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ABSTRACT
Developers are turning to heterogeneous computing devices, such
as Field Programmable Gate Arrays (FPGAs), to accelerate data cen-
ter workloads. FPGAs enable rapid prototyping and should facili-
tate an agile software-like development workflow to fix correctness
bugs, performance issues, and security vulnerabilities. Unfortu-
nately, hardware development still does not have a vast ecosystem
of tools needed to support the agile hardware development vision.
The capability to record and replay FPGA executions would con-
stitute a key building block that will inspire the development of
many tools, similar to what record/replay did for software. However,
building a practical record/replay tool for FPGAs is challenging;
existing approaches either record too much or too little information
and cannot support real-world executions.

In this paper, we present Vidi, the first record/replay system for
real-world FPGA applications running on hardware. Vidi is based
on the observation that widely-used communication protocols have
well-defined input/output transactions to hide cycle-specific infor-
mation from developers, which enables a more efficient design than
heavyweight cycle-accurate record/replay approaches. Vidi pro-
poses (1) the transaction determinism insight to track and enforce
only necessary orderings of transaction events across record and
replay, and (2) the coarse-grained input recording mechanism to
record transaction-level information. We evaluate Vidi on Amazon
EC2 F1 instances with 10 applications and two use cases (debugging,
testing) and find that it incurs on average low performance slow-
down (1.98%) and resource overhead (5.48%), making it practical
for real-world deployments.

CCS CONCEPTS
• Hardware → Reconfigurable logic and FPGAs; • Software
and its engineering→ Software testing and debugging.
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1 INTRODUCTION
With the end of Moore’s Law and Dennard Scaling, system builders
are increasingly turning to heterogeneous computing elements such
as Field Programmable Gate Arrays (FPGAs) to build efficient com-
puter systems. For example, recent proposals offload computation
to FPGAs to improve application performance for machine learn-
ing [47, 55, 81, 92, 100, 103, 104], databases [70, 77, 83, 94], graph
processing [17, 29, 90, 106], networking [25, 36, 89], storage [50],
remote memory [28, 39] and compression [75, 101]. Cloud vendors
have begun providing FPGA instances on their platforms due to
the promise that these resources show [12, 14].

FPGAs offer the appeal of rapidly prototyping hardware appli-
cations without the costly design/validate/tape-out cycle of appli-
cation specific integrated circuits (ASICs). In theory, developers of
FPGA applications could rapidly fix issues such as correctness bugs,
performance bottlenecks, security vulnerabilities, and information
leaks in their designs. FPGA developers could then redeploy their
improved applications and keep iterating—similar to agile software
development—until they are satisfied with the outcome. Industry
teams are beginning to adopt such software-like workflows for
FPGA application development [36].

However, more work is needed to close the gap between software
and hardware development workflows to fully realize the vision
of agile hardware development. Software developers have a vast
ecosystem of tools, including bug finders (e.g., memory-violation
detectors [79], data-race detectors [80]), performance profilers (e.g.,
perf, Coz [33]), and comprehensive logging infrastructure (e.g.,
Nanolog [99], log20 [105]). The ecosystem of FPGA debugging
tools is comparatively lacking—while the research community has
built FPGA development tools [19, 48, 52, 59, 63, 87, 102], studies
show that most FPGA developers desire more and better debugging
tools [1]. Until more comprehensive tools are created, developers
will struggle to fix issues that arise in their designs.

We argue that the capability to record and replay executions
of an FPGA application would constitute a foundational building
block that would enable the development of further FPGA tools.
Record/replay techniques identify and capture the non-deterministic
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inputs to an execution. At a later time, a developer can use record/re-
play techniques to reproduce the non-deterministic inputs and
recreate the original execution. Record/replay enables a wide va-
riety of use-cases, including testing [31], debugging [66], perfor-
mance profiling [16], security auditing [34], and replication [24].
FPGA record/replay records and replays the input signal values to
an FPGA program that affect the semantics of the output signal
values. Using FPGA record/replay, developers could build FPGA
development tools that improve reliability through better testing/de-
bugging support, optimize performance through better profiling,
and improve security through forensics.

Unfortunately, existing FPGA record/replay systems present un-
fortunate trade-offs in either efficiency or effectiveness since they
are at extreme ends of the record/replay design-space. Most existing
approaches employ cycle-accurate record/replay, which is funda-
mentally inefficient and degrades the usefulness of record/replay.
Such systems guarantee that a replay execution produces the same
output in the same cycle as the recorded execution by recording
and replaying a trace of all input signals at every clock-cycle to
the circuit. Some cycle-accurate tools target hardware deployments
(e.g., ILA [2], SignalTap [6], and Panopticon [37, 82]), which enables
developers to recreate production executions but only for short pe-
riods of execution due to the high storage demands of recording
cycle-accurate information (see §6 for further discussion). Other
tools operate in simulation (e.g., VCS [86], Vivado [8]), which en-
ables cycle-accurate recreation of long executions by using software
to model hardware behavior, but limits the executions that a devel-
oper can record/replay because many executions (some of which
are buggy) cannot be observed by simulation due to inaccurate
modelling of hardware behavior (see §5.2 and §5.3).

Other record/replay approaches (e.g. DebugGovernor [63]) em-
ploy order-less record/replay, which is fundamentally ineffective at
recreating the recorded behavior of a circuit during replay. Such
systems capture and can recreate the data sent on each input com-
munication channel of a circuit, but not the ordering of data sent
across communication channels. As a result, these systems impose
little performance overhead, but cannot support applications whose
behavior depends upon the ordering of inputs sent on different in-
put channels. Unfortunately, many applications, including all of
those used in our evaluation (§5.1), depend upon such orderings
and cannot be supported by order-less record/replay tools.

Finally, it is difficult to use software record/replay tools for FPGA
record/replay, because CPU-side tools cannot observe hardware
events that are only visible to the FPGA.

In this paper, we present, Vidi, which strikes a better balance
in the design space of FPGA record/replay to offer both efficiency
(deployability on hardware) and effectiveness (support for many
FPGA applications). Vidi uses the observation that nearly all FPGA
applications communicate usingwell-defined transactions over com-
munication channels, hiding cycle-specific information from appli-
cations to simplify development (§2). Vidi uses this observation to
relax the granularity at which it captures application behavior, and
thus improve efficiency without sacrificing effectiveness.

Specifically, Vidi enforces transaction determinism, a novel prop-
erty that ensures that transaction content and the ordering between
transactions are the same across a recorded execution and its replay.
Transaction determinism supports arbitrary transaction ordering

requirements, which are required by either communication proto-
cols or application semantics. Our results indicate that even though
it does not guarantee equivalence of FPGA applications’ internal
states between record and replay, transaction determinism is suf-
ficient and effective for many use-cases across many hardware
designs. In rare cases, transaction determinism can yield output di-
vergences across a recorded execution and its replay; one of Vidi’s
contributions is a method and mechanisms to automatically detect
divergences and techniques that can remove them (§3.6).

To ensure transaction determinism, Vidi employs a novel mech-
anism called coarse-grained input recording, which utilizes the ab-
straction of transactions to identify the signals in a communication
channel that effect an FPGA application’s semantics. In particular,
coarse-grained input recording captures signal values associated
with the start/end events and the content of a transaction, which is
more efficient than recording/replaying signals at every clock cycle
and more effective than completely forgoing transaction ordering.

We implemented and deployed Vidi on Amazon EC2 F11. Vidi
supports both F1’s simulation framework and its hardware. We eval-
uated Vidi using one debugging use case, one testing use case, and
10 other FPGA applications and show that transaction determinism
and coarse-grained input recording accurately record/replay the
FPGA applications and impose low runtime (avg. 1.98% slowdown)
and resource overheads (avg. 5.68% LUT, 3.87% registers, 6.92%
BRAM of the whole FPGA), making Vidi practical for real-world
FPGA deployments. Our evaluation also demonstrates that coarse-
grained input recording achieves a median trace size reduction of
1092x when compared to a cycle-accurate approach.

