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Building correct, secure, and efficient software is a complex endeavor, given the new architectures, plat-
forms, and interfaces that emerge on a regular basis. This complexity makes it hard for developers to write
good software, and thus nullifies some of the benefits of new technology trends. My research objective is to
help developers maximally reap the benefits of technological advances by aiding them in quickly writing good
software.

In the future, I will work on techniques to address problems such as security vulnerabilities and privacy
issues, which have become more relevant than ever due to the surge of large-scale distributed applications. I
will also build techniques to help developers cope with software and system design challenges of computing
platforms that are becoming mainstream such as Internet of Things and heterogeneous computing systems.

In my dissertation, I worked on addressing the challenges posed to software development by a promi-
nent trend of the past ten years, namely the shift of microprocessor design from single-core to multi-core
architectures. As hardware became increasingly parallel, concurrency became mainstream to build soft-
ware that leverages parallel hardware. However, the transition to multi-core hardware happened at a more
rapid pace than the evolution of associated techniques and tools, which made it difficult to write programs
that employ concurrency and are both efficient and correct. Concurrency bugs are often hard to reproduce
and fix, and can cause massive losses. I experienced the difficulties of concurrency firsthand as a software
engineer designing and developing concurrent real-time software for four years prior to my Ph.D. In my
dissertation, I developed techniques for the detection, classification, and root cause diagnosis of bugs, with a
particular emphasis on concurrency bugs. Some of the tools and techniques I developed are being used in
major technology companies such as Microsoft and Intel.

In the rest of this statement, I will first summarize my dissertation research, and then I will explain my
future research directions.

Dissertation Research

In my dissertation, I designed and implemented: RaceMob [4, 6], the first high-accuracy data race detector
that can be used always-on in production; Portend [5, 7], the first high-accuracy data race classifier that can
predict the consequences of data races under various memory models; Gist [2, 3, 8], the first technique to
accurately determine root causes of in-production failures without relying on custom hardware or runtime
checkpointing. Many of the techniques I developed require efficient runtime instrumentation and sampling.
In this regard, I also developed Bias-Free Sampling [1], a technique that allows sampling rarely executed
code—where bugs mainly reside—without over-sampling frequently executed code. In the next four sections,
I briefly describe each project in more detail. I then talk about the approach I take to problem-solving.

RaceMob: Data Race Detection

Data races are among the worst concurrency bugs, having caused massive material losses and losses to human
lives, and thus, many techniques have been developed to detect data races to eventually fix them.

However, data race detection that is both accurate and efficient has long been an open problem, mainly
because of the tension between accuracy and efficiency: accurate data race detection requires gathering
runtime execution information, which hurts efficiency. In particular, purely static data race detectors work
offline without access to the runtime execution information (e.g., variable addresses). Therefore, static
detectors are efficient (i.e., don’t incur runtime performance overhead) but have low accuracy. On the other
hand, purely dynamic data race detectors monitor execution information, therefore they can accurately
detect data races, but they incur a lot of runtime performance overhead.

Furthermore, some data races only manifest in production, which makes it more challenging to efficiently
detect them without perturbing user experience. Prior work did not attempt to detect data races in-
production, where the challenges of data race detection are exacerbated.

In order to solve the in-production data race detection problem, I developed RaceMob [4, 6], a technique
that combines in-house static program analysis with in-production dynamic analysis. RaceMob first statically
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detects potential data races, and then dynamically validates them using a dynamic data race detection
technique. RaceMob’s static data race detection is complete: it does not have false negatives (i.e., it does
not miss true data races). However it has many false positives (i.e., reports that do not correspond to real
data races), but that is compensated by RaceMob’s real-user crowdsourcing that dynamically determines
whether the potential data races are real data races. RaceMob’s mixed static-dynamic data race detection
achieves low overhead and a high degree of accuracy.

In my RaceMob work, I showed that we can relax the requirement of always tracking synchronization
operations for accurate data race detection by carefully determining points in the execution where tracking
should start and end. Combined with crowdsourcing, this deviation from conventional wisdom allowed
RaceMob to lower the runtime overhead of data race detection while remaining accurate.

Using RaceMob’s mixed static-dynamic approach and its novel dynamic data race detection scheme,
I showed that we can perform data race detection that is more accurate than commercial data race de-
tectors (e.g., Google ThreadSanitizer) with negligible overheads of around 2%. Such low overheads make
in-production data race detection feasible, thereby allowing developers to fix data races and pave the way
to more reliable and secure concurrent software.

