
Twig: Profile-Guided BTB Prefetching for Data Center
Applications

Tanvir Ahmed Khan
takh@umich.edu

University of Michigan, USA

Nathan Brown
nlbrow@umich.edu

University of Michigan, USA

Akshitha Sriraman
akshitha@umich.edu

University of Michigan, USA

Niranjan Soundararajan
niranjan.k.soundararajan@intel.com

Intel Labs, India

Rakesh Kumar
rakesh.kumar@ntnu.no

Norwegian University of Science and
Technology, Norway

Joseph Devietti
devietti@cis.upenn.edu

University of Pennsylvania, USA

Sreenivas Subramoney
sreenivas.subramoney@intel.com

Intel Labs, India

Gilles Pokam
gilles.a.pokam@intel.com

Intel Labs, USA

Heiner Litz
hlitz@ucsc.edu

University of California, Santa Cruz,
USA

Baris Kasikci
barisk@umich.edu

University of Michigan, USA

ABSTRACT
Modern data center applications have deep software stacks, with
instruction footprints that are orders of magnitude larger than typ-
ical instruction cache (I-cache) sizes. To efficiently prefetch instruc-
tions into the I-cache despite large application footprints, modern
server-class processors implement a decoupled frontend with Fetch
Directed Instruction Prefetching (FDIP). In this work, we first char-
acterize the limitations of a decoupled frontend processor with FDIP
and find that FDIP suffers from significant Branch Target Buffer
(BTB) misses. We also find that existing techniques (e.g., stream
prefetchers and predecoders) are unable to mitigate these misses, as
they rely on an incomplete understanding of a program’s branching
behavior.

To address the shortcomings of existing BTB prefetching tech-
niques, we propose Twig, a novel profile-guided BTB prefetching
mechanism. Twig analyzes a production binary’s execution profile
to identify critical BTB misses and inject BTB prefetch instructions
into code. Additionally, Twig coalesces multiple non-contiguous
BTB prefetches to improve the BTB’s locality. Twig exposes these
techniques via newBTB prefetch instructions. Since Twig prefetches
BTB entries without modifying the underlying BTB organization,
it is easy to adopt in modern processors. We study Twig’s behavior
across nine widely-used data center applications, and demonstrate
that it achieves an average 20.86% (up to 145%) performance speedup

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
MICRO ’21, October 18–22, 2021, Virtual Event, Greece
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8557-2/21/10. . . $15.00
https://doi.org/10.1145/3466752.3480124

over a baseline 8K-entry BTB, outperforming the state-of-the-art
BTB prefetch mechanism by 19.82% (on average).

CCS CONCEPTS
• Computer systems organization→ Pipeline computing.

KEYWORDS
Prefetching, frontend stalls, branch target buffer, data center

ACM Reference Format:
Tanvir Ahmed Khan, Nathan Brown, Akshitha Sriraman, Niranjan
Soundararajan, Rakesh Kumar, Joseph Devietti, Sreenivas Subramoney,
Gilles Pokam, Heiner Litz, and Baris Kasikci. 2021. Twig: Profile-Guided
BTB Prefetching for Data Center Applications. In MICRO’21: 54th Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO ’21), Octo-
ber 18–22, 2021, Virtual Event, Greece. ACM, New York, NY, USA, 14 pages.
https://doi.org/10.1145/3466752.3480124

1 INTRODUCTION
Modern data center applications have deep software stacks that are
composed of complex application logic [56], diverse libraries [38],
and numerous kernel modules [16, 45, 46]. Such deep stacks result
in multi-megabyte instruction footprints [16, 38, 59] that easily
exhaust typical on-chip cache structures which are smaller than
hundred kilobytes [14]. As a result, data center applications suf-
fer from significant frontend stalls, when the processor frontend
is unable to supply instructions to the processor backend. Such
frontend stalls significantly hurt the Total Cost of Operation of
a data center, as even single-digit performance improvements of
frontend stalls can save millions of dollars and meaningfully reduce
the global carbon footprint [79].

Processor architects attempt to address this overwhelming fron-
tend stall problem by proposing numerous instruction prefetching

https://doi.org/10.1145/3466752.3480124
https://doi.org/10.1145/3466752.3480124

MICRO ’21, October 18–22, 2021, Virtual Event, Greece Khan, Brown, Sriraman, Soundararajan, Kumar, Devietti, Subramoney, Pokam, Litz, and Kasikci

mechanisms [25, 26, 39, 44–46, 60, 69, 76]. Fetch Directed Instruc-
tion Prefetching (FDIP) [69] is one such mechanism that is per-
vasively explored in academia [42, 45, 46] and industry [35, 36].
Between the branch prediction unit and the instruction fetch engine,
FDIP introduces a queue containing the addresses of I-cache lines
that will be accessed in the future [68]. FDIP prefetches I-cache lines
based on the queue contents to avoid instruction fetch stalls. FDIP
allows the branch prediction unit and the instruction fetch engine
to operate independently with high efficiency. Prior work [35] has
shown that FDIP provides comparable performance to aggressive I-
cache prefetchers [54, 70, 74] used in recent instruction prefetching
championships. Due to its success, FDIP has been widely imple-
mented in modern processors [29, 61, 72, 80].

Given that data center applications still continue to face the fron-
tend stall problem, we first ask the question: What limits FDIP from
eliminating all frontend stalls? To this end, we comprehensively
study FDIP in the context of frontend-bound data center applica-
tions and show that FDIP still falls significantly short of an ideal
I-cache (by 24% on average). We also find that FDIP’s effectiveness
primarily depends on the efficacy of the Branch Target Buffer (BTB);
therefore, the large number of BTB misses, which is typical for data
center applications, hurts FDIP’s effectiveness. We then investigate
the reasons behind the large number of BTB misses for data center
applications. We find that these applications contain a large number
of unique branch instructions that cannot fit into moderately-sized
BTBs. Furthermore, we show that the state-of-the-art BTB prefetch-
ing techniques, such as Shotgun [45] and Confluence [40], suffer
from limited prefetching coverage and accuracy while introducing
significant hardware modifications. For this reason, they have not
been adopted in modern data center processors [16, 41].

In this paper, we propose Twig, a novel profile-guided BTB
prefetching mechanism for data center applications. Unlike prior
techniques [40, 45], Twig does not require any modifications to
the typical BTB organization. Instead, Twig introduces a new BTB
prefetching instruction that is directly injected into the program
binary at link time. By inserting BTB prefetch instructions in soft-
ware, Twig leverages the rich execution information available in
a program profile, when collected using performance counters in
modern data center environments [16, 22, 38, 58].

Twig introduces two key techniques: software BTB prefetching
and BTB prefetch coalescing.

Software BTB prefetching. A BTB entry is composed of a
branch instruction address and a corresponding branch target
address. To prefetch a BTB entry, the processor has to decode the
branch target of a given branch instruction. However, the branch
instruction itself may not be present in the I-cache, rendering BTB
prefetching impossible. Twig addresses this challenge by intro-
ducing an explicit prefetch instruction to prefetch BTB entries in
advance, without bringing the required instructions into the I-cache.
This prefetch instruction prefetches branch instruction address and
target into the BTB. Unlike pure hardware techniques that rely
on limited past run-time information [40, 45], Twig determines
which branch instructions cause frequent BTB misses based on pro-
files collected from the entire program execution. Twig’s prefetch
instruction takes as operands the address of the branch instruction
and the address of the corresponding target instruction. Twig then

ensures that the corresponding entry is inserted into the BTB even
if the branch instruction is not in the I-cache.

Twig further leverages production execution profiles to identify
program locations that can predict the future execution of a BTB-
miss inducing branch instruction with high accuracy and timeliness.
Twig then inserts prefetch instructions into these locations.

BTB prefetch coalescing. Inserting many BTB prefetch
instructions with multiple parameters can increase the static and
dynamic instruction footprint. To mitigate this code bloat, Twig
proposes BTB prefetch coalescing, where multiple BTB entries are
prefetched with a single instruction. Twig analyzes the program
profile to identify consecutively-executed branches that incur repet-
itive BTB misses. Consequently, Twig uses the coalesced prefetch-
ing instruction to prefetch the BTB entries of all of these branch
instructions simultaneously.

We evaluate Twig in the context of nine data center applications
that suffer from frequent frontend stalls. Twig achieves an average
20.86% (2%-145%) speedup over a baseline 8K-entry BTB across all
nine applications, while reducing 65.4% of all BTBmisses. Compared
to the state-of-the-art BTB prefetcher [45], Twig achieves an average
19.82% (up to 139.8%) greater speedup, while covering 57.4% more
BTB misses. Twig’s average static and dynamic instruction increase
overhead is 6% and 3% respectively.

In summary, we contribute:
• A detailed characterization of a decoupled frontend with FDIP
that shows that a large number of BTB misses hurt FDIP’s effec-
tiveness.

• Software BTB prefetching: A technique to prefetch BTB entries
that improves the decoupled frontend’s performance by avoiding
costly BTB misses.

• BTB prefetch coalescing: A profile-guided mechanism to coalesce
multiple BTB prefetch operations that reduces prefetch instruc-
tions’ static and dynamic overhead.

• An evaluation of Twig in the context of nine data center appli-
cations, showing its effectiveness in reducing BTB misses and
achieving significant performance benefit.

2 LIMITATIONS OF PRIOR I-CACHE & BTB
PREFETCHING TECHNIQUES

In this section, we comprehensively characterize existing I-cache
and BTB prefetching mechanisms to understand why data center
applications continue to suffer from frontend stalls. We first analyze
FDIP [69], the state-of-the-art prefetching technique in processors
with a decoupled frontend. We measure the unrealized performance
potential of FDIP and find that its performance is mainly limited
by BTB misses. We then analyze Shotgun [45] and Confluence [40],
two recently proposed techniques that introduce BTB prefetching
on top of FDIP. While these techniques reduce BTB misses for some
applications, they fail to eliminate BTB misses that occur due to
complex branch patterns faced by data center applications.

