=i}

   from multiple experience trajectories
generated by following policy ! repeatedly
from state i

   A single trajectory:

              r0       r1       r2           r3          ….         rk            rk+1   ….



TD(!)

r0       r1       r2           r3          ….         rk            rk+1   ….

r0 + "V(s1)0-step (e0):

temporal difference

Vnew(s0) = Vold(s0) +  # [r0 + "Vold(s1) - Vold(s0)]

Vnew(s0) = Vold(s0) +  # [e0 - Vold(s0)]

TD(0)



TD(!)

r0       r1       r2           r3          ….         rk            rk+1   ….

r0 + "V(s1)

r0 +   "r1 + "2V(s2)1-step (e1):

Vnew(s0) = Vold(s0) +  # [e1 - Vold(s0)] 

               Vold(s0) +  # [r0 + "r1 + "2Vold(s2) - Vold(s0)]



TD(!)

r0       r1       r2           r3          ….         rk            rk+1   ….

r0 + "V(s1)

r0 +   "r1 + "2V(s2)

r0 +   "r1 +    "2r2
    + "3V(s3)e2:

r0 +   "r1 +    "2r2
    + "3r3 +  … "k-1rk-1 + "k V(sk)ek-1:

r0 +   "r1 +    "2r2
    + "3r3 + … "k rk + "k+1 rk+1 + …e#:

e1:

e0:w0

w1

w2

wk-1

w#

Vnew(s0) = Vold(s0) +  $ [%k wk ek - Vold(s0)] 



TD(!)

r0       r1       r2           r3          ….         rk            rk+1   ….

r0 + "V(s1)

r0 +   "r1 + "2V(s2)

r0 +   "r1 +    "2r2
    + "3V(s3)

r0 +   "r1 +    "2r2
    + "3r3 +  … "k-1rk-1 + "k V(sk)

Vnew(s0) = Vold(s0) +  # [$k (1-!)!k ek - Vold(s0)] 

(1-!)!2

(1-!)!

(1-!)

(1-!)!k-1

0 % ! % 1 interpolates between 1-step TD and Monte-Carlo



TD(!)

r0       r1       r2           r3          ….         rk            rk+1   ….

r0 + "V(s1) - V(s0)#0

Vnew(s0) = Vold(s0) +  $ [%k (1-!)!k #k] 

        r1 + "V(s2) - V(s1)#1

                    r2
    + "V(s3) - V(s2)#2

                                            rk-1 + "V(sk)-V(sk-1)
#k

eligibility

trace

w.p.1 convergence (Jaakkola, Jordan & Singh)



Bias-Variance Tradeoff
r0       r1       r2           r3          ….         rk            rk+1   ….

r0 + !V(s1)

r0 +   !r1 + !2V(s2)

r0 +   !r1 +    !2r2
    + !3V(s3)e2:

r0 +   !r1 +    !2r2
    + !3r3 +  … !k-1rk-1 + !k V(sk)ek-1:

r0 +   !r1 +    !2r2
    + !3r3 + … !k rk + !k+1 rk+1 + …e":

e1:

e0:

increasing

variance

decreasing

bias



TD(   )



Bias-Variance Tradeoff

Intuition: start with large ! and then decrease over time" 

error
t
# a!

1$ b!
t

1$ b!
+ b!

t

t%&,  error asymptotes at 
a!

1- b!
( an increasing function of !)

Rate of convergence is b!
t (exponential)

b! is a decreasing function of !

Kearns & Singh, 2000

Constant step-size



Near-Optimal
Reinforcement Learning in

Polynomial Time
(solving the exploration versus exploitation dilemma)



Setting

• Unknown MDP    M

• At any step: explore or exploit

• Finite time analysis

• Goal: Develop an algorithm such that an agent
following that algorithm will in time polynomial in
the complexity of the MDP, will achieve nearly the
same payoff per time step as an agent that knew the
MDP to begin with.

