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Abstract—Designers are increasingly using mixed-criticality
networks in embedded systems to reduce size, weight, power, and
cost. Perhaps the most successful of these technologies is Time-
Triggered Ethernet (TTE), which lets critical time-triggered (TT)
traffic and non-critical best-effort (BE) traffic share the same
switches and cabling. A key aspect of TTE is that the TT part
of the system is isolated from the BE part, and thus BE devices
have no way to disrupt the operation of the TTE devices. This
isolation allows designers to: (1) use untrusted, but low cost, BE
hardware, (2) lower BE security requirements, and (3) ignore BE
devices during safety reviews and certification procedures.

We present PCSPOOF, the first attack to break TTE’s isolation
guarantees. PCSPOOF is based on two key observations. First,
it is possible for a BE device to infer private information about
the TT part of the network that can be used to craft malicious
synchronization messages. Second, by injecting electrical noise
into a TTE switch over an Ethernet cable, a BE device can trick
the switch into sending these malicious synchronization messages
to other TTE devices. Our evaluation shows that successful
attacks are possible in seconds, and that each successful attack
can cause TTE devices to lose synchronization for up to a second
and drop tens of TT messages — both of which can result in the
failure of critical systems like aircraft or automobiles. We also
show that, in a simulated spaceflight mission, PCSPOOF causes
uncontrolled maneuvers that threaten safety and mission success.
We disclosed PCSPOOF to aerospace companies using TTE, and
several are implementing mitigations from this paper.

Index Terms—Time-Triggered Ethernet, packet-in-packet at-
tacks, electromagnetic interference, embedded systems

I. INTRODUCTION

Increasingly, embedded systems are using mixed-criticality
network technologies that allow traffic with different timing
and fault tolerance requirements to coexist in the same phys-
ical network [1]–[4]. These technologies let designers reduce
size, weight, power, and cost by sharing the same network
between critical and non-critical parts of the system. For ex-
ample, aircraft can share one network between vehicle control
systems and passenger Wi-Fi and entertainment systems [5],
[6]; spacecraft can share one network between life support
systems and onboard experiments [7], [8]; and manufacturing
plants can share one network between robot control systems
and data collection systems [9].

One of the most successful mixed-criticality network tech-
nologies is Time-Triggered Ethernet (TTE) [2], Today, TTE
serves as the network backbone for several spacecraft, in-
cluding NASA’s Orion capsule [10], NASA’s Lunar Gateway
space station [7], and ESA’s Ariane 6 launcher [11]. TTE
is also widely used in aircraft [12]–[14], energy generation

systems [15], and industrial control systems [16], [17], and is
a leading contender to replace CAN bus and FlexRay as the
standard network technology in future automobiles [18], [19].

TTE has several properties that make it attractive for safety
and mission-critical applications. Most notably, TTE follows
a time-triggered (TT) paradigm, in which devices are tightly
synchronized, and they send messages and execute software
according to a predetermined schedule. This TT approach
reduces message latencies to hundreds of microseconds and
jitter to near-zero [20], [21], making TTE appropriate for even
the tightest control loops. TTE also provides fault tolerance by
replicating the whole network to form multiple planes, and by
forwarding messages over all planes simultaneously [22].

In addition, TTE enables mixed-criticality architectures by
being 100% compatible with standard Ethernet [23]. This
means that non-critical systems, which typically use standard
Ethernet hardware to lower costs [24], can send messages over
the same cabling as the critical TTE devices. Unlike TT traffic,
standard Ethernet traffic is forwarded on a best-effort (BE)
basis, filling in space around the TT traffic [23]. Also, standard
Ethernet traffic typically only travels over a single network
plane, so does not have any fault tolerance guarantees [7].