While our prototype targets end-to-end FPGA applications on
F1, Vidi’s design supports record/replay of individual FPGA com-
ponents (e.g., DDR4 or app-internal traffic) with little effort (§4.1).
Moreover, the observations underpinning transaction determinism
and coarse-grained input recording apply to other FPGA ecosys-
tems (e.g., Intel FPGAs, RISC-V designs), so we believe that the Vidi
design will apply to other use-cases beyond Cloud FPGA offloading
(see §2).

Overall, Vidi makes the following contributions:
• Vidi determines opportunities for relaxing the granularity
and cycle-accurate ordering requirements used in existing
record/replay approaches.

• Vidi is the first record/replay system for real-world FPGA ap-
plications that run on hardware. Vidi leverages the recording
relaxation opportunities identified above by enforcing trans-
action determinism, a novel property for FPGA record/replay,
through coarse-grained input recording, a novel technique.

• An evaluation of Vidi shows that it works for real-world
FPGAs on a real Cloud deployment with low performance
and resource overhead.

2 BACKGROUND AND OBSERVATIONS
In this section, we provide background regarding FPGAs and the
key observations about common FPGA communication primitives
that inform Vidi’s design (§3).

FPGAs often send and receive data from components in a hetero-
geneous system (e.g., CPUs, NICs) using communication channels
1Available at https://github.com/efeslab/aws-fpga
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Figure 1: Thewaveform for a VALID/READY handshake of an
AXI Channel. Each line represents the values of a different
signal in the communication channel.

comprised of multiple shared signals (i.e., variables). In this paper,
we use the term channel to refer to a unidirectional communication
channel that uses handshaking techniques on the shared signals
to coordinate message transmission between a single sender and a
single receiver. We focus on FPGA deployments in which the sender
and receiver of each channel share a clock, since these deployments
are commonly provided by current cloud computing platforms (e.g.,
the Amazon EC2 F1 platform).

2.1 Channels and Transactions
Fig. 1 shows an example waveform diagram of an instance of
VALID/READY handshaking in AXI [15], the de facto communi-
cation protocol used in Xilinx FPGAs. This diagram shows the
values (i.e., low or high) of the shared signals in the communication
channel over time. CLK is the clock signal, which oscillates from
high to low repetitively, VALID and READY are AXI control signals
that the endpoints use to coordinate communication, and DATA
is a single-bit data value that is transmitted from the sender to
the receiver. The sender takes READY as an input signal and sets
VALID, DATA as output signals, while the receiver takes VALID,
DATA as input signals and sets READY as an output signal.

In this example, the sender initiates a handshake at T2 by setting
DATA to the desired value and assigning the VALID signal to be
high before T2. The receiver observes that VALID is set to high
and waits until it is ready to receive the data. In this example, the
receiver is ready at T5, so it sets READY to high between T4 and
T5. At T5, the sender and receiver observe that both VALID and
READY are high, indicating that the handshake is complete and
DATA is transmitted. The receiver must use or store the value of
DATA before T6, as DATA is only valid when the VALID signal is
high.

A transaction is the transmission of DATA via a handshaking
process; the rest of the paper uses the terms transaction and hand-
shaking interchangeably. Transactions have clearly defined start
and end events (e.g., the transaction in Fig. 1 starts at T2 and ends
at T5). For correct operation, handshaking protocols specify that
VALID and DATA signals must be constant throughout the duration
of the transaction and that the receiver must not use DATA until
the transaction is complete.

We make the following observation:

Write Acknowledge Channel

FPGA
(M

anager)

CPU
(Subordinate)

Address & Control

Write Address Channel

Write Data Channel

Write Data

Write Ack

Write Data

Happens-Before

Figure 2: Example group of FPGA-CPU communication chan-
nels. The displayed roles of the FPGA and CPU in this exam-
ple can be reversed. The orderings between transactions (the
dashed arrows between orange boxes in each channel) are
important for correct operation and hence a record/replay
system must capture these orders.

Observation #1: FPGA applications typically use communi-
cation protocols that employ handshakes and transactions [15,
26, 45, 69, 84]. Transactions identify the start and end events
between which signals in a communication channel are un-
modified and meaningful.

2.2 Transaction Ordering in FPGAs
Transactions hide cycle-specific information from an FPGA applica-
tion. Nevertheless, FPGA applications and protocols often depend
on multiple channels grouped by semantics (e.g., a group of read-
/write, data/address channels). Their correctness relies on specific
ordering requirements across transactions on multiple channels.
Violation of transaction ordering requirements can cause incor-
rect results, deadlock, or one communication party to enter an
unrecoverable error-state [15, 96].

In particular, the correct operation of an FPGA application de-
pends on the happens-before relationships of the start and end
events of each transaction. We define a happens-before relationship
between events as follows: a transaction event A (either start or
end) happens before a transaction event B if A happened at an earlier
time, based on wallclock, than B.

For example, consider the AXI communication protocol [15].
Fig. 2 shows an example using the protocol, where an FPGA (man-
ager) sends one memory write operation to a CPU (subordinate).
The FPGA communicates the memory address and the data to be
written to the CPU in the top and middle channels, respectively.
The CPU communicates the write acknowledgement to the FPGA
in the bottom channel.

The AXI protocol requires that the end events of the address and
data (in the top and the middle channel) transactions must happen
before the start event of the corresponding acknowledgement (in
the bottom channel) transaction. However, the protocol does not
place ordering requirements on transactions at the finest possible
(i.e., individual clock cycle) granularity.

We study existing communication protocols[15, 84] and applica-
tions to determine the ordering requirements upon which FPGA
applications typically depend. We then observe that an FPGA appli-
cation’s behavior typically depends on the ordering of transaction
end events with respect to all other transaction events (start and
end), but rarely depends on the ordering of transaction start events
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with respect to all other transaction events (start and end). The
observation is based on transaction semantics; transactions dictate
that a receiver refrain from accessing and using data until the trans-
action end event. For example, memory consistency models dictate
that memory operations complete in a certain order—i.e., that the
end event of one write acknowledgment transaction must happen
before the end event of another write acknowledgment transaction.
In sum:

Observation #2: FPGA applications often depend on specific
orderings among their transaction start/end events, but rarely
depend on the specific cycle in which a transaction starts or
ends. Furthermore, FPGA applications often depend on the
ordering of transaction end events with respect to all other
transaction start/end events due to transaction semantics.

3 DESIGN
Vidi exploits observations #1 and #2 from the previous section to
relax the granularity and cycle-accurate record/replay for efficiency
while preserving the necessary ordering of transaction events to
ensure effectiveness (i.e., ability to record/replay).

Based on observation #2, Vidi introduces a novel property, trans-
action determinism, which preserves the happens-before relation-
ship between transaction end events and other transaction start/end
events across a recorded execution and its replay. Transaction deter-
minism guarantees that FPGA applications will produce the same
output if their executions depend only on the content and partial
ordering of transactions at the I/O boundary. Enforcing transaction
determinism is generally sufficient for successful record/replay. In
rare cases, this relaxation causes Vidi’s replay to diverge from the
original execution if program behavior depends on the exact clock
cycle when a signal changes (e.g., the bug is only triggered when
input signal X is 1 at cycle 1). In §3.6, we discuss how Vidi detects
and fixes such divergences and provide a real-world example. Thus,
Vidi makes a tradeoff in enforcing transaction determinism: it fa-
vors practical utility over stronger guarantees which would come
with higher overhead (see §6).