We characterize nine popular real-world data center applica-
tions [41] that face significant frontend stalls. In Fig. 1, we use Intel’s
Top-Down methodology [88] to show that these applications spend
24%-78% of the processor pipeline slots in waiting for the fron-
tend to return. Two applications, finagle-chirper (a microblog-
ging service) and finagle-http (an HTTP server) are from the

Twig: Profile-Guided BTB Prefetching for Data Center Applications MICRO ’21, October 18–22, 2021, Virtual Event, Greece

cassandra
drupal

finagle-chirper

finagle-httpkafka

mediawiki
tomcat

verilator

wordpress Avg
0

20

40

60

80

St
al

le
d

sl
ot

s
(%

)

Frontend-bound

Figure 1: Many popular data center applications waste a
large portion of their pipeline slots due to “frontend-bound”
stalls [34], measured using the Top-downmethodology [88].

cassa
ndra

drupal

finagle-ch
irp

er

finagle-http
kafka

mediawiki

tomcat

verila
tor

wordpress Avg
0

20

40

Sp
ee

du
p

(%
)

14
3

18
1

Ideal-I-cache Ideal-BTB

Figure 2: Limit study of FDIP: an ideal I-cache achieves an
average 24% speedup, while an ideal BTB provides an aver-
age 31% speedup over the FDIP baseline.

Java Renaissance [66] benchmark suite and use Twitter Finagle [7]
which is a Remote Procedure Call (RPC) library. Three applica-
tions, kafka [84] (Apache stream-processing framework used by
companies like Uber, Linkedin, and Airbnb [3]), tomcat [4] (open-
source Java web server), and cassandra [2] (NoSQL DBMS used by
companies like Uber, Netflix, and Grubhub [86]) are from the Java
DaCapo [17] benchmark suite. We also study three HHVM [10, 55]
applications (drupal, wordpress, and mediawiki) from Facebook’s
OSS-performance [9] benchmark suite. verilator [8] is a tool used
by companies like Intel and ARM to evaluate custom hardware
designs [85]. We detail our experimental setup, trace collection
methodology, and simulation parameters in §4.

2.1 What stops FDIP from eliminating all
frontend stalls?

Recent processor designs [29, 61, 72, 80] have adopted decoupled
frontends with FDIP to reduce costly frontend stalls. Given FDIP’s
widespread adoption [35, 36], we ask the question: Does FDIP
achieve performance comparable to an ideal/perfect frontend where
pipeline slots are not stalled in the frontend? To this end, we ana-
lyze FDIP’s limitations, characterizing why FDIP falls short for data
center applications. Additionally, we determine how to address
FDIP’s limitations.

We perform two limit studies, measuring the Instructions Per
Cycle (IPC) metric of nine data center applications running on an
FDIP-enabled processor. In the first study, we analyze FDIP with an
ideal I-cache (i.e., every I-cache access is a hit), and in the second
study, we analyze FDIP with an ideal BTB (i.e., every branch target

cassa
ndra

drupal

finagle-ch
irp

er

finagle-http
kafka

mediawiki

tomcat

verila
tor

wordpress Avg
0

20

40

60

BT
B

M
is

se
s

Pe
r

K
ilo

In
st

ru
ct

io
n

(M
PK

I) 12
1

Figure 3: BTB Misses Per Kilo Instructions (MPKI) for nine
data center applications: these applications experience an
average BTB MPKI of 29.7 (8-121).

cassa
ndra

drupal

finagle-ch
irp

er

finagle-http
kafka

mediawiki

tomcat

verila
tor

wordpress Avg
0

50

100

%
of

al
lB

TB
M

is
se

s Compulsory Capacity Conflict

Figure 4: Breakdown of all BTB misses using 3C miss classi-
fication [33]: data center applications suffer BTBmisses due
to both capacity and conflict issues.

lookup is a hit). We assume a 75KB 8K-entry BTB and a 32KB
I-cache. Fig. 2 shows an average IPC improvement of 24% with
an ideal I-cache and a 31% improvement with an ideal BTB. FDIP
with an ideal BTB offers greater performance benefits since (1) it
eliminates almost all I-cache misses (due to FDIP prefetching) and
(2) it reduces branch resteers (i.e., pipeline flushes) triggered by BTB
misses. Hence, we conclude that reducing BTB misses is critical
to mitigating frontend stalls. Next, we investigate why data center
applications suffer from poor BTB locality even with a relatively
large, 75KB 8K-entry BTB.

2.2 Why is a large BTB insufficient for data
center applications?

As an ideal BTB significantly improves FDIP’s performance, we
examine howwe can improve the performance of the 75KB 8K-entry
BTB that is implemented in today’s FDIP-enabled processors.

Fig. 3 shows the BTB Misses Per Kilo Instructions (MPKI) across
all nine data center applications. While measuring BTB MPKI, we
only consider real BTB misses caused by direct branch instructions,
i.e., unconditional jumps, calls, and conditional jumps. We do not
include non-control flow instructions or branch instructions where
the branch target that the BTB returns is different from the actually
taken branch target (e.g., branch target changed due to just-in-time
code compilation).

As shown in Fig. 3, data center applications experience MPKIs
in the range of 8-121 (29.7 on average). To understand the reason
behind significant BTB misses, in Fig. 4, we categorize whether
these misses are compulsory, capacity, or conflict misses, i.e., the 3C

MICRO ’21, October 18–22, 2021, Virtual Event, Greece Khan, Brown, Sriraman, Soundararajan, Kumar, Devietti, Subramoney, Pokam, Litz, and Kasikci

2K 4K 8K 16K 32K 64K 2K 4K 8K 16K 32K 64K 2K 4K 8K 16K 32K 64K
0

25

50

75

100

C
ap

ac
it

y
m

is
se

s
(%

of
al

lm
is

se
s)

cassandra tomcat verilator

Figure 5: Percentage of capacitymisses as BTB size increases
from 2K to 64K entries: data center applications require
large BTB with at least 32K entries to avoid all capacity
misses. For brevity, we show results for only 3 applications,
but the behavior is similar across all applications.

4 8 16 32 64 128 4 8 16 32 64 128 4 8 16 32 64 128
0

20

40

C
on

fli
ct

m
is

se
s

(%
of

al
lm

is
se

s)

finagle-chirper finagle-http kafka

Figure 6: Percentage of conflict misses as BTB associativity
increases from 4-way to 128-way: data center applications
still suffer conflict BTB misses even with an 128-way set-
associativeBTB. For brevity,we show results for only 3 appli-
cations, the behavior is similar across all applications.

miss classification [33]. We find that the majority of these misses are
capacity (on average 70%) and conflict (on average 24.48%) misses.

To investigate these capacity and conflict misses, we vary the
BTB size (from 2K entries to 64K entries) and associativity (from
4-way to 128-way) and show the results in Fig. 5 and Fig. 6. We
observe that these data center applications require a 64K-entry
BTB to avoid most of the capacity misses. On the other hand, the
BTB associativity needs to be at least 128 to cover the majority of
conflict misses. Increasing BTB size and associativity to these levels
will drastically increase on-chip storage and BTB lookup/update
latency [20, 37]. Furthermore, future applications may require an
even larger BTB size and associativity since data center applica-
tions’ instruction footprints grow in an unprecedented manner [38].
Therefore, we conclude that BTB prefetching is a more future-proof
solution as it can avoid latencies due to both types of BTB misses
without requiring any change to the BTB organization.

Finally, in Fig. 7 and Fig. 8, we study the distribution of all
BTB accesses and misses across different branch types to identify
whether a specific branch type suffers from poor BTB locality. We
note that unconditional direct branches and calls disproportionately
face more BTB misses. Specifically, unconditional direct branches
and calls are responsible for 20.75% of all dynamic branches, but

cassa
ndra

drupal

finagle-ch
irp

er

finagle-http
kafka

mediawiki

tomcat

verila
tor

wordpress Avg
0

50

100

%
of

al
lB

TB
ac

ce
ss

es Unconditional-Branch Conditional-Branch Call Others

Figure 7: Breakdown of all BTB accesses into branch types:
conditional branch instructions dominate the total number
of BTB accesses

cassa
ndra

drupal

finagle-ch
irp

er

finagle-http
kafka

mediawiki

tomcat

verila
tor

wordpress Avg
0

50

100

%
of

al
lB

TB
m

is
se

s Unconditional-Branch Conditional-Branch Call Others

Figure 8: Breakdown of all BTBmisses into different branch
types: as conditional branch instructions are responsible
for most BTB accesses, conditional branch instructions also
experience the most number of BTB misses.

incur 37.5% of all BTB misses. This result justifies the design deci-
sions of prior work [45] that partitions the BTB structure to prefetch
conditional branch entries that follow unconditional branch execu-
tions.

2.3 Why do existing BTB prefetching
mechanisms fall short?

Previously, we showed that an ideal BTB provides on average
31% speedup over the FDIP baseline. We now compare this ideal
BTB speedup against speedups achieved by state-of-the-art BTB
prefetchers, Confluence [40] and Shotgun [45].

Confluence observes that although the I-cache and the BTB
operate at the granularity of a cache line and a branch instruction
respectively, hardware prefetching mechanisms for I-cache lines
and BTB entries require the same metadata. Using this insight,
Confluence (1) modifies the BTB organization to match the I-cache
granularity (cache line), (2) operates on the same prefetch metadata,
and (3) utilizes the temporal streaming (also referred to as “record
and replay” [25, 26, 39]) technique, to perform both I-cache and
BTB prefetching. While Confluence was designed for a fixed-length
instruction size (4B), we modify Confluence for variable-length
instruction sizes since most data center applications operate on
servers that use variable-length ISAs (i.e., x86).