A key aspect of TTE’s mixed-criticality design is that the
TT part of the system is isolated from the BE part. In other
words, no matter how the BE devices behave, they should not
be able to disrupt synchronization between TTE devices, or the
timely or successful delivery of TT traffic [25]. This isolation
is commonly used as justification for several cost-cutting
measures, including: (1) procuring BE devices from relatively
untrusted (but low cost) suppliers [26], [27]; (2) relaxing
security requirements for BE devices [28]; and (3) reducing the
scope of analysis and certification of a system to focus solely
on the TTE devices [29]. For example, on NASA spacecraft,
onboard experiments are often provided by university research
groups, are operated by the university students with minimal
NASA involvement, and are not considered in safety reviews
or the certification process of the overall vehicle [30], [31].

In this paper, we present PCSPOOF, a new attack that
breaks TTE’s isolation guarantees for the first time — allowing
a single malicious BE device on a single plane to disrupt
synchronization and communication between TTE devices on
all planes. PCSPOOF is based on two key observations:

First, it is possible for a malicious BE device to infer private
information about the TTE network that is needed to construct
valid TTE synchronization messages, called protocol control



frames (PCFs). For example, an attacker can exploit the fact
that (1) all PCFs in the network contain a common identifier,
and that (2) BE devices are not allowed to send messages con-
taining this identifier. Such messages are simply dropped by
the switches. Therefore, by issuing phony ARP [32] requests
to other BE devices (e.g., routers), tricking them into sending
messages containing possible identifiers, then checking which
of the messages are dropped, an attacker can quickly determine
the actual identifier used in the PCFs (see §IV-A).

Second, using a few extra circuit components, a malicious
BE device can conduct electromagnetic interference (EMI)
into a TTE switch and trick the switch into forwarding PCFs
that the BE device is not allowed to send. In particular,
by conducting EMI into the switch over an Ethernet cable,
resulting in radiated EMI inside the switch, a BE device can
cut the header off of a BE message in flight, revealing a
malicious PCF in the message’s payload (a type of packet-
in-packet attack [33]). Since the EMI radiates from inside the
switch, the attack cannot be prevented by conventional switch
and cable shielding. Also, since the source of the radiated EMI
(the port connected to the attacker) is close to the internal
switch components (1–10 cm), the EMI requires relatively
little power to be effective, and therefore can be generated
with a small circuit (e.g., a 2.5 cm × 2.5 cm square, see
§IV-B). As we show in §III, such a circuit could reasonably
be hidden in a BE device and integrated into a TTE system
without detection.

Finally, our work reveals a flaw in modern TTE devices that
makes them especially susceptible to PCSPOOF’s EMI injec-
tion. In particular, while modern devices verify the contents of
the preamble that precedes each message, they do not verify
the preamble length. An attacker can exploit this by sending
very large BE messages, which are more likely to reveal PCFs
when corrupted by EMI, without the PCFs being rejected by
downstream TTE devices (see §IV-B).

We evaluated PCSPOOF on a real TTE testbed. Our results
show that PCSPOOF can successfully inject a malicious PCF
in 10–20 s. A single injection can cause TTE devices to lose
synchronization for up to a second and fail to transmit tens of
TT messages — both of which can cause the failure of critical
systems [34], [35]. Moreover, in the worst case, PCSPOOF
causes these outcomes simultaneously for all TTE devices in
the network (see §VI-B). We also evaluated PCSPOOF on an
avionics testbed for a real spaceflight mission; our results show
that PCSPOOF can threaten mission success and safety from
a single BE device, such as those used in an onboard research
experiment developed by a university.

In summary, we make the following contributions:
• PCSPOOF: the first attack to break TTE’s isolation guar-

antees; PCSPOOF can disrupt critical TT systems from a
single malicious BE device (§IV).

• An extensive study of the susceptibility of TTE hardware
to PCSPOOF, which reveals a security flaw in the imple-
mentation of modern devices (§IV-B).