Portend: Data Race Classification

Another long-standing problem in concurrency has been the accurate identification of the consequences of
data races to classify them in terms of their severity. Modern software has a lot of data races, therefore
developers need to prioritize the fixing of data races to efficiently use their time1.

I showed that the abstraction level of the classification criteria that prior work employed harmed classifi-
cation accuracy. I then developed Portend [5], the first technique to accurately classify data races based on
their consequences. Portend is a data race classifier that explores multiple paths and schedules of a program
to accurately identify the consequences of data races. Unlike what prior work suggested, I showed that
low-level effects of data races on programs’ memory state is not an appropriate criterion for classification,
and looking at higher-level effects of data races such as externalized program state yields up to 89% higher
accuracy.

I also explored the effects of the memory model (such as instruction reordering) on data races. These
effects can be caused by multiple layers in the system stack such as the hardware (store buffer reordering) or
the compilers (instruction reordering). I developed symbolic memory consistency modeling [7], a technique
that can be used to model various memory models (e.g., weak memory) in a principled way in order to
perform data race classification under those memory models.

Gist: Root Cause Diagnosis of Bugs

Detecting and classifying concurrency bugs allows developers to discover the bugs that exist in their programs,
and understand the priorities of fixing these bugs. However, in order to fix a bug, developers need an
explanation of how the bug manifests, that is, how their program reaches the failure (e.g., what are the
failure-inducing inputs, thread schedules, etc.). This explanation is useful, given that developers traditionally
seek such an explanation when debugging a program by reproducing failures to determine their root cause.
Determining the root cause becomes even harder if failures recur only rarely in production.

I developed a technique called Gist that produces a high-level execution trace called the failure sketch.
A failure sketch includes statements that lead to a failure and highlights the differences between the prop-
erties of failing and successful program executions. I showed through a series of experiments on real-world
software (e.g., the Apache web server) that these differences effectively point developers to the root causes
of failures, and that Gist can identify these differences accurately and efficiently: Gist built failure sketches
with 96% accuracy with an average runtime performance overhead of below 4%. Although I mainly focused
on concurrency bugs in my evaluation (because finding the root causes of such bugs is very hard), Gist is
applicable to non-concurrency bugs too.

1Some language semantics (e.g., C++) consider all data races as bugs, whereas others don’t (e.g., Java). Regardless, modern
concurrent software is ridden with data races, and developers need to better understand the consequences of data races.
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I transferred some of Gist’s technology to an Intel product during my 2015 internship at Intel. For this, I
built a tool that uses static analysis to determine which statements operate on variables of a given data type
during a failing run. I showed that this tool reduces by an order of magnitude the number of statements a
developer needs to look at while debugging. This tool is now being used and maintained at Intel.

Bias-Free Sampling

Many of the techniques I developed rely on gleaning execution information from in-production runs, which is
challenging to do without undue runtime performance overhead. Most of the time, execution information of
interest (e.g., buggy statements) resides in cold code (i.e., rarely executed code), and therefore, monitoring
and sampling cold code is particularly useful. Alas, which parts of the code are cold is not known a priori,
therefore it is challenging to sample cold code without over-sampling hot code.

To overcome the challenge of sampling cold code efficiently, I developed a technique called Bias-Free Sam-
pling (BfS) together with researchers from Microsoft Research. BfS allows sampling the machine instructions
of a dynamic execution independently of their execution frequency by using breakpoints. The BfS overhead
is, therefore, independent of a program’s runtime behavior and is fully predictable: it is merely a function
of program size. BfS forms the foundation of dynamic monitoring in my root cause diagnosis work, which
uses hardware breakpoints for a component of its dynamic analysis.

BfS is very efficient: it incurs 1–6% overhead for all the Windows 8 System Binaries. My work on BfS
had an impact on Microsoft products. Using BfS, we built a coverage measurement tool for both native and
managed (i.e., C#) code, which is now used internally at Microsoft.

Approach to Research

I have taken a collaborative and interdisciplinary approach when developing the techniques in my dissertation.
I collaborated with researchers and engineers from Microsoft and Intel for my work on Gist and BfS. I
combined techniques from programming languages, operating systems, computer architecture, and software
engineering to solve systems problems. Looking back at the work I have done so far, there are three principles
that shaped my approach to problem solving:

First, I take a systems-oriented approach. This means that I take a holistic view of a given problem,
identifying the constituents of the problem at multiple layers of the system stack. In my research, this
approach helped me develop techniques to deal with concurrency issues, which appear in many layers of the
system stack, from parallel hardware to language memory models to operating system schedulers and to
applications.