• Need to solve exploration versus exploitation

• Algorithm called E3



Preliminaries

• Actual return:

• Let T* denote the (unknown) mixing time of the MDP

• One key insight: even the optimal policy will take time O(T*) to
achieve actual return that is near-optimal

• E3 has the property that it always compares favorably to the best
policy amongst the policies that mix in the time that the algorithm is
run.

)...(
1

21 T
RRR

T
+++



The Algorithm (informal)
• Do “balanced wandering” until some state is known

• Do forever:

• Construct known-state MDP

• Compute optimal exploitation policy in known-state
MDP

• If return of above policy is near optimal, execute it

• Otherwise compute optimal exploration policy in
known-state MDP and execute it; do balanced
wandering from unknown states.







M : true known state MDP M̂: estimated known state MDP



Main Result

• A new algorithm E3, taking inputs    and    such that
for any  V* and T* holding in the unknown MDP:

• Total number of actions and computation time
required by E3 are poly(    ,    , T*,N)

• Performance guarantee: with probability at least
(1-    ) amortized return of E3 so far will exceed
(1 -  )V*



Function Approximation
and

Reinforcement Learning



General Idea

Function
Approximator 

s

a

Could be:

• table

• Backprop Neural Network

• Radial-Basis-Function Network

• Tile Coding (CMAC)

• Nearest Neighbor, Memory Based

• Decision Tree

gradient-
descent
methods

targets or errors

    Q(s,a)



Neural Networks as FAs

estimated value

w ! w + " r
t +1 + #Q(st+1,at +1 ) $Q(st ,at )[ ] %w f (st ,at ,w)

Q(s,a) = f (s,a,w)

e.g., gradient-descent Sarsa:

target value

weight vector

standard
backprop 
gradient



Linear in the Parameters FAs

  
ˆ V (s) =

r 
! 

T
r 
" s   

# r 
! 

ˆ V (s) =
r 
" s

Each state s represented by a feature vector

Or represent a state-action pair with

and approximate action values: 

  

r 
" s

  
Q

$
(s, a) = E r

1
+ %r

2
+ %

2
r
3

+L s
t
= s, a

t
= a,$

  
ˆ Q (s,a) =

r 
! 

T
r 
" s,a

  

r 
" sa



Sparse Coarse Coding

fixed expansive

Re-representation

Linear
last 
layer

Coarse:   Large receptive fields

Sparse:   Few features present at one time

features

.

.

.

.

.

.

.

.

.

.

.





Shaping Generalization in Coarse
Coding







FAs & RL

• Linear FA  (divergence can happen)
Nonlinear Neural Networks (theory is not well developed)
Non-parametric, e.g., nearest-neighbor (provably not
divergent; bounds on error)
Everyone uses their favorite FA… little theoretical
guidance yet!

• Does FA really beat the curse of dimensionality?

• Probably; with FA, computation seems to scale with the
complexity of the solution (crinkliness of the value function) and
how hard it is to find it

• Empirically it works

• though many folks have a hard time making it so

• no off-the-shelf FA+RL yet



by Andrew Ng and colleagues



Dynamic Channel
Assignment in Cellular

Telephones



Dynamic Channel Assignment

Singh & Bertsekas (NIPS)

Agent

Channel assignment in cellular telephone systems

•    what (if any) conflict-free channel to assign to caller

Learned better dynamic assignment policies than competition

State: current assignments

Actions: feasible assignments

Reward: 1 per call per sec. 



Run Cellphone Demo
(http://www.eecs.umich.edu/~baveja/Demo.html)



After MDPs...

• Great success with MDPs

• What next?

• Rethinking Actions, States, Rewards

• Options instead of actions

• POMDPs



Rethinking Action
(Hierarchical RL)

Options
(Precup, Sutton, Singh)

MAXQ by Dietterich
HAMs by Parr & Russell
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Abstraction in Learning and Planning

• A long-standing, key problem in AI !

• How can we give abstract knowledge a clear semantics?

e.g. “I could go to the library”

• How can different levels of abstraction be related?