Shotgun observes that the working set size of unconditional
branch instructions is significantly smaller than the working set
size of all branch instructions. Hence, Shotgun statically partitions
the BTB among unconditional and conditional branch entries to

Twig: Profile-Guided BTB Prefetching for Data Center Applications MICRO ’21, October 18–22, 2021, Virtual Event, Greece

cassa
ndra

drupal

finagle-ch
irp

er

finagle-http
kafka

mediawiki

tomcat

verila
tor

wordpress Avg

0

50

%
Sp

ee
du

p
ov

er
FD

IP 18
1

confluence shotgun ideal

Figure 9: Speedups from Shotgun andConfluence over FDIP.

cassa
ndra

drupal

finagle-ch
irp

er

finagle-http
kafka

mediawiki

tomcat

verila
tor

wordpress Avg
0

50

100

%
of

al
lB

TB
M

is
se

s Non-repetitive New Recurring

Figure 10: Fraction of BTB misses in temporal streams [81]

ensure that a certain type of branch entry does not cause evictions
of the other type. Moreover, Shotgun leverages dynamic execution
information to record the I-cache footprint for all unconditional
branches. The next time the program executes the same uncondi-
tional branch, Shotgun prefetches the recorded I-cache lines (if not
present in the I-cache) and predecodes the corresponding condi-
tional branch entries. In our evaluation, Shotgun consists of 5120-
entry unconditional BTB (63.125KB), 1536-entry conditional BTB
(12.1875KB), and 1536-entry return address stack (7.5KB). All other
methodological details are in §4.

Fig. 9 shows the speedup provided by Confluence and Shotgun
over FDIP across all nine applications. Confluence and Shotgun
offer only a fraction of an ideal BTB’s speedup as they are unable
to cover a significant portion of all BTB misses.

We investigate the performance of these prior BTB prefetching
techniques to understand why they fail to cover so many BTB
misses. Since both Confluence and Shotgun leverage temporal
stream prefetching to avoid BTB misses, we categorize all BTB
misses into three types of temporal streams [81]: non-repetitive,
new, and recurring streams. Temporal stream prefetching can inher-
ently cover only recurring miss streams. As shown in Fig. 10, while
recurring miss streams constitute the majority of all BTB misses
(on average 52%), new and non-repetitive streams still include a
large fraction of the remaining BTB misses (on average 36% and 12%
respectively) that Confluence and Shotgun do not cover. Record-
ing access patterns at the granularity of I-cache lines instead of at
the granularity of branch instructions helps Shotgun cover more
BTB misses than Confluence, as Shotgun predecodes all branch
instructions corresponding to a single I-cache line. Still, Shotgun
falls significantly short of the ideal BTB, which we explain next.

Shotgun requires the unconditional branch footprint of the appli-
cation to be small enough to fit into the BTB partition reserved

cassa
ndra

drupal

finagle-ch
irp

er

finagle-http
kafka

mediawiki

tomcat

verila
tor

wordpress Avg
0

5000

10000

U
nc

on
di

ti
on

al
w

or
ki

ng
se

ts
iz

e
(#

br
an

ch
es

) Shotgun U-BTB size

Figure 11: Working set size of unconditional branches and
calls. Shotgun’s U-BTB of 5120 entries is shown in blue.

cassa
ndra

drupal

finagle-ch
irp

er

finagle-http
kafka

mediawiki

tomcat

verila
tor

wordpress Avg
0

20

40

%
of

al
lc

on
di

ti
on

al
br

an
ch

es
ou

ts
id

e
sp

at
ia

lr
eg

io
n

Figure 12: Percentage of all conditional branches that are
outside the range (8 cache lines) of the last executed uncon-
ditional branch target. Shotgun cannot prefetch BTB entries
for these conditional branches.

for unconditional branches. Unfortunately, different applications
have different unconditional branch working set sizes as we portray
in Fig. 11. As a result, Shotgun’s BTB partition for unconditional
branches is too large for some applications and too small for oth-
ers. Moreover, irrespective of whether an unconditional branch
correlates with conditional branches, Shotgun reserves precious
BTB storage bits as prefetch metadata for unconditional branches.
Consequently, Shotgun wastes critical on-chip storage for some
applications (e.g., drupal, mediawiki, and wordpress) where the
number of unconditional branches are much smaller than Shotgun’s
unconditional BTB partition size.

Shotgun incurs additional BTB misses due to one of its design
constraints: the spatial range of conditional branches. Shotgun
prefetches conditional branch entries based on the execution of
unconditional branches. While doing so, Shotgun can only prefetch
conditional branches that are within a spatial range of up to 8
cache lines of the last executed unconditional branch target. In
other words, if a conditional branch resides outside this 8 cache
line range, Shotgun will not be able to prefetch the corresponding
BTB entry. However, as we show in Fig. 12, a significant portion
(26-45%) of all conditional branches falls outside this spatial range.
Hence, Shotgun cannot cover a large portion of all BTB misses.

Based on our characterization’s insights, we next present Twig,
a profile-guided solution to avoid costly BTB misses.

MICRO ’21, October 18–22, 2021, Virtual Event, Greece Khan, Brown, Sriraman, Soundararajan, Kumar, Devietti, Subramoney, Pokam, Litz, and Kasikci

3 TWIG
Modern data center application binaries are large and contain
numerous unique branch instructions. These applications suffer
from frequent BTB misses. Prior work addresses this issue with
BTB prefetchers that require significant hardware modification and
yet fail to cover a large fraction of BTB misses. We propose Twig, a
profile-guided solution to prefetch BTB entries. Specifically, Twig
introduces two novel techniques to avoid BTB misses. First, Twig
uses a novel profile-guided mechanism to prefetch BTB entries.
Second, Twig coalesces prefetch operations of multiple BTB entries
into a single instruction to reduce the code bloat.

3.1 Software BTB Prefetching
Determining branch Program Counter (PC) and target for populat-
ing the BTB requires the processor to decode (potentially variable-
length) instructions. Hardware-based BTB prefetchers such as Shot-
gun [45] hence need to prefetch the instructions and decode them
before filling the BTB, introducing significant hardware overheads
for implementing the additional pre-decoders. Additionally, the
prefetch latency deteriorates if the instruction being prefetched into
the BTB is not present in the processor’s I-cache. Twig addresses
both of these challenges. First, Twig identifies the PC and target
of every direct branch instruction for an application by examining
its binary. Then, Twig leverages the program’s dynamic execu-
tion profile to find the branch PCs causing a large number of BTB
misses. Finally, Twig modifies the application binary to prefetch
corresponding BTB entries in a timely manner.

To realize Twig, we introduce a new instruction, brprefetch
to prefetch BTB entries. The brprefetch instruction uses two
parameters—the branch PC and the target, to insert the correspond-
ing branch entry into the BTB. Both these fields represent instruc-
tion pointers and can be as large as 48-bit signed integers [87].
Moreover, Twig must schedule the brprefetch instruction early
enough so that it updates the BTB before the corresponding branch
target lookup occurs.We now explain how Twigmeets these require-
ments by finding the appropriate program location to insert the
brprefetch instruction and by storing only the address difference
between the branch instruction and the target.

Prefetch injection location. Twig must insert the brprefetch
instruction in a timely manner, i.e., the brprefetch instruction
must retire before the corresponding branch is looked up in the
BTB to avoid a BTB miss. Hence, it is critical to precisely identify
the appropriate program location for inserting the brprefetch
instruction. Twig must also emit accurate brprefetch instructions
to avoid polluting the BTB with unnecessary entries. Since many
different program paths can lead to a particular BTBmiss, Twigmust
find the right program location to satisfy the accuracy constraint.

Twig leverages execution information to identify the appropriate
program path that satisfies both the timeliness and accuracy con-
straint. With the help of Intel Last Branch Record (LBR) feature [5],
Twig collects program execution profiles that lead to BTB misses.
Intel LBR records a history of the last 32 basic blocks executed
before a BTB miss along with their execution latency in cycles.

Fig. 13a portrays an example of such a profile for BTB misses
at the branch instruction address, A, showing how Twig leverages
this profile to find the injection site for the brprefetch instruction.

A

A

A

A

A

A

Prefetch
distance

Predecessor basic blocks BTB
miss

B C B

D E D

D E D

B C B

B C B

B C B

1

2

3

4

5

6

(a) An example of profile samples for BTBmisses at branch instruc-
tion address, A, containing basic block executions that precede the
miss.

Basic
block

Total
executed

of unique BTB misses at
A that can be timely

covered by the basic block

P(BTB miss at A |
Basic block)

B 16 4 0.25

C 8 4 0.5

D 6 2 0.33

E 3 2 0.66

(b) An example of the conditional probability calculation to predict
the BTB miss at A, given the execution of a particular basic block.

Figure 13: An example of how Twig analyzes BTB miss pro-
files to find accurate and timely prefetch injection site

This example includes six different BTB misses for A. To satisfy the
timeliness constraint, Twig considers basic blocks that precede the
BTB miss by at least several cycles as candidate injection sites. We
call this particular cycle count the prefetch distance, which is one of
Twig’s design parameters. We use 20 cycles as the prefetch distance
and evaluate Twig’s sensitivity to this parameter in §4 (Fig. 26).
Twig only considers predecessor basic blocks before the prefetch
distance as the prefetch injection candidates. As shown in Fig. 13a,
predecessor basic blocks B and C are considered for the BTB miss
1 as they precede the BTB miss by the prefetch distance.
To satisfy the accuracy constraint, Twig computes the condi-

tional probability of a BTB miss at A, given the execution of each
candidate basic block. We show an example of this computation
in Fig. 13b. First, Twig calculates the execution count/frequency of
each candidate block using the execution profile (including BTB
misses at other branch instructions apart fromA). Next, Twig counts
how many BTB misses at A can be avoided by inserting a prefetch
instruction at the candidate injection site. Then, Twig computes
the ratio of these two counts as the conditional probability of a
BTB miss at A, given the execution of each candidate basic block.
Finally, Twig picks the candidate with the highest conditional prob-
ability for each BTB miss as the prefetch injection site. In case of
this example, Twig selectsC to cover BTB misses 1 , 4 , 5 , and 6 ,
while Twig chooses E to avoid BTB misses 2 and 3 .