Second, I frequently employ techniques from programming languages, and in particular, I rely on static
and dynamic program analysis. I primarily focus on finding a sweet spot in the balance between static vs.
dynamic program analysis to develop efficient and accurate techniques. Static analysis tends to be efficient
but inaccurate, whereas dynamic analysis tends to be inefficient but accurate, and a carefully designed mix
can be both accurate and efficient. In my research, this mixed approach helped me strike a balance between
static analysis, which is done in house and thus can afford heavyweight techniques, and dynamic analysis,
which is done in production with minimal runtime performance overhead.

Third, I don’t shy away from unconventional approaches. In my research, adopting an unconventional
approach and rethinking the assumptions of prior work allowed me to solve some key open problems, such as
low overhead data race detection and accurate data race classification. For example, as opposed to common
belief, I showed that it is possible to accurately detect data races without tracking synchronization operations
all the time.
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Future Research Plans

In the future, I plan to continue working on helping developers build more reliable, secure and efficient
programs. In particular, I will focus on system security and privacy, primarily in the context of large-scale
distributed systems. I will also work on helping developers cope with the challenges of software and system
design in the context of Internet of Things and heterogeneous computing systems. Below, I describe my
short term and long term research goals.

Security Today, one of the most challenging problems in computer systems is building secure software.
I am currently extending my work on root cause diagnosis to encompass security vulnerabilities. In the short
term, I plan to look into using hardware support for sampling execution path profiles from user executions
to detect control flow hijack attacks. In the long term, I would like to answer more general questions
such as: Can we identify good execution paths versus bad execution paths (e.g., ones that lead to security
vulnerabilities and failures) using techniques from machine learning? Can we take this approach further and
automatically infer properties (e.g., performance behavior) about paths relying on statistical techniques and
help developers better structure code based on such properties? What are the meaningful boundaries of
programs to monitor when gathering path information? Can we have intelligent strategies to sample paths
of programs (e.g., strategies that do better than random sampling)? I believe that there are a lot of similar
hard and interesting questions to answer in order to enable developers to build secure software.

Privacy Some of the techniques I developed rely on gathering execution information from users, and
therefore, have privacy implications. To improve the privacy of users, I initially intend to work on techniques
to quantify and limit the amount of execution information extracted from user endpoints. In the long term, I
would also like to work on techniques with strong privacy guarantees to anonymize the execution information.
For example, one can compute an anonymous signature describing the control flow of an execution to provide
better privacy. However, it remains to be seen what are the right boundaries (i.e., within the code) for
computing such signatures. Effective computation of signatures in the presence of concurrency and non-
determinism is also an open question.

Large-scale distributed systems Many of the problems I attacked in my dissertation have incarnations
in large-scale distributed systems (e.g., Internet-scale systems). For instance, data races and atomicity
violations manifest as process-level races that cause correctness and performance problems as well as resource
leaks in distributed systems. I would like to adapt my techniques for the detection and root cause diagnosis
of bugs in the context of large-scale distributed systems.

Internet of Things The rising popularity of Internet of Things (IoT) will pose unprecedented chal-
lenges for developers. In particular, IoT is about integrating networked devices with things around us: the
watches we wear, cars we drive, electrical appliances we use, etc. Developers will be faced with the challenge
of building software for such highly interconnected and distributed systems. For instance, debugging the
software in IoT devices will have to be done in production, because such devices may not be directly acces-
sible by developers. I plan to leverage the techniques I developed in my dissertation such as in-production
bug detection, to address the challenges of software development for IoT devices. Moreover, the challenges
associated with IoT also present unique opportunities. For instance, the ubiquitous nature of IoT will allow
amassing a large amount of data that can be used to help developers improve the quality and efficiency of
their programs. Gleaning execution information from such resource-constrained environments will require
combining various techniques from program analysis and computer architecture, much like the combination
I relied on in my work on root cause diagnosis of software failures.

Heterogeneous Computing Heterogeneous computing systems that mix traditional CPUs with GPUs,
FPGAs, and ASICs are becoming increasingly relevant. Heterogeneous systems come with a whole new set
of challenges for developers such as non-uniformity in system development, complexities due to co-presence
of a variety of programming interfaces, and unpredictable performance and energy behavior. Tackling the
challenges of software development for heterogeneous systems will require rethinking the system stack and
abstractions. I plan to leverage my interdisciplinary approach to attack these imminent challenges in het-
erogeneous computing.
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