• A detailed experimental evaluation of PCSPOOF on a real
TTE testbed that assesses the probability and impact of

successful attacks (§VI).
• A case study demonstrating the effect of PCSPOOF on a

simulated spaceflight mission (§VI-D).
• A detailed description of methods to make TTE systems

more resilient to PCSPOOF (§VII).
Responsible Disclosure. We disclosed our attack to several
organizations using TTE for critical applications, including
NASA, ESA, Northrop Grumman Space Systems, and Airbus
Defense and Space. All organizations acknowledged the seri-
ousness of the attack and several are implementing mitigations
we suggest in this paper. Our work is also making NASA
reconsider the way that onboard experiments and commercial-
off-the-shelf devices are verified to be safe.

We also disclosed our attack to TTTech Computertechnik
AG, the leading provider of TTE equipment and chip-IP.
TTTech acknowledged the attack and is working on hardware,
configuration, and tooling updates to mitigate it.

Also, the SAE AS-2D2 committee is working to mitigate
our attack by revising the TTE standard (SAE AS6802) to
allow PCFs up to 1518 bytes (the max Ethernet frame size).
The use of max-sized PCFs would prevent the PCF injection
method we use (cutting the header off a frame in flight) from
producing a PCF that is accepted by TTE devices.

II. BACKGROUND

In this section, we describe Time-Triggered Ethernet and the
synchronization protocol it is based on.

A. Time-Triggered Ethernet (TTE)

TTE networks contain two types of devices, switches and end
systems, where each end system consists of a host processor
(which runs user software) and a TTE network interface card
(NIC) [36]. Like in standard Ethernet, the switches forward
messages, or frames, between the end systems. For redun-
dancy, the entire network is replicated, creating multiple paths
between each end system [22]. We refer to each redundant
network as a plane. End systems send frames simultaneously
through all planes, and receivers accept the first frame that
arrives. This approach allows the system to continue operating
even after multiple failures. An example of a typical TTE
network is shown in Figure 1.

TTE networks utilize a time-triggered design, in which all
TTE devices are tightly synchronized, and the behavior of the
network is determined by a global schedule [2]. The schedule
is built offline and loaded onto each TTE device before the
system is deployed. The schedule specifies when TT frames
are forwarded and expected to arrive. In addition, it specifies
the timing of interrupts that software running on the end
systems use to coordinate their actions [7]. This design reduces
network latency and jitter to a minimum, resulting in very
predictable system performance [20], [21].

Additionally, TTE networks are compatible with standard
Ethernet [23]. This allows designers to use (inexpensive)
standard Ethernet hardware for devices without strict timing or
fault tolerance requirements, like passenger entertainment sys-
tems in airplanes or monitoring systems in power plants [37],
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Fig. 1: Example of a typical fault-tolerant TTE network. The
attacker controls a single BE device on a single plane.

[38]. These devices can plug directly into TTE switch ports
and treat the TTE network exactly like a standard Ethernet
network. We refer to these standard Ethernet devices as best-
effort (BE) devices, since the switches forward their traffic
around the pre-scheduled TT traffic only as bandwidth allows.

TTE uses several mechanisms to isolate the TT traffic
from the BE traffic, including not allowing BE traffic to be
transferred in windows reserved for TT traffic, and storing TT
and BE frames in separate switch buffers [23]. Together, these
mechanisms aim to ensure malicious BE devices have no way
to interfere with the TT part of the system [25].

On the surface, attacks that break TTE’s isolation guarantees
seem impossible. For example, since the TTE switches reserve
bandwidth for TT traffic and store TT and BE traffic sepa-
rately, flooding the network from a BE device cannot cause
TT traffic to be delayed or dropped [39]. The switches will
simply drop the excess BE traffic to allow TT traffic to flow.
Also, a BE device cannot generate its own TT traffic, since
the switches ignore any TT traffic that is not defined in the
pre-loaded schedule [40]. Even in the extreme case where a
malicious BE device somehow kills the switch it is connected
to, the TTE devices will continue to operate without disruption
over the redundant planes.

B. The TTE Synchronization Protocol

TTE networks rely on a synchronization protocol to enable
communication between devices [2], and PCSPOOF works by
disrupting this protocol. Below, we describe the synchroniza-
tion protocol and why it is susceptible to PCSPOOF.