Twig: Profile-Guided BTB Prefetching for Data Center Applications MICRO ’21, October 18–22, 2021, Virtual Event, Greece

0 10 20 30 40
#-of-bits required to store the branch offset

0

20

40

60

80

100

C
D

F
(%

)

cassandra
drupal
finagle-chirper

finagle-http
kafka
mediawiki

tomcat
verilator
wordpress

Figure 14: CDF of branch offset (from the prefetch injection
site to the branch instruction) with variation in the num-
ber of bits required to store the offset: with just 12-bits Twig
stores 80% of all branch offsets for all applications.

0 10 20 30 40
#-of-bits required to store the target offset

0

20

40

60

80

100

C
D

F
(%

)

cassandra
drupal
finagle-chirper

finagle-http
kafka
mediawiki

tomcat
verilator
wordpress

Figure 15: CDF of branch target offset with variation in the
number of bits required to store the offset: with just 12-bits
Twig stores 80% of all branch targets for most applications.

Prefetch target compression.The storage cost of large instruc-
tion pointers (branch PC and target) is a significant challenge
for software BTB prefetching. Twig reduces this storage overhead
by storing the prefetch-to-branch-offset instead of the entire abso-
lute address. We define the prefetch-to-branch-offset as the delta
between the prefetch instruction PC and the prefetched branch
PC. Fig. 14 shows the quantitative insight behind this optimization.
On the X-axis, we show the number of bits required to encode the
prefetch-to-branch-offset, while on the Y-axis, we show the Cumu-
lative Distribution Function (CDF) for all BTB misses. We find that
Twig covers more than 80% of all BTB misses using just 12-bits to
encode the prefetch-to-branch-offset. Twig uses the same technique
to also compress the branch target. Fig. 15 plots the branch-to-target-
offset on the X-axis and the CDF of all BTB misses on the Y-axis. We
note that Twig again covers 80% of all BTB misses for most applica-
tions using just 12-bits. Only for verilator, covering more than
80% of all BTB misses requires larger than 12-bit signed integers.
To cover the remaining BTB misses and to optimize the storage
overhead even further, Twig proposes BTB prefetch coalescing that
we describe next.

3.2 BTB Prefetch Coalescing
Branch instructions with large address differences cannot directly
be encoded using the prefetch instruction introduced in §3.1. For
these too-large-to-encode branch instructions, Twig stores the
addresses of the branch instruction and the target as key-value

Table 1: Simulator Parameters

Parameter Value
CPU 3.2GHz, 6-wide OOO, 24-entry FTQ, 224-entry ROB, 97-

entry RS
Branch prediction
unit

64KB TAGE-SC-L [73] (up to 12-instruction), 8192-entry
4-way BTB, 32-entry RAS, 4096-entry 4-way IBTB

Memory hierarchy 32KB 8-way L1i, 32KB 8-way L1d, 1MB 16-way unified L2,
10MB 20-way shared L3 per socket

pairs in memory. Twig stores these pairs in sorted order based on
the branch instruction address. Storing branch entries in sorted
order helps Twig leverage spatial locality among different entries.
The key-value pairs are generated at compile time and added to the
instruction binary as part of the text segment.

Twig introduces the brcoalesce instruction that takes the
address of a key-value pair as a parameter and prefetches the corre-
sponding entry to the BTB. To improve its efficiency, brcoalesce
includes an n-bit bitmask as an additional parameter to prefetch
multiple consecutive entries (for this reason, the key-value pairs
are sorted in memory). Coalescing enables prefetching of multiple
too-large-to-encode BTB entries with a minimal increase in the
instruction footprint.

The size of the bitmask, n, is another design parameter. With
a smaller bitmask, Twig would be able to prefetch only a small
number of correlated BTB entries. With a larger bitmask, Twig can
coalesce more prefetch operations. We investigate the impact of
the bitmask size on the effectiveness of BTB prefetch coalescing
in §4 and show that Twig achieves a majority of the performance
benefit with just an 8-bit bitmask (Fig. 27).

4 EVALUATION
In this section, we first describe (1) our experimental setup to col-
lect execution profiles for our target data center applications, (2)
different application input configurations, and (3) our simulation
infrastructure. Then, we evaluate Twig using several key perfor-
mance metrics.

4.1 Methodology
Data center applications and inputs. We evaluate Twig in the
context of nine popular data center applications (as described in §2).
We evaluate these applications with different input configurations
such as the input data size, the webpage requested by the client,
the number of client requests per second, random number seeds,
and the number of server threads. Since Twig’s profile-guided opti-
mizations depend on the application input, we optimize each of
these applications using the profile from one input and test the
performance of the optimization on a different input.

Profile collection. We leverage Intel’s “baclears.any” hard-
ware performance event along with LBR [5] to collect the applica-
tion execution context profiles that lead to a BTB miss.

Simulation and trace collection. We evaluate Twig using
Scarab [6]. In Scarab, we implement support for the BTB prefetch
instructions (brprefetch and brcoalesce) and also add implemen-
tations for FDIP, Shotgun, and Confluence. We list different simu-
lation parameters that resemble a recent state-of-the-art industry
baseline [35, 36] in Table 1. Both trace-driven and execution-driven

MICRO ’21, October 18–22, 2021, Virtual Event, Greece Khan, Brown, Sriraman, Soundararajan, Kumar, Devietti, Subramoney, Pokam, Litz, and Kasikci

cassa
ndra

drupal

finagle-ch
irp

er

finagle-http
kafka

mediawiki

tomcat

verila
tor

wordpress Avg

0

20

40

%
Sp

ee
du

p
ov

er
FD

IP

14
5

18
1

confluence shotgun twig 32K ideal

Figure 16: Percentage speedup over the FDIP baseline: 32K is for a 32K-entry BTB compared to the 8K-entry baseline BTB.
Twig outperforms even the 32K-entry BTB on average with just an 8K-entry BTB with prefetching.

Scarab modes use Intel PIN [49], which cannot instrument kernel
mode instructions. To support kernel mode instruction simulations,
we collect application traces using Intel Processor Trace [1] and
modify Scarab to support simulating such traces as well. We simu-
late traces of 100 million representative, steady-state instructions
for each data center application.

4.2 Performance Analysis
We now validate Twig’s effectiveness using key performance met-
rics. First, we compare Twig’s speedup to the speedup offered by
an ideal BTB and the state-of-the-art BTB prefetcher, Shotgun [45].
Then, we evaluate the individual speedup contributions of software
BTB prefetching and BTB prefetch coalescing. We also compare
Twig against Shotgun in terms of BTB miss coverage and BTB
prefetch accuracy. Furthermore, we compare speedups achieved by
Twig and Shotgun across different application inputs. Finally, we
measure Twig’s static and dynamic overhead due to the additional
BTB prefetch instructions.

Speedup.We show Twig’s speedup (brown bars) for nine data
center applications in Fig. 16. For comparison, we also show
speedup offered by an ideal BTB (purple bars) and state-of-the-art
BTB prefetcher, Shotgun (green bars). As shown, Twig achieves on
average 20.86% speedup compared to 31% mean speedup achieved
by an ideal BTB and 1% mean speedup achieved by Shotgun. On
average, Twig achieves 48% (and up to 80%) of the speedup achieved
by an ideal BTB that incurs no BTB misses. Twig cannot provide
the entire benefit (100%) of an ideal BTB for a number of reasons.
First, some BTB misses do not have a predecessor basic block that
can predict the potential BTB miss with high accuracy. Second,
BTB prefetch instructions injected by Twig incur both static and
dynamic instruction overheads (we quantify this overhead later
in this section). Finally, Twig cannot cover some previously unob-
served BTB misses due to the use of different inputs in profiling
and testing (we also quantify this later in the section). Still, Twig
advances the state-of-the-art by outperforming Shotgun by 19.82%
on average (and up to 139.8%) as Twig covers more BTB misses than
Shotgun.

BTB miss coverage. Fig. 17 shows the BTB miss coverage com-
parison between Twig and Shotgun. As shown, Twig covers on
average 65.4% (and up to 95.84%) of all BTB misses. Additionally,
Twig covers on average 57.4% (and up to 94%) more BTBmisses than

cassa
ndra

drupal

finagle-ch
irp

er

finagle-http
kafka

mediawiki

tomcat

verila
tor

wordpress Avg

0

50

100

BT
B

M
is

s
co

ve
ra

ge
% confluence shotgun twig

Figure 17: BTBmiss coverage of Twig, Confluence, and Shot-
gun: on average Twig covers 65.4% of all BTB misses.

cassa
ndra

drupal

finagle-ch
irp

er

finagle-http
kafka

mediawiki

tomcat

verila
tor

wordpress Avg
0

25

50

75

%
of

id
ea

lB
TB

pe
rf

or
m

an
ce

Software-BTB-Prefetching BTB-Prefetch-Coalescing

Figure 18: Contribution of software BTB prefetching and
BTB prefetch coalescing toward Twig performance of an
ideal BTB: software BTB prefetching provides greater ben-
efits than BTB prefetch coalescing across applications.

the state-of-the-art prefetcher, Shotgun. Twig outperforms Shotgun
to cover 57.4% more BTB misses primarily because of the reasons
we describe in §2.3. In contrast to Shotgun’s ability to prefetch only
conditional branch entries within a limited spatial range, Twig can
prefetch BTB entries irrespective of branch type or distance.

Performance of software BTB prefetching and BTB
prefetch coalescing. Fig. 18 shows the individual contributions
of software BTB prefetching and BTB prefetch coalescing to Twig’s
overall speedup. As shown, software BTB prefetching without any
coalescing provides on average 32.6% speedup (70.9% of overall
performance gains) across different applications. On top of this,

Twig: Profile-Guided BTB Prefetching for Data Center Applications MICRO ’21, October 18–22, 2021, Virtual Event, Greece

cassa
ndra

drupal

finagle-ch
irp

er

finagle-http
kafka

mediawiki

tomcat

verila
tor

wordpress Avg
0

20

40

60

A
cc

ur
ac

y
%

confluence-accuracy shotgun-accuracy twig-accuracy

Figure 19: Prefetch accuracy of Twig, Confluence, and Shot-
gun: on average Twig provides 31.3% BTB prefetch accuracy
across nine data center applications.