! spatial: states

! temporal: time scales

• How can we handle stochastic, closed-loop, temporally

extended courses of action?

• Use RL/MDPs to provide a theoretical foundation



Options

Example: docking

 
 ! : hand-crafted controller

"  : terminate when docked or charger not visible

Options can take variable number of steps

A generalization of actions to include courses of action

Option execution is assumed to be call-and-return

  

# 

An option is a triple o =< I,! ," >

• I$S is the set of states in which o may be started

• ! :S%A& [0,1] is the policy followed during o

• " :S& [0,1] is the probability of terminating in each state

 

I : all states in which charger is in sight



Rooms Example

HALLWAYS

O2

O1

4 rooms

4 hallways

8 multi-step options

Given goal location, 

quickly plan shortest route  

up

down

rightleft

(to each room's 2 hallways)

G?

G?

4 unreliable 
primitive actions

Fail 33% 
of the time 

Goal states are given
a terminal value of 1 ! = .9

All rewards zero

ROOM



Options define a  Semi-Markov Decison 

Process (SMDP)

Discrete time
Homogeneous discount

Continuous time
Discrete events
Interval-dependent discount

Discrete time
Overlaid discrete events
Interval-dependent discount

A discrete-time SMDP overlaid on an MDP
Can be analyzed at either level

MDP

SMDP

Options

over MDP

State

Time



MDP + Options = SMDP

Thus all Bellman equations and DP results extend for

value functions over options and models of options

(cf. SMDP theory).

Theorem:

For any MDP, 

and any set of options,
the decision process that chooses among the options,
executing each to termination,
is an SMDP.



What does the SMDP connection give us? 

  

! 

• Policies over options :  µ :S"O# [0,1]

• Value functions over options :  V µ (s),Qµ (s,o),VO

*(s),QO

* (s,o)

• Learning methods :  Bradtke &  Duff (1995), Parr (1998)

• Models of options

• Planning methods :  e.g. value iteration, policy iteration, Dyna...

• A coherent theory of learning and planning with courses of 

  action at variable time scales, yet at the same level

A theoretical fondation for what we really need!

But the most interesting issues are beyond SMDPs...



Value Functions for Options 

Define value functions for options, similar to the MDP case

    

V µ
(s) = E {rt+1 + ! rt+2 + ... | E(µ,s,t)}

Q µ
(s,o) = E {rt+1 + ! rt+2 + ... | E(oµ,s,t)}

Now consider policies µ "#(O) restricted to choose only 

from options in O :

VO

*
(s) = max

µ"# (O)
V µ
(s)

QO

*
(s,o) = max

µ"#(O)
Qµ
(s,o)



Models of Options

Knowing how an option is executed is not enough for reasoning about
it, or planning with it. We need information about its consequences 

! 

The model of the consequences of starting option o in state s has :

• a reward part

      rs
o

= E{r1 + "r2 + ...+ " k#1
rk | s0 = s,  o taken in s0, lasts k steps}

• a next - state part

      pss'
o

= E{" k$sks' | s0 = s,  o taken in s0,  lasts k steps}

                      %
                       1 if s'= sk is the termination state, 0 otherwise

This form follows from SMDP theory. Such models can be used 
interchangeably with models of primitive actions in Bellman equations.



Room Example

HALLWAYS

O2

O1

4 rooms

4 hallways

8 multi-step options

Given goal location, 

quickly plan shortest route  

up

down

rightleft

(to each room's 2 hallways)

G?

G?

4 unreliable 
primitive actions

Fail 33% 
of the time 

Goal states are given
a terminal value of 1 ! = .9

All rewards zero

ROOM



Example: Synchronous Value Iteration

Generalized to Options

  

! 

Initialize :  V0(s)" 0                                       #s$ S

Iterate :     Vk+1(s)" max
o$O

[rs
o + pss'

o

s'$S

% Vk (s')]       #s$ S

The algorithm converges to the optimal value function,given the options :

                 lim
k&'

Vk =VO

* 

Once VO

* is computed, µO

*  is readily determined.