There are two main roles that TTE devices can take in the
synchronization protocol: (1) sync master and (2) compression
master [2]. Typically a subset of the end systems act as
sync masters (based on the required fault tolerance), and
1–2 switches per plane act as compression masters [22].
The remaining devices act as sync clients, which use the
synchronized time base, but do not help maintain it [2].

In general, synchronization works by continuously exchang-
ing special messages, called protocol control frames (PCFs),
between the devices [2]. This exchange is repeated at regular
periods called integration cycles [2]. At the start of each
integration cycle, each sync master sends a PCF with its
local clock value to the compression masters. The compression

Integration Coldstart Synchronized

Check if network
already synchronized If not, kickstart

synchronization

Can send messages
and get interrupts

Received PCF saying
synchronization restarted

Received PCF saying
cliques were formed

Fig. 2: Simplified version of the state machine that sync
masters execute in the TTE synchronization protocol.

masters average the received clock values, then send out the
resulting clock value in a new PCF to the sync masters and
clients, which use it to correct their local clocks.

In addition, receiving certain PCFs from a compression
master can cause sync masters and clients to lose synchro-
nization. Specifically, a special “coldstart acknowledgement”
PCF tells a sync master that another sync master detected
synchronization was lost and is reestablishing it [2]. Similarly,
the contents of a normal (i.e., integration) PCF can tell a sync
master/client that cliques — multiple groups not synchronized
to each other — have formed [41]. In either case, the sync
master/client briefly loses synchronization and attempts to
resynchronize with the network. Figure 2 shows how these
PCFs impact the sync master state machine.

Because a single PCF can knock devices out of synchro-
nization, significant effort has been spent to ensure all PCFs
generated by compression masters can be trusted. For example,
the TTE standard requires each compression master to be
a self-checking pair — i.e., it only produces a PCF if two
independent processors agree on the contents [2].

In PCSPOOF, we exploit the trust the TTE protocol puts in
compression masters. By injecting PCFs into the network that
look like they came from real compression masters, an attacker
can make sync masters/clients repeatedly lose synchronization.
We note that because synchronization loss between non-faulty
devices is so rare in practice (requiring multiple specific
failures), systems are often not designed to tolerate it [36],
[42], [43]. Also, even systems that do tolerate synchronization
loss are not designed to tolerate the repeated synchronization
loss caused by PCSPOOF (see §VI-D).

III. THREAT MODEL

We assume a standard multi-plane TTE network like those
used today in spacecraft [7], [10], [11], aircraft [14], and
energy generation systems [44] (see §II-A). The network
includes both TTE and BE devices. For fault tolerance, the
TTE end systems are connected to and communicate over
all redundant planes simultaneously. In contrast, BE devices
typically do not have any fault tolerance requirements, so often
connect to only a single switch in a single plane in order to
save wiring mass and cost [7].

We assume the attacker has the ability to execute malicious
software on a single BE device, including sending and re-
ceiving standard Ethernet messages. The connectivity of the
attacker’s BE device is shown in Figure 1. In addition, we



assume the BE device includes additional circuit components
that allow it to conduct electromagnetic interference (EMI)
through its Ethernet cable and into the switch. As we show
in §IV-B, such a circuit can be constructed from as little as 5
circuit components, and can take up as little as 2.5 cm × 2.5
cm on a single-layer printed circuit board.

There are two realistic ways these assumptions can be
satisfied in practice: (1) the BE device is supplied by a
malicious third-party and integrated into the TTE network at
design time, or (2) the BE device is connected to the TTE
network after the network is deployed.