#1 #2 #3 #1 #2 #3 #1 #2 #3
Avg

0

20

40

60

%
of

id
ea

lB
TB

pe
rf

or
m

an
ce confluence shotgun twig-training-profile twig-same-input-profile

cassandra kafka tomcat

Figure 20:Twig’s speedup across different application inputs
as the percentage of an ideal BTB performance:Twig trained
on a different input provides performance benefits compa-
rable to Twig trained on the same input and outperforms
existing BTB prefetching mechanisms.

prefetch coalescing provides on average 15.7% speedup (29.1% of
overall benefits) by reducing the static and dynamic instruction
overhead.

Prefetch accuracy.We show Twig’s prefetch accuracy in Fig. 19
and compare it against Shotgun’s prefetch accuracy. As shown, Twig
provides 31.3% average accuracy. Moreover, Twig achieves 12.3%
higher prefetch accuracy than Shotgun due to the fundamental
limitation of hardware temporal stream prefetching. Like most prior
hardware techniques on temporal memory streaming [20, 26, 77, 81–
83], Shotgun remembers the spatial footprint seen during the last
execution and prefetches the corresponding BTB entries. While
prefetching the most recently executed footprint is efficient in
terms of metadata storage (compared to most frequently executed
footprint), it incurs many inaccurate BTB prefetches. Twig, on the
other hand, leverages a large amount of execution information
from the collected profile to identify the most accurate prefetch
predecessor and achieves higher prefetch accuracy.

Performance across different application inputs. The effec-
tiveness of profile-guided optimizations usually depends on the cor-
responding application input. To investigate how this dependence
affects Twig’s performance, we compare the speedups achieved by
Twig across different application inputs in Fig. 20. For each appli-
cation, we use the profile from input ‘#0’ to optimize BTB perfor-
mance using Twig and measure the speedups for other inputs, ‘#1,
#2, #3’. For comparison, we also measure speedups achieved by

Table 2: Twig’s average speedup across different application
inputs with standard deviations.

Average Standard deviation Average Standard deviation
cassandra 49.31 10.04 45.93 15.53

drupal 36.77 14.31 43.15 9.84
finagle-chirper 38.30 9.13 31.99 10.29

finagle-http 34.03 7.73 32.66 5.62
kafka 52.35 2.17 49.93 2.26

mediawiki 38.78 10.95 43.78 5.11
tomcat 51.25 4.02 45.77 15.84

verilator 80.33 0.39 79.19 0.33
wordpress 45.15 14.69 49.71 12.85

Application
% of ideal BTB performance

Same input profile Training profile

cassa
ndra

drupal

finagle-ch
irp

er

finagle-http
kafka

mediawiki

tomcat

verila
tor

wordpress Avg
0.0

2.5

5.0

7.5

O
ve

rh
ea

d
as

%
of

in
st

ru
ct

io
ns

Figure 21: Static overhead of Twig, measured in % of addi-
tional instructions in the binary for a given workload: on
average Twig inserts 6% extra static instructions.

Table 3: Instruction working set size overhead of Twig.

Application Instruction working
set size (MB)

Additional
instruction size (MB) Overhead (%)

cassandra 4.23 0.26 6.08
drupal 1.75 0.05 2.93

finagle-chirper 2.05 0.07 3.54
finagle-http 5.29 0.42 7.97

kafka 3.28 0.16 4.78
mediawiki 2.24 0.08 3.70

tomcat 2.40 0.10 4.10
verilator 13.56 1.34 9.86

wordpress 1.93 0.06 3.09

Twig when optimized with the profile from the same input. Finally,
we compare Twig against Confluence and Shotgun for different
application inputs. For each configuration, we normalize the over-
all speedup by expressing it in terms of ideal BTB performance.

As shown in Fig. 20, Twig provides significantly more benefit
than state-of-the-art mechanisms [40, 45] even while using profiles
from a different application input. Twig provides a greater speedup
when optimized using input-specific profiles (as shown in Table 2)
for 6 out of 9 applications. However, for the remaining three appli-
cations, Twig can achieve even better speedup with profiles from a
different application input. Nonetheless, Twig achieves comparable
speedups with profiles from both same and different inputs.

MICRO ’21, October 18–22, 2021, Virtual Event, Greece Khan, Brown, Sriraman, Soundararajan, Kumar, Devietti, Subramoney, Pokam, Litz, and Kasikci

cassa
ndra

drupal

finagle-ch
irp

er

finagle-http
kafka

mediawiki

tomcat

verila
tor

wordpress Avg
0

5

10

15

O
ve

rh
ea

d
as

%
of

in
st

ru
ct

io
ns

Figure 22: Dynamic overhead of Twig, measured in % of addi-
tional executed instructions for a given workload: on aver-
age Twig incurs only 3% extra dynamic instructions.

2K 4K 8K 16K 32K 64K 2K 4K 8K 16K 32K 64K 2K 4K 8K 16K 32K 64K
0

20

40

60

80

100

%
of

id
ea

lB
TB

sp
ee

du
p confluence shotgun twig

cassandra tomcat verilator

Figure 23: % of speedup obtained by Twig compared to an
ideal BTB for BTB capacities ranging from 2048 entries to
65536 entries

Prefetch overhead. Twig does not introduce any extra meta-
data storage. Therefore, instructions added to perform BTB prefetch-
ing are the only overhead Twig introduces. We quantify the static
and dynamic overhead of these prefetch instructions in Fig. 21 and
22. In Table 3, we quantify the combined overhead of static and
dynamic instruction increase based on working set size increase
in terms of the number of added bytes. As shown, Twig introduces
less than 8% static and 12.6% dynamic instruction overhead for all
cases. Specifically, Twig incurs the highest dynamic overhead for
verilator to cover the large number of BTB misses incurred by
the application (BTB MPKI of 121).

4.3 Sensitivity Analysis
We investigate the sensitivity of different design parameters on
Twig’s effectiveness. First, we compare the speedup achieved by
Twig and Shotgun for different BTB storage budgets (size and asso-
ciativity) and prefetch buffer sizes. Additionally, we evaluate the
effect of changing the prefetch distance and FDIP run-ahead on
Twig’s effectiveness.

BTB storage budget. In Fig. 23, we evaluate how sensitive Twig
is to the storage budget allocated to the BTB by varying the number
of BTB entries. We fix all other parameters and vary the number of
BTB entries between 2048 (2K) and 65536 (64K). As Fig. 23 shows,
Twig achieves more speedup than either Shotgun or Confluence
across all BTB sizes. We also vary BTB’s associativity from 4 ways

4 8 16 32 64 128 4 8 16 32 64 128 4 8 16 32 64 128
0

20

40

60

%
of

id
ea

lB
TB

sp
ee

du
p confluence shotgun twig

finagle-chirper finagle-http kafka

Figure 24: % of speedup obtained by Twig compared to an
ideal BTB for BTB associativity ranging from 4 to 128

8 16 32 64 128 256 8 16 32 64 128 256 8 16 32 64 128 256
0

20

40

60

80

%
of

id
ea

lB
TB

pe
rf

or
m

an
ce confluence shotgun twig

cassandra tomcat verilator

Figure 25: Percent of speedup obtained by Twig compared
to an ideal BTB for the size of the prefetch buffer, ranging
from 8 to 256

per set to 128 ways per set. Fig. 24 shows how Twig outperforms
both Shotgun and Confluence for any associativity.

Prefetch buffer size.We next vary the size of the BTB prefetch
buffer. This enables us to hold additional BTB entry candidates at
any given time, enabling Twig prefetches to not evict each other. As
shown in Fig. 25, Twig’s performance scales from from 8 to about 128
entries before it begins to experience diminishing returns. Shotgun
and Confluence do not experience this same scaling, indicating that
Twig provides greater benefits than prior works irrespective of the
prefetch buffer size.

Prefetch distance. Fig. 26 shows how Twig’s effectiveness
varies in response to variation in prefetch distance. We vary the
prefetch distance from 0 to 50 cycles and measure Twig’s average
performance as a percentage of ideal BTB performance across appli-
cations. As shown, Twig provides only a portion of the potential
speedup when the prefetch distance is too small to complete the
prefetch before the BTB lookup. On the other hand, Twig cannot
find an appropriate prefetch injection site when the prefetch dis-
tance is too large to ignore accurate predecessors. Consequently,
Twig provides the greatest benefit with 15-25 cycles of prefetch
distances across different applications.

Coalescing size.We investigate the effectiveness of Twig’s BTB
prefetch coalescing with an increase in coalescing bitmask size.
Fig. 27 shows the average performance gains of BTB prefetch coa-
lescing as the percentage of ideal BTB performance for different
bitmask sizes (1-bit to 64-bit) across nine data center applications.
As shown, Twig realizes a large fraction of the potential speedup

Twig: Profile-Guided BTB Prefetching for Data Center Applications MICRO ’21, October 18–22, 2021, Virtual Event, Greece

0 10 20 30 40
Prefetch distance (in cycles)

0

20

40

60

%
of

id
ea

lB
TB

pe
rf

or
m

an
ce

Figure 26: Twig’s average performance variation in response
to increasing the prefetch distance. Across different applica-
tions, Twig provides greatest benefit with prefetch distance
15-25 cycles.

0 10 20 30 40 50 60
Coalesce bitmask size

0

5

10

15

20

%
of

id
ea

lB
TB

pe
rf

or
m

an
ce

Figure 27: Twig’s average performance variation in response
to changes in the coalesce bitmask size. Twig achieves a
majority of the potential performance gains with a 8-bit coa-
lesce bitmask.