If O = A,  the  algorithm  reduces  to  conventional  value  iteration

If A ( O,  then VO

* =V *



Rooms Example

Iteration #0 Iteration #1 Iteration #2

with cell-to-cell
primitive actions

Iteration #0 Iteration #1 Iteration #2

with room-to-room
options

V(goal )=1

V(goal )=1



Example with Goal!Subgoal

both primitive actions and options

Iteration #1Initial values Iteration #2

Iteration #3 Iteration #4 Iteration #5



What does the SMDP connection give us? 

      

• Policies over options :  µ :S !O a [0,1]

• Value functions over options :  Vµ
(s),Qµ

(s,o),VO

*
(s),QO

*
(s,o)

• Learning methods :  Bradtke &  Duff (1995), Parr (1998)

• Models of options

• Planning methods :  e.g. value iteration, policy iteration, Dyna...

• A coherent theory of learning and planning with courses of 

  action at variable time scales, yet at the same level

A theoretical foundation for what we really need!

But the most interesting issues are beyond SMDPs...



Advantages of Dual MDP/SMDP View 

At the SMDP level

Compute value functions and policies over options
with the benefit of increased speed / flexibility

At the MDP level

Learn how to execute an option for achieving a

given goal

Between the MDP and SMDP level

Improve over existing options (e.g. by terminating early)

Learn about the effects of several options in parallel,

without executing them to termination



Between MDPs and SMDPs

• Termination Improvement

  Improving the value function by changing the termination 

  conditions of options 

• Intra-Option Learning

   Learning the values of options in parallel, without executing them 

   to termination

   Learning the models of options in parallel, without executing 

   them to termination

• Tasks and Subgoals

  Learning the policies inside the options



Termination Improvement

Idea: We can do better by sometimes interrupting ongoing options
- forcing them to terminate before !   says to  

  

" 

Theorem :  For any policy over options µ :S#O$ [0,1],
                  suppose we interrupt its options one or more times, when

                           Q
µ
(s,o) <Qµ

(s,µ(s)),    where s is the state at that time
                                                                          o is the ongoing option
                  to obtain µ':S#O '$ [0,1],

                  Then µ' > µ  (it attains more or equal reward everywhere)

Application :  Suppose we have determined QO

*  and thus µ = µO

* .

                     Then µ'  is guaranteed better than µO

*

                     and is available with no additional computation. 



range (input set) of each
run-to-landmark controller

landmarks

S

G

Landmarks Task

Task:  navigate from S to G as 
fast as possible

4 primitive actions, for taking 
tiny steps up, down, left, right

7 controllers for going straight
to each one of the landmarks,
from within a circular region
where the landmark is visible
 

In this task, planning at the level of primitive actions is 
computationally intractable, we need the controllers





Illustration: Reconnaissance
Mission Planning (Problem)

• Mission: Fly over (observe) most
valuable sites and return to base

• Stochastic weather affects
observability (cloudy or clear) of sites

• Limited fuel

• Intractable with classical optimal
control methods

• Temporal scales:

! Actions: which direction to fly now

! Options: which site to head for

• Options compress space and time

! Reduce steps from ~600 to ~6

! Reduce states from ~1011 to ~106

  

Q
O

*
(s, o) = rs

o
+ ps ! s 

o
V

O

*
( ! s )

! s 

"
any state (106) sites only (6)

10

50

50

50

100

25

15 (reward)

5

25

8

Base
100 decision steps

options

(mean time between

     weather changes)



30

40

50

60

Illustration: Reconnaissance
Mission Planning (Results)

• SMDP planner:

! Assumes options followed to

completion

! Plans optimal SMDP solution

• SMDP planner with re-evaluation

! Plans as if options must be followed to

completion

! But actually takes them for only one

step

! Re-picks a new option on every step

• Static planner:

! Assumes weather will not change

! Plans optimal tour among clear sites

! Re-plans whenever weather changes

Low Fuel

High Fuel

Expected Reward/Mission

SMDP

Planner

Static

Re-planner

SMDP

planner

with

re-evaluation

of options on

each step

Temporal abstraction

finds better approximation

than static planner, with

little more computation

than SMDP planner



Intra-Option Learning Methods 

for Markov Options

Proven to converge to correct values, under same assumptions
as 1-step Q-learning

Idea: take advantage of each fragment of experience

SMDP Q-learning:
• execute option to termination, keeping track of reward along 

the way
• at the end, update only the option taken, based on reward and

value of state in which option terminates

Intra-option Q-learning:
• after each primitive action, update all the options that could have 
    taken that action, based on the reward and the expected value
    from the next state on





Example of Intra-Option Value Learning

 Intra-option methods learn correct values without ever 

taking the options! SMDP methods are not applicable here

Random start, goal in right hallway, random actions
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Intra-Option Model Learning

Intra-option methods work much faster than SMDP methods

Random start state, no goal, pick randomly among all options

Options executed

State
prediction

error
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Tasks and Subgoals

It is natural to define options as solutions to subtasks
e.g. treat hallways as subgoals, learn shortest paths

  

! 

We have defined subgoals as pairs :  <G,g >  

     G"S is the set of states treated as subgoals

     g :G#$ are their subgoal values (can be both good and bad)

Each subgoal has its own set of value functions, e.g.:

      Vg
o(s) = E{r1 + % r2 + ...+ % k&1

rk + g(sk ) | s0 = s, o, sk 'G}

       Vg
*(s) = max

o
Vg
o(s)

Policies inside options can be learned from subgoals, 

      in intra - option, off - policy manner.



Between MDPs and SMDPs

• Termination Improvement

  Improving the value function by changing the termination 

  conditions of options 

• Intra-Option Learning

   Learning the values of options in parallel, without executing them 

   to termination

   Learning the models of options in parallel, without executing 

   them to termination

• Tasks and Subgoals

  Learning the policies inside the options



Summary: Benefits of Options

• Transfer

! Solutions to sub-tasks can be saved and reused

! Domain knowledge can be provided as options and subgoals

• Potentially much faster learning and planning

! By representing action at an appropriate temporal scale

• Models of options are a form of knowledge representation

! Expressive

! Clear

! Suitable for learning and planning

• Much more to learn than just one policy, one set of values

! A framework for “constructivism” – for finding models of the

world that are useful for rapid planning and learning



POMDPs
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POMDPs...

• n underlying nominal or hidden states

• b(h) is a belief-state at history h

• Ta : transition probabilities among hidden states for
action a

• Oao(ii) is the probability of observation o on action
a in state i

• b(hao) = b(h)TaOao/Z = b(h) Bao/Z



Rethinking State

(Predictive State Representations or PSRs)
(TD-Nets)

Initiated by Littman, Sutton & Singh
…Singh’s group at Umich

…Sutton’s group at UAlberta



Go to NIPS05PSRTutorial



Rethinking Reward

(Intrinsically Motivated RL)

By Singh, Barto & Chentanez
… Singh’s group at Umich
… Barto’s group at UMass



Go to NIPS05IMRLTutorial



Applications of RL



List of Applications
• Robotics

• Navigation, Robosoccer, walking, juggling, ...

• Control
• factory processes, admission control in telecomm,

resource control in multimedia networks, ....

• Games
• Backgammon, Chess, Othello, ...

• Operations Research
• Warehousing, transportation, scheduling, ...

• Others
• Adaptive treatment design, biological modeling, ...