To ensure transaction determinism, Vidi introduces a novel
mechanism, coarse-grained input recording, based on observation
#1. Rather than recording input signal values in a channel at all
clock cycles, Vidi records the time when a transaction starts/ends,
and the transaction content at the start (e.g., in Fig. 1, T2, T5, and
DATA at T2), which reduces storage and performance overhead
compared to existing work (see §5.5). Note that Vidi assumes a
proper application to at least implement the single-channel hand-
shaking (§2.1) correctly, thus can not handle applications that do
not use handshaking or do not implement it correctly. Vidi en-
forces transaction determinism by ensuring that the orderings of all
transaction end events and other transaction events (start and end)
are consistent with the orderings observed during recording. The
ubiquity of the transaction abstraction suggests that coarse-grained
input recording is generalizable across FPGA platforms.

Fig. 3 shows Vidi’s design. Vidi intercepts all transaction-based
communication channels across a user-defined record/replay bound-
ary between an FPGA program and the external environment with
which it interacts. Our implementation (§4) treats the CPU as the
external environment and the entire FPGA application as the FPGA
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Figure 3: Vidi’s design overview. For simplicity, we show a
single input channel (Channel 1) and output channel (Chan-
nel 2). The green arrow ( 5 ) from the channel replayer to
Channel 1 indicates that, during replay, the channel replayer
creates input transactions on input channels. The green ar-
row ( 6 ) from Channel 2 to the channel replayer indicates
that, during replay, the channel replayer receives output
transactions on output channels.

program, and hence records/replays transactions that occur on
all input channels (e.g., Channel 1) and all output channels (e.g.,
Channel 2). During recording, Vidi performs coarse-grained in-
put recording and stores input signals from the environment in
a storage resource accessible to the FPGA (either internal or ex-
ternal). During replay, Vidi redeploys the FPGA program, either
in hardware or simulation, and replays the input signals in each
channel (see §2.1). While Vidi only records/replays transactions at
the boundary with the external environment, the system recreates
internal execution states of the FPGA program (e.g., computation
logic and internal traffic among different modules) during replay.

Recording. When recording is enabled, Vidi uses a channel
monitor (§3.1) on each channel to transparently observe potentially
concurrent transactions ( 1 ). Channel monitors deployed on input
channels perform coarse-grained input recording, i.e., they capture
the start/end events and the content of each transaction. By de-
fault, channel monitors deployed on output channels only track
transaction end events. Together, the channel monitors produce
data suitable for identifying the happens-before relationships be-
tween transaction end events and either transaction start events
of input transactions or transaction end events of output transac-
tions. These relationships are exactly those that are required for
transaction determinism.

The channel monitors then send this information to the trace
encoder ( 2 ). The trace encoder generates a compacted trace con-
taining the content of input transactions and happens-before rela-
tionships between input and output transaction events (§3.2). The
happens-before relationships identified by the trace encoder are
required during replay to ensure transaction determinism. Finally,
the trace encoder forwards the trace of events to a Trace Store,
which saves the trace into auxiliary storage (§3.3).

Replaying. When replaying is enabled, the trace store forwards
a previously-recorded trace to the trace decoder ( 3 ). The trace
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decoder reverses the work of the trace encoder by decompressing
the trace to identify transaction content and happens-before rela-
tionships across transaction events (§3.4). The trace decoder creates
a separate trace for each channel which it forwards to the channel’s
replayer ( 4 ). Each channel replayer communicates with the FPGA
application over its assigned channel (§3.5): input channel replayers
(i.e., channel replayers that are senders) control when each input
transaction starts (e.g. the VALID signal in Fig. 1) and its content
(e.g. the DATA signal in Fig. 1) 5 , while output channel replayers
(i.e., channel replayers that are receivers) control when each output
transaction ends (e.g. the READY signal in Fig. 1) 6 . All channel
replayers coordinate using vector clocks [53] to ensure transaction
determinism. Although Vidi is designed to support replay on hard-
ware, it can be run in simulation to replay traces collected from
hardware executions (see §5.2).

Divergences. If the FPGA application’s behavior is cycle-dependent,
transaction determinism may be insufficient for deterministically
reproducing an execution’s output content (we observe about one
divergence every one million transactions in 1/10 applications in
our evaluation in §5.4). In §3.6, Vidi provides a two-step mecha-
nism for detecting such divergences. Based on Vidi’s divergence
report, the developer can resolve these divergences by eliminating
cycle-specific dependencies from their program. Vidi provides a
reusable solution for the only source of divergence we observe (i.e.,
a communication construct that uses polling).

We provide a concrete example of Vidi’s workflow in §5.2. Below,
we describe how each Vidi component works.

3.1 Channel Monitor
Vidi deploys a channel monitor for each channel used by the FPGA
program. The monitor transparently intercepts the transactions
on a channel. Monitors on input channels (i.e., channels in which
the FPGA is a receiver) perform coarse-grained input recording;
they send messages identifying the start, end, and content of each
transaction to the trace encoder. By default, channel monitors on
output channels (i.e., channels in which the FPGA is a sender)
send messages identifying the end of each transaction to the trace
encoder. When using Vidi to validate output (§3.6), the system
configures output channel monitors to track the content of each
completed transaction, in addition to the transaction end event.
Fig. 4 illustrates a channel monitor on an input channel that inter-
cepts a transaction between a sender (CPU) and a receiver (FPGA
program).

When the sender begins a transaction on an input channel 1 ,
the monitor sends data to the trace encoder 2 , which will log both
the start event and content of the transaction. The channel monitor
uses transactions to communicate with the trace encoder, since the
trace encoder depends upon downstream resources (e.g., the trace
store) that may not be ready to receive more events. After the data
is safely stored on the trace encoder, the channel monitor starts a
transaction with the receiver 3 . A channel monitor on an output
channel elides this work on transaction start, since the start time
and content of output transactions are not needed when enforcing
transaction determinism (§3.5).

Managing the end of the transaction is complex for channel
monitors, regardless of whether the monitor is deployed on an input

Sender
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(FPGA)

Channel S
Channel 
Monitor

Channel R

C
h

an
n

el
 T

Trace Encoder

4

4

4

1

2

3

Figure 4: A channel monitor deployed on an input channel.
Black arrows, boxes, and diamonds identify the steps needed
to transparently perform coarse-grained input recording be-
tween the sender and receiver.

or output channel. A channel monitor must ensure that it completes
three transactions (denoted by 4 in Fig. 4) simultaneously: the
transactions to the sender and receiver (so that there is a clearly
defined ending to the original transaction between the sender and
the receiver) and a new transaction to the trace encoder to log
the end event (so that the encoded trace correctly identifies when
the transaction completes). The simultaneous completion of these
three transactions cannot always be completed without additional
machinery, since the trace encoder may need to block due to a full
downstream buffer (e.g. in the trace store).

To create a single-cycle transaction with the trace encoder, the
channel monitor makes an eager reservation with the trace encoder
before starting the transaction 2 with the receiver. This reserva-
tion pre-allocates a buffer in the trace encoder and ensures that the
trace encoder can instantaneously accept the end event from the
channel monitor at a later clock cycle.

The channel monitor uses a single fixed-sized channel packet
(see the left-hand-side of Fig. 5) to send transaction start/end events
and content to the Trace Encoder. A channel packet consists of
three elements: Start, a boolean field indicating that a new hand-
shake started on the channel in the current clock cycle; Content,
binary data sent by the transaction; and End, a boolean field repre-
senting that a handshake completed on the channel in the current
clock cycle. Vidi uses a special channel packet format instead of
recording physical timestamps (i.e. cycle counters) because physical-
timestamp-based approaches either limit record/replay to short
traces or make record/replay prohibitively expensive, as observed
by existing cycle-accurate tools (see §6).

3.2 Trace Encoder
The trace encoder consumes traces from the channel monitors,
encodes the happens-before relationships between the start/end
event of each transaction and the end events of all other transac-
tions (input and output), and produces a compact trace for efficient
storage. The resulting trace efficiently encodes a vector clock for
each transaction event, which can be used to enforce happens-
before relationships during replay (§3.5) and provide transaction
determinism.
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Figure 5: Architecture of the trace encoder.