1 2 4 8 16 32 64 1 2 4 8 16 32 64 1 2 4 8 16 32 64
0

20

40

60

80

100

%
of

id
ea

lB
TB

sp
ee

du
p confluence shotgun twig

kafka tomcat verilator

Figure 28: % of speedup obtained by Twig compared to an
ideal BTB for the size of the FTQ, or maximum distance the
decoupled frontend can run ahead, varied between 1 and 64

with an 8-bit bitmask. Consequently, we use 8-bits to coalesce BTB
prefetch instructions.

FDIP Run-ahead. Finally, we vary the size of the Fetch Target
Queue (FTQ), which determines how far ahead the decoupled fron-
tend can run. We vary the FTQ size from 1 to 64 branches. Fig. 28
shows that Twig achieves a similar performance relative to ideal at
every measured FTQ length. Since a longer FTQ has been shown to
improve performance by reducing frontend stalls [35], this result
implies that Twig scales well to frontends that run far ahead of the
fetch unit.

5 RELATEDWORK
Preventing I-cache misses.Many prior works focus on reducing
frontend stalls via eliminating I-cache misses. These techniques
can be summarized in three distinct categories: software only,
hardware only, and a hybrid software/hardware approach. Soft-
ware techniques include improving instruction locality via basic
block/function reordering [57, 65], hot/cold splitting [23], and other
Profile-Guided Optimizations (PGO) [15, 19, 22, 31, 32, 48, 50, 51, 58,
63, 67, 90]. Improved layout techniques are only able to eliminate a
subset of all I-cache misses and finding the optimal code layout for
I-cache performance is intractable in practice [16, 64]. Hardware-
only techniques tend to have one of two limitations. Either the tech-
niques have prohibitive on-chip storage costs [25, 26], or they end
up being significantly more complex [39, 40, 44] than prefetching
techniques implemented in real hardware [69, 71]. Hybrid hard-
ware and software approaches [16, 41] attempt to avoid the pitfalls
of software only or hardware only approaches by performing the
complicated software analysis ahead of time and executing sim-
ple prefetch instructions at runtime. However, prior approaches
either make assumptions that are too simplistic, limiting prefetch-
ing accuracy, or execute too many dynamic instructions which
exacerbate the application’s code footprint [16, 53]. State-of-the-art
I-cache prefetchers include the SN4L+Dis+BTB design [12] and the
contenders of the first instruction cache prefetching competition
(IPC-1) [11, 27, 28, 30, 52, 54, 70, 74]. Of the above proposals, FDIP
has a desirable trade-off between metadata cost and prefetching
effectiveness [45, 46]. Even with significantly smaller metadata
storage costs, FDIP provides comparable performance benefits to
state-of-the-art I-cache prefetchers [35, 36]. Moreover, recent com-
mercial CPU designs adopted some FDIP variants to reduce frontend
stalls [29, 61, 72, 80]. Therefore, in this work, we focus on improv-
ing FDIP effectiveness by introducing software BTB prefetching
that provides 20.86% average speedup without requiring any extra
metadata storage.

BTB redesign / compression. The design and usage of the
storage allocated to the BTB has long been debated. BTB entries
commonly hold some combination of a tag, prediction information,
and target address [47, 62]. The basic-block style BTB also contains
the address of the fall-through basic block [89]. Compressing BTB
entry size is common to enable the BTB to host more entries in
the same storage budget. Such techniques [21, 24, 37, 43, 62, 68, 75]
include using fewer bits for the tag, removing the page number from
the tag, encoding the branch target as a small delta from the branch
PC, and adding a larger second level BTB for which the first level
BTB acts as a small cache. BTB-X [13] and PDede [78] apply several
of these compression techniques, including partitioning the BTB
into segments to enable aggressive compression and deduplication.
All of these techniques enable the underlying BTB to have a larger
capacity for a given storage budget. Since Twig prefetches entries
into the BTB, it is independent of the underlying BTB and should
be just as effective with the above techniques.

BTB prefetching. Phantom-BTB (PBTB) [20] virtualized pre-
dictor metadata into the shared L2 cache, and used entries in the
virtualized table to prefetch BTB entries. PBTB suffers from a rel-
atively high cost of metadata storage and a longer latency access
time for important branch prediction metadata. Two-level bulk

MICRO ’21, October 18–22, 2021, Virtual Event, Greece Khan, Brown, Sriraman, Soundararajan, Kumar, Devietti, Subramoney, Pokam, Litz, and Kasikci

preload [18] maintains two BTB levels per-core, with a mechanism
to fetch a group of BTB entries for a fixed-size region to the first
level on a miss to any branch in that region. This is limited to
exploiting the available spatial locality of a branch, and thus is
similar to the next-line prefetchers. Confluence [40] keeps the I-
cache and BTB contents in sync via their AirBTB design, with the
ability to predecode branches and BTB entries for a given I-cache
block. Locking the I-cache and BTB contents limits the runahead
ability of the branch predictor unit. Moreover, Confluence relied
on a metadata-expensive temporal prefetcher, SHIFT [39, 40, 46].
Boomerang [46] modifies FDIP to predecode fetched I-cache blocks
and insert the corresponding BTB entries. However, the ability for
these entries to be timely is largely dependent upon the frontend
to run far enough ahead, and miss coverage suffers when there are
many BTB misses [45]. Shotgun [45] partitions the BTB into the
Unconditional BTB (U-BTB) and much smaller Conditional BTB
(C-BTB), with a way to prefetch entries into the C-BTB when the
U-BTB is hit. As such, Shotgun relies on a high U-BTB hit rate to
keep the C-BTB full of useful entries [12]. This reliance limits Shot-
gun’s ability to scale. Additionally, any fixed partitioning scheme,
as in U-BTB vs. C-BTB sizes, need the workload’s distribution of
branches to match, and results in underutilized space when the
application deviates from the fixed partitioning scheme. See §2.3
for a in-depth investigation on the impact of the limitations of each
approach, and why they cannot cover all BTB misses. In this work,
we investigate the reasons behind their limitation and address such
limitations by proposing profile-guided BTB prefetch mechanisms
that outperform prior techniques.

6 CONCLUSION
Large branch footprints of data center applications cause frequent
BTB misses, resulting in significant frontend stalls. We showed
that existing BTB prefetching techniques fail to overcome these
stalls due to inadequate understanding of the applications’ branch
access patterns. To address this limitation, we proposed Twig, a
profile-guided BTB prefetching mechanism. Twig presents two BTB
prefetching techniques: software BTB prefetching and BTB prefetch
coalescing. We evaluated Twig in the context of nine popular data
center applications. Across these applications, Twig achieves an
average of 20.86% (2%-145%) performance speedup and outperforms
the state-of-the-art BTB prefetching technique by 19.82%.

ACKNOWLEDGMENTS
We thank the anonymous reviewers for their insightful feedback
and suggestions. This work was supported by the Intel Corpora-
tion, NSF grants #1823559, #2011168, #2010810, and the Applica-
tions Driving Architectures (ADA) Research Center, a JUMP Center
co-sponsored by SRC and DARPA. Any opinions, findings, conclu-
sions, or recommendations expressed in this material are those of
the authors and do not necessarily reflect the views of the fund-
ing agencies. We thank Maksim Panchenko and Guilherme Ottoni
from Facebook for helpful discussions about HHVM control-flow
behavior.

REFERENCES
[1] [n. d.]. Adding Processor Trace support to Linux.

https://lwn.net/Articles/648154/.
[2] [n. d.]. Apache Cassandra. http://cassandra.apache.org/.
[3] [n. d.]. Apache kafka. https://kafka.apache.org/powered-by.
[4] [n. d.]. Apache Tomcat. https://tomcat.apache.org/.
[5] [n. d.]. An Introduction to Last Branch Records. https://lwn.net/Articles/680985/.
[6] [n. d.]. Scarab. https://github.com/hpsresearchgroup/scarab.
[7] [n. d.]. Twitter Finagle. https://twitter.github.io/finagle/.
[8] [n. d.]. Verilator. https://www.veripool.org/wiki/verilator.
[9] 2019. facebookarchive/oss-performance: Scripts for benchmarking various php

implementations when running open source software. https://github.com/
facebookarchive/oss-performance. (Online; last accessed 15-November-2019).

[10] Keith Adams, Jason Evans, Bertrand Maher, Guilherme Ottoni, Andrew Paroski,
Brett Simmers, Edwin Smith, and Owen Yamauchi. 2014. The hiphop virtual
machine. In Proceedings of the 2014 ACM International Conference on Object
Oriented Programming Systems Languages & Applications. 777–790.

[11] Ali Ansari, Fatemeh Golshan, Pejman Lotfi-Kamran, and Hamid Sarbazi-Azad.
2020. MANA: Microarchitecting an instruction prefetcher. The First Instruction
Prefetching Championship (2020).

[12] Ali Ansari, Pejman Lotfi-Kamran, and Hamid Sarbazi-Azad. 2020. Divide and
Conquer Frontend Bottleneck. In Proceedings of the 47th Annual International
Symposium on Computer Architecture.

[13] Truls Asheim, Boris Grot, and Rakesh Kumar. 2021. BTB-X: A Storage-Effective
BTB Organization. IEEE Computer Architecture Letters (2021).

[14] Grant Ayers, Jung Ho Ahn, Christos Kozyrakis, and Parthasarathy Ranganathan.
2018. Memory hierarchy for web search. In 2018 IEEE International Symposium
on High Performance Computer Architecture. IEEE, 643–656.

[15] Grant Ayers, Heiner Litz, Christos Kozyrakis, and Parthasarathy Ranganathan.
2020. Classifying Memory Access Patterns for Prefetching. In Proceedings of the
Twenty-Fifth International Conference on Architectural Support for Programming
Languages and Operating Systems. 513–526.

[16] Grant Ayers, Nayana Prasad Nagendra, David I August, Hyoun Kyu Cho, Svilen
Kanev, Christos Kozyrakis, Trivikram Krishnamurthy, Heiner Litz, Tipp Moseley,
and Parthasarathy Ranganathan. 2019. Asmdb: understanding and mitigating
front-end stalls in warehouse-scale computers. In Proceedings of the 46th Interna-
tional Symposium on Computer Architecture. 462–473.