RL applied to HCI



Spoken Dialogue Systems

user

ASR

TTS

DBDialogue strategy



Sample Dialogue

•S1: Welcome to NJFun. How may I help you?
U1: I’d like to find um winetasting in Lambertville in the morning.
       (ASR output: I’d like to find out wineries the in the
         Lambertville in the morning.)
S2: Did you say you are interested in Lambertville?
U2: Yes
S3: Did you say you want to go in the morning?
U3: Yes.
S4. I found a winery near Lambertville that is open in the morning.
      It is […] Please give me feedback by saying “good”, “so-so”
      or “bad”.
U4: Good



NJFun

• Spoken dialogue system providing telephone
access to a DB of activities in NJ

• Want to obtain 3 attributes:
activity type (e.g., wine tasting)
location (e.g., Lambertville)
time (e.g., morning)

• Failure to bind an attribute: query DB with
don’t-care
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NJFun

• Spoken dialogue system providing telephone
access to a DB of activities in NJ

• Want to obtain 3 attributes:
activity type (e.g., wine tasting)
location (e.g., Lambertville)
time (e.g., morning)

• Failure to bind an attribute: query DB with
don’t-care



Approximate State Space

N.B. Non-state variables record attribute values;
state does not condition on previous attributes!



Action Space

• Initiative (when T = 0):
open or constrained prompt?
open or constrained grammar?
N.B. might depend on H, A,…

• Confirmation (when V = 1)
confirm or move on or re-ask?
N.B. might depend on C, H, A,…

• Only allowed “reasonable” actions
• Results in 42 states with (binary) choices
• Small state space, large strategy space



The Experiment

• Designed 6 specific tasks, each with web survey
• Gathered 75 internal subjects
• Split into training and test, controlling for M/F, native/non-

native, experienced/inexperienced
• 54 training subjects generated 311 dialogues
• Exploratory training dialogues used to build MDP
• Optimal strategy for objective TASK COMPLETION computed

and implemented
• 21 test subjects performed tasks and web surveys for modified

system generated 124 dialogues
• Did statistical analyses of performance changes



Estimating the

     MDP

...332211 !!!!!! ususus

Initial system
utterance

Initial user
utterance

Actions have
prob. outcomes

estimate transition probabilities... 
    P(next state | current state & action)
...and rewards...
    R(current state, action)

...from set of exploratory dialogues

a       e       a       e        a       e       ...!!
1 21 2 33

! ! ! !

+ system logs

Models population
of users



Reward Function

• Objective task completion:
-1 for an incorrect attribute binding
0,1,2,3 correct attribute bindings

• Binary version:
1 for 3 correct bindings, else 0

• Other reward measures: perceived completion, user
satisfaction, future use, perceived understanding, user
understanding, ease of use

• Optimized for objective task completion, but predicted
improvements in some others



Main Results

• Objective task completion:
train mean ~ 1.722, test mean ~ 2.176
two-sample t-test p-value ~ 0.0289

• Binary task completion:
train mean ~ 0.515, test mean ~ 0.635
two-sample t-test p-value ~ 0.05

• Outperformed hand-built policies

move to the middle
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Textbook References

• Reinforcement Learning: An Introduction

by Richard S. Sutton & Andrew G. Barto

MIT Press, Cambridge MA, 1998.

• Neuro-Dynamic Programming
by Dimitri Bertsekas & John Tsitsiklis

Athena Scientific, Belmont MA, 1996.



Myths of RL

• RL is TD or perhaps Q-learning

• RL is model-free

• RL is table lookup

• RL is slow

• RL does not work well with function approximation

• POMDPs are hard for RL to deal with

• RL is about learning optimal policies



Twiki pages on RL
• Myths of RL

• http://neuromancer.eecs.umich.edu/cgi-bin/twiki/view/Main/MythsofRL

• Successes of RL

• http://neuromancer.eecs.umich.edu/cgi-bin/twiki/view/Main/SuccessesOfRL

• Theory of RL

• http://neuromancer.eecs.umich.edu/cgi-bin/twiki/view/Main/TheoryOfRL

• Algorithms of RL

• http://neuromancer.eecs.umich.edu/cgi-bin/twiki/view/Main/AlgorithmsOfRL

• Demos of RL

• http://neuromancer.eecs.umich.edu/cgi-bin/twiki/view/Main/DemosOfRL



RL Abstractly...

Life is an optimal control problem!

Goal: maximize expected payoff over some time horizon

Environment

Agent

State

PayoffAction Sensors

Observations