At each clock cycle, the trace encoder adds the content from all
channel packets into a cycle packet (Fig. 5). The cycle packet con-
tains two fixed-size bit-vectors, Starts and Ends, and one variable-
sized field, Contents. Starts identifies whether each input channel
started a handshake during the cycle (i.e., if the 𝑛th field is set in
Starts, then the 𝑛th input channel started a handshake), while
Ends identifies whether each input or output channel completed a
handshake during the cycle. Including input and output transaction
end events in Ends is critical to enforce transaction determinism.
Finally, the trace encoder constructs the Contents field in the cycle
packet using a binary-tree structure to compact the Content fields
from all channel packets. The compact format only includes the
Content of channel packets on input channels that indicate the
start of a transaction.

3.3 Trace Store
The trace store performs two actions, depending on whether Vidi is
configured to perform recording or replaying. When Vidi is record-
ing, the trace store stores cycle packets that are generated by the
trace encoder to storage resources (e.g., CPU-side DRAM). When
Vidi is replaying, it retrieves cycle packets that are consumed by the
trace decoder from storage resources. To improve resource utiliza-
tion, the trace store converts variable-sized cycle packets into the
fixed-size storage interface packets available to FPGA applications
(e.g., the AWS F1 platform exposes CPU-side DRAM to FPGA pro-
grammers using 64-byte granular read/write operations via the AXI
protocol). The trace store packs multiple cycle packets into a single
read or write operation to the storage resources when possible (e.g.,
placing 48-byte and 16-byte packets into the same 64-byte cache-
line). Additionally, the trace store collaborates with other entities
in a heterogeneous system (e.g., the operating system kernel on the
CPU side) to manage storage allocation, buffer management, etc.
External storage resources may operate slower than the execution
trace is generated or consumed on FPGA, so the trace store also
manages a back-pressure signal to pause the recording/replaying
when necessary. Since Vidi uses handshaking and transactions, it
can easily pause the recording/replaying without disrupting any
necessary happens-before relationships. Such design enables Vidi
to support arbitrarily long execution traces.
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Figure 6: Architecture of the Trace Decoder and Channel
Replayers with an example trace.

3.4 Trace Decoder
During replay, the trace decoder reconstructs the content of each
input transaction and provides channel replayers with the infor-
mation necessary to ensure transaction determinism. This process
involves decomposing the trace from the trace store into channel-
specific traces.

The trace decoder receives a sequence of cycle packets from
the trace store (i.e., the same format as the output of the trace en-
coder in Fig. 5). The trace decoder then decomposes the fields of
each cycle packet (i.e., Starts, Ends, and Contents) into individ-
ual channel packets (see §3.1). For each input channel, the trace
decoder generates the Start and End fields of the channel packet
by identifying the corresponding element in the Starts and Ends
bit-vectors in the cycle packet and decompresses Contents (via the
binary tree used in §3.2) to generate the Content field correspond-
ing to each Start field. For each output channel, the trace decoder
only generates the End field of the channel packet.

In addition to the channel packets, the trace decoder also sends
each channel replayer the Ends field from each cycle packet. The
Ends field is critical for reconstructing the vector clock to identify
the happens-before relations among transaction events and ensure
transaction determinism (§3.5).

Fig. 6 is an example of decoding a cycle packet from the trace
encoded in Fig. 5. The decoder creates a channel packet for the
first input channel by inspecting the first element in Starts (i.e. 0)
and the first element in Ends (i.e. 1). Since this is not a start packet,
there is no content field (i.e., Content is N/A). The decoder then
creates the channel packet for the second input channel by inspect-
ing the second elements in Starts and Ends. Since the resulting
channel packet contains the first start event in the cycle packet in
the example, the decoder assigns the first element of the Contents
field to the channel packet for the second input channel.

3.5 Channel Replayer
Vidi deploys a channel replayer for each input and output channel
used by the FPGA program. Together, the channel replayers provide
transaction determinism by reproducing the content of each input
transaction and ensuring that each recreated transaction event
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satisfies the recorded happens-before relationships with all other
transactions.

Each channel replayer receives a sequence of ⟨channel packet,
Ends⟩ pairs from the trace decoder. Each replayer recreates the
transaction events contained in pairs from the sequence in the
correct order as required to enforce transaction determinism. The
channel replayers use vector clocks [53] for this task. Vidi associates
a logical timestamp, ⟨𝑡1, 𝑡2, ..., 𝑡𝑛⟩, with each transaction event (start
or end). Each entry, 𝑡𝑖 , represents the number of completed transac-
tions in the 𝑖th channel. Vidi determines and enforces the happens-
before relationships of two events by maintaining and comparing
the partial order (≥) of their logical timestamps2.

Each channel replayer maintains two vector clocks during the
replay execution: (1) 𝑇expected, which tracks the expected logical
timestamp of the next event, and (2) 𝑇current, which tracks the cur-
rent progress of the replay. The replayers initialize 𝑇current and
𝑇expected to contain 0 in each field. Before processing each transac-
tion event from the sequence of pairs, the channel replayers ensure
that 𝑇current ≥ 𝑇expected.

Each replayer maintains 𝑇expected using Ends. Specifically, after
processing an element in its sequence, each channel replayer ad-
vances𝑇expected’s 𝑖th element by 1 if Ends indicates that a new trans-
action is expected to finish in the 𝑖th channel. The updated𝑇expected
indicates the logical timestamp at which the required happens-
before relationship of the next channel packet is satisfied. Each
replayer maintains 𝑇current by communicating with the other chan-
nel replayers. Specifically, when a transaction completes on the
𝑖th channel, the channel replayer for that channel sends a message
to all channel replayers; each channel replayer increments the 𝑖th
element in their 𝑇current by 1 after receiving the message.

After 𝑇current ≥ 𝑇expected is satisfied at a given channel replayer,
the replayer processes any events contained in the channel packet.
If the channel packet refers to the Start of a transaction, the input
channel replayer starts a transaction using the Content field of the
channel packet. If the channel packet refers to the End of a transac-
tion, the output channel replayer attempts to end a transaction (e.g.
by setting the READY signal to high).

3.6 Handling Replay Divergence
In rare cases transaction determinism fails to deterministically
record and replay an execution because the FPGA program has
cycle-dependent behavior (about one in one million transactions
differs between recording and replaying in only 1/10 of our evalu-
ated applications §5.4).

Vidi follows a two-step process to identify divergences. First,
Vidi records a reference trace by configuring output channel mon-
itors to record the content of output transactions in addition to
the normal recording workflow (§3.1). Second, Vidi replays the
reference trace while simultaneously recording the replayed transac-
tions as a validation trace. Vidi compares the reference trace and the
validation trace to identify divergences between record and replay.

Developers must convert the cycle-dependent behavior in their
application into cycle-independent logic to resolve divergences.
In our evaluation, we observe that one application, DRAM DMA,

2For two timestamps𝑇1 and𝑇2 ,𝑇1 ≥ 𝑇2 if and only if the 𝑖th element of𝑇1 is greater
than or equal to the 𝑖th element of𝑇2 for all 𝑖 .

has one content divergence about every one million transactions.
All the divergences that we observe are caused by the same cycle-
dependent logic (polling). Below, we describe how we used Vidi
to automatically identify the cycle-dependent behavior in that ap-
plication and manually convert its cycle-dependent polling in to a
cycle-independent implementation that uses interrupts.