[17] Stephen M Blackburn, Robin Garner, Chris Hoffmann, Asjad M Khang, Kathryn S
McKinley, Rotem Bentzur, Amer Diwan, Daniel Feinberg, Daniel Frampton,
Samuel Z Guyer, et al. 2006. The DaCapo benchmarks: Java benchmarking devel-
opment and analysis. In Proceedings of the 21st annual ACM SIGPLAN conference
on Object-oriented programming systems, languages, and applications. 169–190.

[18] James Bonanno, Adam Collura, Daniel Lipetz, Ulrich Mayer, Brian Prasky, and
Anthony Saporito. 2013. Two level bulk preload branch prediction. In 2013 IEEE
19th International Symposium on High Performance Computer Architecture. IEEE,
71–82.

[19] Peter Braun and Heiner Litz. 2019. Understanding memory access patterns
for prefetching. In International Workshop on AI-assisted Design for Architecture
(AIDArc), held in conjunction with ISCA.

[20] Ioana Burcea and Andreas Moshovos. 2009. Phantom-BTB: a virtualized branch
target buffer design. Acm Sigplan Notices 44, 3 (2009), 313–324.

[21] Michael Butler, Leslie Barnes, Debjit Das Sarma, and Bob Gelinas. 2011. Bulldozer:
An approach to multithreaded compute performance. IEEE Micro 31, 2 (2011),
6–15.

[22] Dehao Chen, Tipp Moseley, and David Xinliang Li. 2016. AutoFDO: Automatic
feedback-directed optimization for warehouse-scale applications. In CGO.

[23] Robert Cohn and P Geoffrey Lowney. 1996. Hot cold optimization of large Win-
dows/NT applications. In Proceedings of the 29th Annual IEEE/ACM International
Symposium on Microarchitecture. IEEE, 80–89.

[24] Barry Fagin. 1997. Partial resolution in branch target buffers. IEEE Trans. Comput.
46, 10 (1997), 1142–1145.

[25] Michael Ferdman, Cansu Kaynak, and Babak Falsafi. 2011. Proactive instruction
fetch. In International Symposium on Microarchitecture.

[26] Michael Ferdman, Thomas F Wenisch, Anastasia Ailamaki, Babak Falsafi, and
Andreas Moshovos. 2008. Temporal instruction fetch streaming. In International
Symposium on Microarchitecture.

[27] Nathan Gober, Gino Chacon, Daniel Jiménez, and Paul V Gratz. [n. d.]. The
Temporal Ancestry Prefetcher. ([n. d.]).

[28] Daniel A Jiménez Paul V Gratz and Gino Chacon Nathan Gober. [n. d.]. BARCa:
Branch Agnostic Region Searching Algorithm. ([n. d.]).

[29] Brian Grayson, Jeff Rupley, Gerald Zuraski Zuraski, Eric Quinnell, Daniel A
Jiménez, Tarun Nakra, Paul Kitchin, Ryan Hensley, Edward Brekelbaum, Vikas
Sinha, et al. 2020. Evolution of the samsung exynos CPU microarchitecture. In
2020 ACM/IEEE 47th Annual International Symposium on Computer Architecture.
IEEE, 40–51.

https://github.com/facebookarchive/oss-performance
https://github.com/facebookarchive/oss-performance

Twig: Profile-Guided BTB Prefetching for Data Center Applications MICRO ’21, October 18–22, 2021, Virtual Event, Greece

[30] Vishal Gupta, Neelu Shivprakash Kalani, and Biswabandan Panda. [n. d.]. Run-
Jump-Run: Bouquet of Instruction Pointer Jumpers for High Performance Instruc-
tion Prefetching. ([n. d.]).

[31] Stavros Harizopoulos and Anastassia Ailamaki. 2004. STEPS towards cache-
resident transaction processing. In International conference on Very large data
bases.

[32] Milad Hashemi, Kevin Swersky, Jamie A Smith, Grant Ayers, Heiner Litz, Jichuan
Chang, Christos Kozyrakis, and Parthasarathy Ranganathan. 2018. Learning
memory access patterns. arXiv preprint arXiv:1803.02329 (2018).

[33] Mark D Hill and Alan Jay Smith. 1989. Evaluating associativity in CPU caches.
IEEE Trans. Comput. 38, 12 (1989), 1612–1630.

[34] Intel. 2021. Front-End Bound. https://software.intel.com/content/www/
us/en/develop/documentation/vtune-help/top/reference/cpu-metrics-
reference/front-end-bound.html.

[35] Yasuo Ishii, Jaekyu Lee, Krishnendra Nathella, and Dam Sunwoo. 2020. Rebasing
Instruction Prefetching: An Industry Perspective. IEEE Computer Architecture
Letters (2020).

[36] Yasuo Ishii, Jaekyu Lee, Krishnendra Nathella, and Dam Sunwoo. 2021. Re-
establishing Fetch-Directed Instruction Prefetching: An Industry Perspective.
IEEE International Symposium on Performance Analysis of Systems and Software
(2021).

[37] Daniel A Jiménez, Stephen W Keckler, and Calvin Lin. 2000. The impact of delay
on the design of branch predictors. In Proceedings of the 33rd annual ACM/IEEE
international symposium on Microarchitecture. 67–76.

[38] Svilen Kanev, Juan Pablo Darago, Kim Hazelwood, Parthasarathy Ranganathan,
Tipp Moseley, Gu-Yeon Wei, and David Brooks. 2015. Profiling a warehouse-
scale computer. In Proceedings of the 42nd Annual International Symposium on
Computer Architecture. 158–169.

[39] Cansu Kaynak, Boris Grot, and Babak Falsafi. 2013. Shift: Shared history instruc-
tion fetch for lean-core server processors. In International Symposium on Microar-
chitecture.

[40] Cansu Kaynak, Boris Grot, and Babak Falsafi. 2015. Confluence: unified instruc-
tion supply for scale-out servers. In Proceedings of the 48th International Sympo-
sium on Microarchitecture. 166–177.

[41] Tanvir Ahmed Khan, Akshitha Sriraman, Joseph Devietti, Gilles Pokam, Heiner
Litz, and Baris Kasikci. 2020. I-SPY: Context-Driven Conditional Instruction
Prefetching with Coalescing. In 2020 53rd Annual IEEE/ACM International Sym-
posium on Microarchitecture. IEEE, 146–159.

[42] Tanvir Ahmed Khan, Dexin Zhang, Akshitha Sriraman, Joseph Devietti, Gilles
Pokam, Heiner Litz, and Baris Kasikci. 2021. Ripple: Profile-guided instruc-
tion cache replacement for data center applications. In Proceedings of the 48th
International Symposium on Computer Architecture.

[43] Ryotaro Kobayashi, Yuji Yamada, Hideki Ando, and Toshio Shimada. 1999. A cost-
effective branch target buffer with a two-level table organization. In Proceedings
of the 2nd International Symposium of Low-Power and High-Speed Chips (COOL
Chips II).

[44] Aasheesh Kolli, Ali Saidi, and Thomas F Wenisch. 2013. RDIP: return-address-
stack directed instruction prefetching. In 2013 46th Annual IEEE/ACM Interna-
tional Symposium on Microarchitecture. IEEE, 260–271.

[45] Rakesh Kumar, Boris Grot, and Vijay Nagarajan. 2018. Blasting through the Front-
End Bottleneck with Shotgun. In Proceedings of the Twenty-Third International
Conference on Architectural Support for Programming Languages and Operating
Systems. ACM, 30–42. https://doi.org/10.1145/3173162.3173178

[46] Rakesh Kumar, Cheng-Chieh Huang, Boris Grot, and Vijay Nagarajan. 2017.
Boomerang: A metadata-free architecture for control flow delivery. In 2017 IEEE
International Symposium on High Performance Computer Architecture. IEEE, 493–
504.

[47] Lee and Smith. 1984. Branch Prediction Strategies and Branch Target Buffer
Design. Computer 17, 1 (1984), 6–22. https://doi.org/10.1109/MC.1984.1658927

[48] David Xinliang Li, Raksit Ashok, and Robert Hundt. 2010. Lightweight feedback-
directed cross-module optimization. In Proceedings of the 8th annual IEEE/ACM
international symposium on Code generation and optimization. 53–61.

[49] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser, Geoff
Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim Hazelwood. 2005. Pin:
building customized program analysis tools with dynamic instrumentation. Acm
sigplan notices 40, 6 (2005), 190–200.

[50] Chi-Keung Luk and Todd C Mowry. 1998. Cooperative prefetching: Compiler
and hardware support for effective instruction prefetching in modern processors.
In International Symposium on Microarchitecture.

[51] C-K Luk, Robert Muth, Harish Patil, Robert Cohn, and Geoff Lowney. 2004.
Ispike: a post-link optimizer for the Intel/spl reg/Itanium/spl reg/architecture. In
International Symposium on Code Generation and Optimization, 2004. CGO 2004.
IEEE, 15–26.

[52] Pierre Michaud. 2020. PIPS: Prefetching Instructions with Probabilistic Scouts.
In The 1st Instruction Prefetching Championship.

[53] Nayana Prasad Nagendra, Grant Ayers, David I August, Hyoun Kyu Cho, Svilen
Kanev, Christos Kozyrakis, Trivikram Krishnamurthy, Heiner Litz, Tipp Moseley,
and Parthasarathy Ranganathan. 2020. Asmdb: Understanding and mitigating

front-end stalls in warehouse-scale computers. IEEE Micro 40, 3 (2020), 56–63.
[54] Tomoki Nakamura, Toru Koizumi, Yuya Degawa, Hidetsugu Irie, Shuichi Sakai,

and Ryota Shioya. [n. d.]. D-JOLT: Distant Jolt Prefetcher. ([n. d.]).
[55] Guilherme Ottoni. 2018. HHVM JIT: A Profile-guided, Region-based Compiler

for PHP and Hack. In Proceedings of the 39th ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation. 151–165.