DRAM DMA uses polling to determine progress; the CPU polls
a value every 500ms to identify whether the FPGA application has
finished an acceleration task. Since the task completion depends on
real-time behavior, Vidi replays may produce the polling request
too early or too late relative to the task completion and change
the execution’s behavior. Vidi automatically identifies the problem
when configured to test for replay divergences (every application
in the eval §5.1 is configured in this way). It reports transaction
content, the output channel, and the context (e.g., which transac-
tions completed on the offending channel before the divergence).
Using Vidi’s report, we identify the code causing cycle-dependent
behavior and create a 10-line patch (out of 4.3K lines in the applica-
tion) that instead sends a cycle-independent interrupt upon task
completion. Other applications that use polling could reuse our
approach to eliminate cycle-dependent behavior.

4 IMPLEMENTATION
We implemented Vidi on Amazon EC2 F1 as a shimmodule support-
ing the same programming interface as AWS F1 instances. Thus,
AWS F1 FPGA applications can seamlessly use Vidi. For heteroge-
neous designs that deploy CPU-side applications, Vidi provides a
runtime library that can be used to enable and disable record/re-
play. Vidi also includes a software component that detects replay
divergences (§3.6).

4.1 Hardware
Vidi’s hardware shim module consists of 7318 lines of SystemVer-
ilog usingXilinx VivadoDesign Suite 2020.2with F1 shell_v04261818
and a high-performance 250 MHz clock.

Our prototype uses the boundary between the CPU and FPGA
as the record/replay boundary. Specifically, our prototype provides
transaction determinism for the transactions issued on all 5 AXI
interfaces on AWS F1 (the de facto communication mechanism
between CPUs and FPGAs on F1). Replaying the AXI transactions
recreates DDR4 traffic (which provide access to on-FPGA memory),
so recording DDR4 traffic offers no benefit in our use-cases (see §5)
and our prototype refrains from recording DDR4 traffic by default.
If preferred, a developer can customize Vidi to include or exclude
other AXI-like interfaces; we demonstrate such customizations by
extending Vidi to record/replay the aforementioned DDR4 interface
and application internal buses with only 13 additional lines of code
per interface.

Vidi requires that recorded/replayed AXI interfaces use the same
clock, which is enforced by the AWS F1’s programming interface [9].
We describe our implementation below.
Channel Monitor. A channel monitor transparently interposes on
a channel between the CPU and FPGA by coordinating transactions
across three channels: one between the CPU and channel monitor,
one between the channel monitor and trace encoder, and one be-
tween the channel monitor and FPGA (§3.1). Ensuring the ordering
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Table 1: The applications used to evaluate Vidi. We provide
their execution time without Vidi (ET w/o Vidi), average per-
formance overhead and standard deviation of Vidi’s record-
ing (Overhead±std), the size of Vidi trace generated during
recording (TS), and the reduction of trace size.

App ET w/o
Vidi (s)

Overhead
±std (%)

TS
(GB)

Trace
Reduction

(1) DMA [9] 1.66 5.93±0.45 0.81 97x
(2) 3D [107] 4.14 0.54±2.88 0.14 1,439x
(3) BNN [107] 6.43 0.63±1.68 0.31 966x
(4) DigitR [107] 9.56 0.03±0.14 0.97 468x
(5) FaceD [107] 17.41 -0.05±1.28 0.12 7,011x
(6) SpamF [107] 1.56 10.54±0.40 0.83 88x
(7) OpFlw [107] 13.79 1.91±0.27 1.33 490x
(8) SSSP [3] 397.83 0.00±0.01 0.002 10,149,896x
(9) SHA [4] 31.75 0.64±0.06 1.23 1,219x
(10) MNet [5] 110.71 0.11±0.27 0.51 10,163x

properties required for a correct channel monitor proved extremely
challenging. For example, we found that Debug Governor [63],
which aims to support equivalent functionality to a channel moni-
tor, violates the handshaking protocol with the receiver when the
trace encoder delays transaction completion despite the developers
carefully considering a truth-table of 128 elements during their
implementation [61]. Moreover, subtle issues in the protocol can
push the FPGA into an unrecoverable error state that is extremely
difficult to debug on hardware.

In our implementation, we applied formal verification to ensure
the correctness of this critical design component. Specifically, we ap-
plied SystemVerilog Assertions (SVA) via JasperGold v2021.06 [27]
to formally prove that channel monitors (Fig. 4) enforce critical
properties (e.g., intercepted transactions handshake correctly and
are not reordered nor dropped).
Trace Store. The trace store uses the PCIe Direct Memory Access
(DMA) programming interface, which is also used by the FPGA
application, to store and fetch the trace. The prototype uses the
AXI-Interconnect Xilinx library to multiplex the PCIe interface
between Vidi and the application.

4.2 Software
We implemented Vidi’s software runtime library in 772 lines of
C on Ubuntu 20.04 with kernel 5.11. During recording, the run-
time reserves huge-pages for trace buffering, initializes Vidi’s shim
module before the CPU-side application invokes the FPGA-side ap-
plication, and saves the recorded trace to disk when the application
finishes. During replay, the software runtime copies the trace into
huge-pages and initializes Vidi’s shim module to replay the trace.

Vidi’s offline trace analysis tools consist of 1396 lines of C++.
The trace validation tool detects divergences by comparing the
content and ordering of the transactions in two traces §3.6. Vidi also
includes a trace mutation tool that can reorder a trace’s transaction
events to aid testing §5.3.

5 EVALUATION
In this section, we first describe our experimental setup and bench-
mark selection. We then evaluate our prototype of Vidi by answer-
ing the following questions:
Debugging (§5.2). How does Vidi help FPGA debugging?

Testing (§5.3). How does Vidi help FPGA testing?
Effectiveness (§5.4). How well does the transaction determinism
provided by Vidi preserve the same output across recording and
replaying?
Efficiency (§5.5). What is the performance overhead of ggVidi?
What is the resource overhead of Vidi? Howmuch does Vidi benefit
from the transaction abstraction?

5.1 Experimental Setup
Benchmark Selection. We first port a buggy Frame FIFO imple-
mentation from a recent survey of FPGA bugs [59] to AWS F1 to
demonstrate how Vidi assists debugging. Then, we port a buggy
component of an open-source AXI communication library [7] to
AWS F1 to demonstrate how Vidi can enable new testing tech-
niques.

Finally, we evaluate Vidi on 10 other applications on the AWS F1
platform to demonstrate its efficiency and effectiveness in general.
As shown in Table 1: (1) DRAM DMA is an example application
written by AWS in SystemVerilog that demonstrates many of the
features and resources on the F1 platform, including PCIe register
access, bidirectional PCIe DMA between CPU and FPGA, etc. The
rest of the applications are generated via High Level Synthesis
(HLS). (2)-(7) are from the Rosetta FPGA benchmark [107], including
graphics rendering applications and machine learning accelerators.
(8)-(10) are open-source FPGA applications that accelerate graph
processing, hashing and image classification.
Methodology. We integrate Vidi into each application and synthe-
size the resulting combination to a bitstream that can be loaded to
the FPGA on AWS F1. Specifically, we modify the software compo-
nent of each application to enable and disable Vidi record/replay
around the invocation of each FPGA-side application (§4.2), re-
quiring less than 15 lines of code for each application. Note, Vidi
instruments the hardware design automatically (i.e., without any
developer annotations) by placing a shim layer (§4.1) between the
accelerator and the FPGA shell. We conclude that Vidi is easy to
apply to real-world FPGA applications.

To measure the effectiveness and the efficiency of Vidi, we run
each application using three different configurations: (R1) disable
recording and disable replaying, which makes Vidi transparent
to the transactions on all channels; (R2) enable recording and dis-
able replaying for both input channels and output channels; and
(R3) enable replaying and enable recording for output channels.
Although individual benchmarks use at most 3 interfaces, Vidi is
configured to record/replay on all 5 interfaces (25 channels in total),
which provides evaluation results of the worst-case scenarios. Vidi
is also configured to record additional information (i.e., the content
of output transactions) for divergence detection (§5.4). In a real-
world deployment, developers could restrict recording to the used
interfaces/channels or opt out of divergence detection for better
performance and lower resource overhead.