[56] Guilherme Ottoni and Bin Liu. [n. d.]. HHVM Jump-Start: Boosting BothWarmup
and Steady-State Performance at Scale. In 2021 IEEE/ACM International Sympo-
sium on Code Generation and Optimization (CGO). IEEE, 340–350.

[57] Guilherme Ottoni and Bertrand Maher. 2017. Optimizing function placement for
large-scale data-center applications. In 2017 IEEE/ACM International Symposium
on Code Generation and Optimization (CGO). IEEE, 233–244.

[58] Maksim Panchenko, Rafael Auler, Bill Nell, and Guilherme Ottoni. 2019. Bolt:
a practical binary optimizer for data centers and beyond. In 2019 IEEE/ACM
International Symposium on Code Generation and Optimization (CGO). IEEE, 2–
14.

[59] Maksim Panchenko, Rafael Auler, Laith Sakka, and Guilherme Ottoni. 2021.
Lightning BOLT: powerful, fast, and scalable binary optimization. In Proceedings
of the 30th ACM SIGPLAN International Conference on Compiler Construction.
119–130.

[60] Reena Panda, Paul V Gratz, and Daniel A Jiménez. 2011. B-fetch: Branch predic-
tion directed prefetching for in-order processors. IEEE Computer Architecture
Letters 11, 2 (2011), 41–44.

[61] Andrea Pellegrini, Nigel Stephens, Magnus Bruce, Yasuo Ishii, Joseph Pusdesris,
Abhishek Raja, Chris Abernathy, Jinson Koppanalil, Tushar Ringe, Ashok Tum-
mala, et al. 2020. The Arm Neoverse N1 Platform: Building Blocks for the
Next-Gen Cloud-to-Edge Infrastructure SoC. IEEE Micro 40, 2 (2020), 53–62.

[62] Chris H Perleberg and Alan Jay Smith. 1993. Branch target buffer design and
optimization. IEEE transactions on computers 42, 4 (1993), 396–412.

[63] Larry L Peterson. 2001. Architectural and compiler support for effective instruc-
tion prefetching: a cooperative approach. ACM Transactions on Computer Systems
(2001).

[64] Erez Petrank and Dror Rawitz. 2002. The Hardness of Cache Conscious Data
Placement. In POPL.

[65] Karl Pettis and Robert C Hansen. 1990. Profile guided code positioning. In
Proceedings of the ACM SIGPLAN 1990 conference on Programming language
design and implementation. 16–27.

[66] Aleksandar Prokopec, Andrea Rosà, David Leopoldseder, Gilles Duboscq, Petr
Tůma, Martin Studener, Lubomír Bulej, Yudi Zheng, Alex Villazón, Doug Simon,
Thomas Würthinger, and Walter Binder. 2019. Renaissance: Benchmarking Suite
for Parallel Applications on the JVM. In Programming Language Design and
Implementation.

[67] Alex Ramirez, Luiz André Barroso, Kourosh Gharachorloo, Robert Cohn, Josep
Larriba-Pey, P Geoffrey Lowney, and Mateo Valero. 2001. Code layout optimiza-
tions for transaction processing workloads. ACM SIGARCHComputer Architecture
News (2001).

[68] Glenn Reinman, Todd Austin, and Brad Calder. 1999. A scalable front-end archi-
tecture for fast instruction delivery. ACM SIGARCH Computer Architecture News
27, 2 (1999), 234–245.

[69] Glenn Reinman, Brad Calder, and Todd Austin. 1999. Fetch directed instruction
prefetching. In Proceedings of the 32nd Annual ACM/IEEE International Symposium
on Microarchitecture. IEEE, 16–27.

[70] Alberto Ros and Alexandra Jimborean. 2020. The entangling instruction
prefetcher. IEEE Computer Architecture Letters 19, 2 (2020), 84–87.

[71] Eric Rotenberg, Steve Bennett, and James E Smith. 1996. Trace cache: a low
latency approach to high bandwidth instruction fetching. In Proceedings of the
29th Annual IEEE/ACM International Symposium on Microarchitecture. IEEE, 24–
34.

[72] J Rupley. 2018. Samsung Exynos M3 Processor. IEEE Hot Chips 30 (2018).
[73] André Seznec. 2014. Tage-sc-l branch predictors. In JILP-Championship Branch

Prediction.
[74] André Seznec. 2020. The FNL+ MMA Instruction Cache Prefetcher. In IPC-1-First

Instruction Prefetching Championship.
[75] S Seznec. 1996. Don’t use the page number, but a pointer to it. In 23rd Annual

International Symposium on Computer Architecture. IEEE, 104–104.
[76] Alan Jay Smith. 1978. Sequential program prefetching in memory hierarchies.

Computer 12 (1978), 7–21.
[77] Stephen Somogyi, Thomas F Wenisch, Anastasia Ailamaki, and Babak Falsafi.

2009. Spatio-temporal memory streaming. ACM SIGARCH Computer Architecture
News 37, 3 (2009), 69–80.

[78] Niranjan Soundararajan, Peter Braun, Tanvir Khan, Baris Kasikci, Heiner Litz, and
Sreenivas Subramoney. 2021. PDede: Partitioned, Deduplicated, Delta Branch Tar-
get Buffer. In Proceedings of the 54th Annual IEEE/ACM International Symposium
on Microarchitecture.

[79] Akshitha Sriraman, Abhishek Dhanotia, and Thomas F Wenisch. 2019. Softsku:
Optimizing server architectures for microservice diversity@ scale. In Proceedings
of the 46th International Symposium on Computer Architecture. 513–526.

https://software.intel.com/content/www/us/en/develop/documentation/vtune-help/top/reference/cpu-metrics-reference/front-end-bound.html
https://software.intel.com/content/www/us/en/develop/documentation/vtune-help/top/reference/cpu-metrics-reference/front-end-bound.html
https://software.intel.com/content/www/us/en/develop/documentation/vtune-help/top/reference/cpu-metrics-reference/front-end-bound.html
https://doi.org/10.1145/3173162.3173178
https://doi.org/10.1109/MC.1984.1658927

MICRO ’21, October 18–22, 2021, Virtual Event, Greece Khan, Brown, Sriraman, Soundararajan, Kumar, Devietti, Subramoney, Pokam, Litz, and Kasikci

[80] David Suggs, Mahesh Subramony, and Dan Bouvier. 2020. The AMD “Zen 2”
Processor. IEEE Micro 40, 2 (2020), 45–52.

[81] Thomas F Wenisch, Michael Ferdman, Anastasia Ailamaki, Babak Falsafi, and
Andreas Moshovos. 2008. Temporal streams in commercial server applications. In
2008 IEEE International Symposium on Workload Characterization. IEEE, 99–108.

[82] Thomas F Wenisch, Michael Ferdman, Anastasia Ailamaki, Babak Falsafi, and
Andreas Moshovos. 2009. Practical off-chip meta-data for temporal memory
streaming. In 2009 IEEE 15th International Symposium on High Performance Com-
puter Architecture. IEEE, 79–90.

[83] Thomas F Wenisch, Stephen Somogyi, Nikolaos Hardavellas, Jangwoo Kim, Anas-
tassia Ailamaki, and Babak Falsafi. 2005. Temporal streaming of shared memory.
In 32nd International Symposium on Computer Architecture. IEEE, 222–233.

[84] Wikipedia contributors. 2020. Apache Kafka — Wikipedia, The Free Ency-
clopedia. https://en.wikipedia.org/w/index.php?title=Apache_Kafka&oldid=
988898935. [Online; accessed 23-November-2020].

[85] Wikipedia contributors. 2020. Verilator — Wikipedia, The Free Encyclopedia.
https://en.wikipedia.org/w/index.php?title=Verilator&oldid=989046249. [Online;

accessed 8-April-2021].
[86] Wikipedia contributors. 2021. Apache Cassandra — Wikipedia, The Free Ency-

clopedia. https://en.wikipedia.org/w/index.php?title=Apache_Cassandra&oldid=
1010524207. [Online; accessed 7-April-2021].

[87] Wikipedia contributors. 2021. X86-64 — Wikipedia, The Free Encyclopedia.
https://en.wikipedia.org/w/index.php?title=X86-64&oldid=1016690406. [Online;
accessed 10-April-2021].

[88] Ahmad Yasin. 2014. A top-down method for performance analysis and counters
architecture. In ISPASS.

[89] Tse-Yu Yeh and Yale N Patt. 1992. A comprehensive instruction fetch mechanism
for a processor supporting speculative execution. ACM SIGMICRO Newsletter 23,
1-2 (1992), 129–139.

[90] Jingren Zhou and Kenneth A Ross. 2004. Buffering databse operations for
enhanced instruction cache performance. In International conference on Manage-
ment of data.

https://en.wikipedia.org/w/index.php?title=Apache_Kafka&oldid=988898935
https://en.wikipedia.org/w/index.php?title=Apache_Kafka&oldid=988898935
https://en.wikipedia.org/w/index.php?title=Verilator&oldid=989046249
https://en.wikipedia.org/w/index.php?title=Apache_Cassandra&oldid=1010524207
https://en.wikipedia.org/w/index.php?title=Apache_Cassandra&oldid=1010524207
https://en.wikipedia.org/w/index.php?title=X86-64&oldid=1016690406

	Abstract
	1 Introduction
	2 Limitations of prior I-Cache & BTB Prefetching Techniques
	2.1 What stops FDIP from eliminating all frontend stalls?
	2.2 Why is a large BTB insufficient for data center applications?
	2.3 Why do existing BTB prefetching mechanisms fall short?

	3 TWIG
	3.1 Software BTB Prefetching
	3.2 BTB Prefetch Coalescing

	4 Evaluation
	4.1 Methodology
	4.2 Performance Analysis
	4.3 Sensitivity Analysis

	5 Related Work
	6 Conclusion
	Acknowledgments
	References