5.2 Debugging Case Study
We demonstrate the effectiveness of Vidi in a debugging case study
based upon a bug presented in a survey of FPGA bugs [59]. Specifi-
cally, we build an echo server (i.e., loopback test) on AWS F1 that
uses an existing buggy Frame FIFO library. This Frame FIFO groups
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32-bit data fragments into frames and enqueues/dequeues data frag-
ments one at a time. The FIFO should block incoming data when the
FIFO is full, but mistakenly drops data fragments if the incoming
frame size is unaligned with the remaining FIFO capacity.

The FPGA component of the echo server receives PCIe DMA-
Write requests from a CPU, converts each 512-bit DMA-Write oper-
ation (a frame) into 16 32-bit data fragments, feeds the fragments
to the Frame FIFO, and stores the FIFO outputs to on-FPGA DRAM.
The CPU component of the application uses two threads, T1, which
validates the FPGA component by issuing DMA-Writes to the FPGA
and checking the FIFO output using DMA-Reads, and T2, which
modifies a control-register to initiate the FPGA component.

We observe two bugs in the echo server, which cause T1 to
observe inconsistency in the data written to and read-back from
the FPGA component. In addition, these bugs escape simulation
and only arise when the application is deployed to an FPGA.

As a typical workflow of using Vidi to reliably reproduce the
buggy behavior for further diagnosis, we instrument the application
with Vidi and trace transactions on all AXI-interfaces, including
the DMA-Write, the DMA-Read and the control-register bus. First,
we configure Vidi to enable recording. Vidi records the number of
DMA transactions that completed before/after the control-register
update transaction, as well as the contents of these transactions.
Once T1 observes inconsistency in the DMA data, it saves the
corresponding trace for replay. Second, we enable Vidi to replay the
buggy trace. Vidi provides the exact same DMA transactions (i.e.,
the same number with the same content) to the FPGA component
before it replays the control-register transaction, which triggers the
same bug from the recording. We confirm that the recorded bug was
reproduced by checking the data inconsistency pattern observed
by T1. In the end, we can replay the buggy trace as many times
as necessary to investigate the buggy behavior with third-party
diagnosis tools.

Below, we describe the two bugs and how Vidi could help debug
them:
Unaligned DMA access. Unaligned addresses cause the FPGA’s
DMA engine to use bitmasks indicating that certain bytes are "in-
valid". The FPGA component of the echo server does not handle
bitmasks properly leading to bugs. Unfortunately, simulation does
not model the behavior of unaligned addresses, so the bug is not
observable using current simulators. Vidi enables a developer to
debug this issue by collecting a trace from a buggy hardware execu-
tion and replaying it in simulation, enabling a developer to observe
bitmasks that were missing in the original simulation.
Delayed Start. The echo server works as expected if T2 starts
the echo server before T1 starts DMA. However, if T2 starts the
echo server after T1 begins operating, the buggy Frame FIFO is
quickly filled; the Frame FIFO drops incoming DMA data, and T1
observes data loss. The AWS F1 simulation framework cannot find
this bug since it does not support multi-threaded CPU programs
(the simulator segfaults). With Vidi, we debug this issue by first
using LossCheck, a third party debugging tool [59], to instrument
and redeploy the FPGA component to the AWS, then using Vidi
to replay a buggy execution trace on hardware (simulation-based
replay could not finish within a reasonable time). LossCheck reports
which elements in the FIFO are overwritten and identifies the root
cause of the data loss.

We conclude that Vidi is a useful tool for diagnosing hardware
bugs since it enables developers to debug issues that only appear
on hardware with sophisticated debugging tools.

5.3 Testing Case Study
We demonstrate the versatility of Vidi by using the system as a
testing tool. Vidi enables better testing by allowing developers to
capture real-world workloads of their systems during production.
Offline, the developer can mutate the production trace to ensure
that they test their circuit on inputs that are “similar” to what they
expect to find in production.

We demonstrate this use case by showing how a developer can
use Vidi to reorder transactions in a trace to find an existing bug
in an open-source AXI communication library. Specifically, we
build an end-to-end echo server application on AWS F1 that uses
an existing, unchanged buggy AXI transaction filtering library,
axi_atop_filter [7], which belongs to an academic open-source
multi-core computing platform [74]. The FPGA component of the
echo server receives PCIe DMA-Write requests (i.e., "pings") from a
CPU program, stores the data to on-FPGA DRAM, and sends PCIe
DMA-Write requests (i.e., "pongs") that write the data in on-FPGA
DRAM back to CPU-side DRAM. The axi_atop_filter library
is configured to intercept the PCIe DMA writeback requests (i.e.,
"pongs"), but does not filter out any transactions. It is placed after
the PCIe DMA writeback logic and directly connected to the I/O
interfaces that VIDI records and replays.

The axi_atop_filter implementation assumes that the end
event of the address transaction always happens before the end
events of data transactions during the PCIe DMA-Write. However,
the AXI protocol does not require such an ordering (see Fig. 2).
When the address transaction occurs after the data transaction, the
axi_atop_filter deadlocks. Unfortunately, this case is quite rare:
we have not observed it in simulation nor on real hardware, which
makes it difficult to observe using traditional testing workflows.

We use Vidi to test the echo server in the following way. First,
we deploy the echo server on hardware and use Vidi to capture
an execution trace. We use the mutation tool (§4.2) in software to
reorder the recorded PCIe DMA-Write related transactions. In par-
ticular, we reorder the end event of the first write data transaction
in a DMA-Write operation so that it happens before the end event
of the write address transaction. The reordering models correct
AXI behavior in which a CPU-side DMA controller only completes
a write address transaction if it has received at least one write data
transaction. When replaying with the mutated trace, Vidi observes
the deadlock: the echo server never completes the writeback DMA
operation. We confirm that the bugfix proposed in the repository
eliminates the issue, since Vidi no longer observes deadlock when
replaying the mutated trace.

We conclude that Vidi is a useful building block for testing tools,
since it enables replay with carefully mutated execution traces that
are closely based on real production traces.

5.4 Effectiveness of Vidi
In this experiment, we evaluate the number of divergences across
record and replay when using transaction determinism enforced
by Vidi. We use Vidi’s divergence detection workflow described
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in §3.6: First, Vidi records a reference trace using configuration
(R2). Then, Vidi records a validation trace using configuration (R3).
Vidi finally compares the reference with the validation trace for
divergences.

For this divergence detection approach to work correctly, the
recording has to work transparently, i.e., without altering the func-
tionality of the program when it is not being recorded. We first
describe our process that gives us confidence that the recording
is transparent and correct. Then, we evaluate and describe the
divergences that are observed when using Vidi.
Recording:We identify if any errors arise on our workloads by com-
paring the application output when using the (R1) configuration
(i.e., disabled recording, disabled replaying) and the (R2) configura-
tion (i.e., enabled recording, disabled replaying). We observe that
each application produces the same result (i.e., renders the same
image, makes the same classification, produces results that cross-
check with a software implementation, etc.) and that no deadlocks
or protocol violations occur. Consequently, we are confident that
our implementation transparently records the transactions on our
workloads, and therefore it is suitable for recording the output trace
for divergence detection.
Replaying: Next, we evaluate whether the replay output diverges
from the original output. In particular, we run each execution us-
ing (R2) and (R3), as described above, and check that each output
channel produces the same number of transactions, that each trans-
action has the same content, and that the ordering of replayed
transaction events is the same. The number and the happens-before
relationships of replayed transaction events are equivalent across
record and replay for all applications. The content of all output
transactions is equivalent across recording and replay for all but
one application, DRAM DMA, which has about one content diver-
gence every one million transactions. We use Vidi’s divergence
report to locate the application’s cycle-dependent polling behavior,
which we replace with cycle-independent interrupts to eliminate
all content divergences (see §3.6).

We conclude that Vidi is an effective record/replay tool that
enforces transaction determinism for real-world applications.

5.5 Efficiency of Vidi
In this section, we evaluate the efficiency of Vidi by measuring the
runtime performance overhead—i.e., the slowdown of end-to-end
performance due to Vidi’s recording—and the resource overhead—
i.e., the additional hardware resources that are used by Vidi for
record/replay. In addition, we quantify the benefit of coarse-grained
input recording by comparing the size of trace captured by Vidi
with the size of the trace that would be captured by a cycle-accurate
record/replay tool.
Runtime Performance Overhead. We measure Vidi’s runtime
performance overhead by comparing our evaluated applications’
native end-to-end performance (i.e. configuration R1) against their
performance with Vidi’s recording (i.e. configuration R2). For each
application, we run the experiment 10 times and report the average
overhead and the standard deviation. As shown in Table 1, most
applications encounter negligible overhead (i.e., <2%) when using
Vidi’s recording, with the largest overhead of 10.58%. Noise in the
experimental setup (standard deviation), caused by, e.g., sharing in

Table 2: On-FPGA resource overhead of Vidi, broken-down
by resource types (i.e., LUT, FF, and BRAM) and normalized
to the resource available on the F1 FPGA.

App LUT (%) FF (%) BRAM (%)
DMA [9] 6.18 4.34 6.92
3D [107] 5.57 3.82 6.92
BNN [107] 5.67 3.82 6.92
DigitR [107] 5.65 3.82 6.92
FaceD [107] 5.64 3.82 6.92
SpamF [107] 5.63 3.82 6.92
OpFlw [107] 5.73 3.86 6.92
SSSP [3] 5.58 3.82 6.92
SHA [4] 5.60 3.82 6.92
MNet [5] 5.61 3.81 6.92
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Figure 7: A break-down of Vidi resource overhead when
monitoring different combinations of AWS F1AXI interfaces.

the AWS cloud environment, even outweighs the average recording
overhead for 3D Rendering, BNN, etc. Notably, Vidi is configured to
record additional output transaction contents for divergence detec-
tion in this experiment (i.e. using configuration R2). Developers can
opt out of divergence detection to further reduce the performance
overhead.

We conclude that Vidi has low performance overhead that makes
it suitable for a production deployment.
Resource Overhead.We collect the resource overhead of Vidi in
terms of three types of on-FPGA resources: LUT (logic resource),
FF (register resource), and BRAM (on-chip memory resource). F1’s
synthesis toolchain (Vivado), reports the overhead normalized to
the resource utilization afforded to each accelerator on AWS F1.
While Vidi’s implementation remains unchanged across bench-
marks, different Vivado optimizations may result in varying re-
source overhead. Table 2 identifies that Vidi incurs less than 7%
resource overhead across all types of resources on all benchmarks,
which is small enough to enable a production deployment. Notably,
Vidi is configured to record all 5 AXI interfaces on F1, while each
application uses at most 3 interfaces. In a real-world setup, devel-
opers can configure Vidi to only record/replay the AXI interfaces
used by the application and to only perform record or replay, which
further reduces the resource overhead.
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To better understand how Vidi’s resource overhead scales when
recording different AXI interfaces, we also configure Vidi to record
different combinations of the 5 AXI interfaces on F1. Fig. 7 visualizes
this scalability analysis. The total width of monitored interfaces
ranges from 136 bits (i.e., single 32-bit AXI-Lite interface such as the
sda/ocl/bar1 MMIO bus) to 3056 bits (i.e., all three AXI-Lite buses
plus all 512-bit AXI interfaces, the pcim and pcis DMA buses).

Results show that Vidi has low resource overhead and scales
roughly linearly with the width of monitored interfaces.
Benefit of Coarse-Grained Input Recording. To demonstrate the
benefit of coarse-grained input recording, we compare size of traces
captured by Vidi to the size of traces that would be captured on the
same I/O interfaces by a cycle-accurate record/replay approach. In
this experiment, we first record each benchmark and calculate the
size of the trace that is produced. Then, we determine the size of a
cycle-accurate trace by multiplying the total size of all input signals
to the circuit by the number of cycles executed by the circuit. We
determine the number of cycles executed by each benchmark by
running the benchmark natively (i.e., without Vidi).

Table 1 shows the average size of the Vidi traces and the trace size
reduction compared with cycle-accurate recording. Vidi delivers a
median of 1092x reduction on trace sizes thanks to coarse-grained
input recording. We conclude that Vidi drastically increases re-
source efficiency.

6 DISCUSSION
In this section we explain the rationale behind the design decision
to have Vidi use a custom packet format (§3.1) rather than using
physical timestamps.

A physical-timestamp-based record/replay approach seems al-
luring, since the timestamps are readily available and straight-
forward to use in a design. However, our investigation shows
that physical-timestamp-based approaches overwhelm storage (e.g.,
PCIe or DRAM), which can lead to data loss. Prior work [37] ob-
served the same limitation; it encountered trace loss after 2ms when
tracing ~2000 bits at 100MHz, which translates to a 25 GB/s peak
bandwidth.

We perform a back-of-the-envelop calculation to determine how
quickly a physical-timestamp-based approach, namely Panopticon,
would encounter trace loss in our experimental setup (i.e., the setup
of Vidi from §5). We assume that: (a) the application only traces
the largest AXI channel, which is 593 bits running at 250MHz and
is mainly used for burst PCIe communications. (b) the tool can use
all 43MB of BRAM avaialbe on the AWS FPGA for its trace buffer
(cycle-accurate tools typically use such BRAM). (c) the trace store
has a maximum effective bandwidth of 5.5 GB/s (this is the effective
bandwidth of PCIe storage reported on the AWS FPGA [60, 91]).
Under these conditions, Panopticon would need to support a peak
tracing bandwidth of 18.5 GB/s, so a 3.3ms burst traffic would cause
Panopticon to stop sending data to the trace store and begin losing
trace data. The trace buffer (43MB of BRAM) is not large enough to
prevent loss in a real application: our evaluation shows that 9 out
of 10 real-world benchmarks have trace sizes that are larger than
the BRAM buffer.

Vidi will also overwhelm trace storage in similar conditions to
Panopticon3. However, the transaction abstraction enables Vidi
to avoid trace loss via a back-pressure mechanism. Vidi’s back-
pressure mechanism causes additional overhead (§5.5) but does
not affect the correctness of record/replay since the transactions
are asynchronous and robust to delays. On the contrary, a physi-
cal timestamp-based scheme such as Panopticon cannot use back-
pressure both correctly and efficiently. Delays caused by back-
pressure invalidate cycle-accurate physical timestamps. Alterna-
tively, a physical-timestamp-based approach could pause the appli-
cation’s clock when storage is overwhelmed and thus guarantee
that transactions are recorded/replayed at the correct moment.
However, such pauses are challenging and expensive to implement,
especially when interacting with closed-source IPs [19]. For exam-
ple, Synergy [54] in §7 can pause application clocks, but reports
an overhead of a factor of 3-4, which renders it impractical for
production scenarios.

Therefore, we opt for transaction determinism instead of physical-
timestamp-based (or cycle-accurate in general) approaches in Vidi.

7 RELATEDWORK
Software Record/Replay. Vidi is inspired by prior software record
/replay tools, which record all non-deterministic events (e.g., system
calls and thread interleavings) [13, 22, 23, 32, 35, 38, 40–43, 51, 56,
57, 62, 65, 68, 71–73, 76, 88] during execution and reproduce these
events to replay an execution. Some systems investigate using
specialized hardware to assist and accelerate record/replay [21, 30,
64, 67, 97, 98, 108]. Unfortunately, these systems cannot record and
replay FPGA applications because they cannot observe hardware
events that are only visible by the FPGA.
Hardware Simulation. Simulation is widely used to test and verify
an FPGA application before it is deployed. Most simulators [10,
11, 85, 86, 93] can record a cycle-accurate trace of an accelerator
execution and visualize the execution in a waveform showing the
value of each signal at each cycle. While simulation provides full
signal visibility and is useful for debugging, it can be orders of
magnitude slower than a hardware execution on FPGA [78], which
limits practicality. In contrast, Vidi imposes just 1.98% runtime
overhead during recording and can thus be practically used on real
hardware.
Record/Replay on FPGAs. FPGA vendors provide libraries, such
as Intel’s SignalTap [44] and Xilinx’s ILA [95], that enable a de-
veloper to perform cycle-accurate recording of specified signals
during FPGA application’s execution. Unfortunately, these tools
cannot record all dynamic signal values, a requirement of cycle-
accurate record/replay, because the resulting trace would be too
large to practically store. In contrast, Vidi uses coarse-grained input
recording to reduce the size of the trace and uses external resources
(e.g., CPU-side DRAM) so that it can store the entire trace. Panopti-
con [37, 82] records input data on the FPGA, which it reproduces in
simulation to replay the execution. Not only do these approaches
not support replay on real hardware, they also drop recorded inputs
if the trace is generated too quickly. In contrast, Vidi records an

3Vidi’s packet format is slightly more compact than recording physical timestamps
and could support slightly longer bursts
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FPGA’s execution without dropping transactions (§3.1) and can
replay much larger program executions on actual FPGAs.

Debug Governors [63] provide an interactive debugging tool to
record and replay the traffic of a single-channel streaming interface.
Debug Governors do not consider happens-before relationships
among transactions onmultiple channels, which prevents the replay
of real-world applications, including all benchmarks evaluated in §5.
Runtimes for FPGAs. AmorphOS [46], Optimus [58], and Coy-
ote [49] add virtualization shim layers between the FPGA shell
and the user-provided accelerators for resource multiplexing; Vidi
adopts a similar architecture. Cascade [78] and Synergy [54] pro-
pose compiler transformations for FPGA designs. Their concept of
virtual clocks could be used to implement cycle-accurate record/re-
play that would have no replay divergences but have significantly
more runtime overhead.
FPGA Checkpointing. Checkpointing-based tools [18, 19, 48, 54,
78] can take a snapshot of a running FPGA accelerator and use the
snapshot for future analyses. Recently, StateLink [20] also leveraged
the transaction abstraction to extend checkpointing support to
more complex FPGA designs and build a co-simulation framework.
StateLink and Vidi could create a strong synergy, where Vidi allows
users to partially record an execution starting from a checkpoint, or
provides transaction ordering information for StateLink to simulate
with higher fidelity.

8 CONCLUSION
In this paper, we presented Vidi, the first record/replay system for
real-world FPGA applications running on real hardware. Vidi’ de-
sign is informed by: (1) the transaction determinism insight, which
only tracks and enforces necessary orderings of transaction events
across record and replay. (2) the coarse-grained input recordingmech-
anism, which only captures the start/end events and the content
of each transaction. We designed and evaluated Vidi on Amazon
EC2 F1 instances using one debugging case study, one testing case
study, and 10 other applications. We found that Vidi incurs low
performance slowdown and resource overhead, and is practical for
real-world deployments.
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A ARTIFACT APPENDIX
A.1 Abstract
Our artifact provides the source code and related scripts of the full
implementation of Vidi and all of our evaluated benchmarks. These
allow simulation, synthesis and experiments on the actual FPGA
hardware to be reproduced.

In particular, we first walk through the interactive debugging
(§5.2) and testing (§5.3) case studies. Then we demonstrate how
to run larger-scale experiments on the rest of 10 applications to

evaluate Vidi’s effectiveness and efficiency. Finally we provide data
analysis scripts to reproduce Table 1, Table 2 and Fig. 7.

The artifact requires access to an FPGA development server (with
Xilinx FPGA toolchains), an AWS EC2 F1 instance (with one Xilinx
UltraScale+ VU9P FPGA), prebuilt FPGA images and synthesis
reports (the synthesis workflow will be provided but it is optional).

A.2 Artifact Check-list
• Program: Rosetta FPGA benchmark and 6 other individual applica-
tions. All of them are publicly available and have been included in
this artifact.

• Compilation: [open-source]: make, g++ (with c++17 support) [com-
mercial:] Vivado 2020.2, VCS-2020.12

• Run-time environment: Artifact was prepared on Ubuntu 20.04.
Root access are not needed for simulation and synthesis, but needed
for experiments on the actual FPGA hardware.

• Hardware: Need a special FPGA that can be rented via AWS EC2
f1.2xlarge instances.

• Execution: Exclusive access to the actual FPGA is needed. Running
all experiments is expected to take for 4-5 hrs.

• Metrics: Execution time, Trace size, FPGA resource utilization break-
down.

• Output: For benchmarks, outputs are console logs and files; ex-
pected outputs are included in the artifact. For the data analysis
scripts, outputs are tables and graphs; expected results are reported
in the paper.

• Experiments: Most experiments is automated via the Makefile.
Manual steps are required in the interactive case studies. Reproduc-
ing results reported in the paper are automated via python scripts.
We expect empirical results to have < 5% variation.

• How much disk space required (approximately)?: < 10GiB
• How much time is needed to prepare workflow (approxi-
mately)?: < 30min

• How much time is needed to complete experiments (approxi-
mately)?: < 5hr

• Publicly available?: Yes
• Code licenses (if publicly available)?: Apache 2.0
• Archived (provide DOI)?:
https://doi.org/10.5281/zenodo.7680535

A.3 Description
A.3.1 How to access. The source code and the tutorial are available
via GitHub4 and Zenodo5. Information regarding remote access to
preinstalled commercial toolchains and prebuilt FPGA images will
be sent to AE chairs.

A.3.2 Hardware dependencies. AWS EC2 f1.2xlarge instances,
which include a Xilinx Virtex UltraScale+ VU9P FPGA.

A.3.3 Software dependencies. All experiments are conducted under
Ubuntu 20.04. The artifact was tested using g++ 9.4.0, python-3.8,
make 4.2.1, Vivado 2020.2 and VCS-2020.12.

A.4 Installation
Refer to the artifact-eval/README.md in the artifact. In brief,
you need to source hdk_setup.sh and source sdk_setup.sh.
Three basic tests are provided to confirm that the installation is

4https://github.com/efeslab/aws-fpga
5https://doi.org/10.5281/zenodo.7680535
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complete: one simulation test, one synthesis test and one test on
the actual FPGA.

A.5 Experiment Workflow
Refer to the artifact-eval/README.md in the artifact for more
details.

For the debugging case study, we first run the target application
on the AWS F1 instances, then debug the first bug in simulation
and finally interact with multiple Xilinx tools to debug the second
bug.

For the testing case study, we first collect trace of a successful
execution, then mutate the trace to represent certain corner cases,
then replay the mutated trace on the original buggy application
and finally replay the same mutated trace on the application with a
proper bugfix.

For the effectiveness and efficiency experiments, we run each
application multiple times under different Vidi record/replay con-
figurations. Metrics about their execution time, performance and
storage overhead, etc. will be logged and later analyzed.

A.6 Evaluation and Expected Results
Refer to the artifact-eval/README.md in the artifact for more
details.

For the debugging case study, you are expected to observe the
buggy behavior of the target application and confirm its root cause
during replay.

For the testing case study, you are expected to observe the mu-
tated trace expose a corner case that is allowed by the protocol but
one that causes the buggy application to stall.

For the effectiveness and efficiency experiments, you are ex-
pected to reproduce the results reported in §5.4 and §5.5.

A.7 Experiment Customization
Refer to the artifact-eval/README.md in the artifact.
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