First, the system integrator could obtain the BE device
from a malicious third-party and integrate it into the system
at design time. In TTE networks, non-critical functions are
commonly performed using commercial-off-the-shelf (COTS)
devices to reduce costs [7]. This is true even in critical
industries like spaceflight and aviation [45], [46]. Unlike
critical TTE devices, which come from secure supply chains,
COTS devices come from unsecured supply chains that are
susceptible to tampering [45]. Also, the companies that design
COTS devices are often relatively untrusted, and do not typi-
cally follow any formal development process to ensure safety
and security (e.g., RTCA DO-254) [45]. In addition to COTS
suppliers, BE devices in spaceflight commonly come from
university research groups and laboratories [30]. In any of
these organizations, a rogue employee, student, or team could
alter the device with the malicious circuit and software [47],
[48]. A simple ticking timebomb [47] trigger, which enables
malicious behavior after a configurable amount of time, could
be used to activate the circuit and software after the network
is deployed — without requiring any input from the attacker.

Even in critical industries like spaceflight and aviation, such
malicious hardware and software is not likely to be caught by
the system integrator. The reason is that, besides through well-
known means like causing an explosion or fire, there has been
no known way for non-critical BE devices in a TTE network
to disrupt the operation of critical TT devices. As a result,
verification of these BE devices is limited to ensuring they
do not contain dangerous substances, will survive the oper-
ating environment (e.g., vibration and thermal qualification),
and perform their intended function [31], [45]. For example,
explosives are detected by swabbing, and other dangerous
materials are detected through outgassing tests [49]. However,
no detailed analysis of the circuit components, circuit layout,
or software is performed [31], [45], [50], [51]. The malicious
circuit and software needed for PCSPOOF cannot be detected
by such basic safety testing. Moreover, a ticking timebomb
trigger could simply delay activating the malicious circuit and
software until after all functional testing is completed [47].

Second, instead of compromising the system at design
time, an attacker could connect a malicious BE device to
the network after the network is deployed. For example, TTE
allows a factory to share switches between the assembly line
and non-critical hardware, like laptops used for monitoring
and analysis [17], [52]. If an employee could be tricked into
plugging a malicious device (e.g., a USB to Ethernet dongle)

into one of these switches, for example, through a supply
chain attack (as above) or social engineering, they could
inadvertently disrupt the control of critical plant processes and
halt production of the entire facility. Alternatively, consider
a future commercial airplane that shares a TTE network
between the passenger cabin and vehicle control systems.1

Modern airplanes contain exposed seat electronics boxes under
the seats for connecting entertainment units to the passenger
network [38]. If a passenger has knowledge of the connectors
used, they could secretly disconnect one of these electronics
boxes during a flight, plug in a malicious device [38], and
interfere with the safe operation of the aircraft — even if the
vehicle control data is all encrypted.

We stress that in all the above cases, an attacker with a
connection to only a single network plane can disrupt TTE
devices throughout the network and on all planes (see §VI).
We also note that the connection from the attacker to the TTE
network could span more than a single Ethernet cable. The
attack works even if the connection is made via a series of
several cables, patch panels, and Ethernet jacks.

Lastly, we stress that, besides the single BE device, the
attacker has no access to or knowledge of any part of the TTE
network. In particular, the attacker has no information about
the TT network schedule or the position of devices within the
network. Also, the attacker cannot receive any TT messages,
or access any telemetry or diagnostic information from the
TTE switches or end systems.

IV. DESIGN

This section describes PCSPOOF, the first attack capable of
disrupting critical TTE traffic flows and interrupts from a BE
device. PCSPOOF achieves this goal by disrupting the TTE
synchronization protocol [2]. Disrupting synchronization lets
PCSPOOF potentially disrupt any TT traffic flow, without need-
ing the attacker to know what traffic flows exist or what they
are used for. It also makes PCSPOOF broadly applicable, since
all TTE networks use the same synchronization protocol [2].

Of course, disrupting the TTE synchronization protocol
from a BE device should be impossible. The protocol is
formally verified to work correctly in spite of a malicious TTE
end system and any number of malicious BE devices [15].

To overcome this challenge, we use two key observations:
(1) an attacker can deduce secret information, known only
to TTE devices, in order to create malicious protocol control
frames (PCFs), and (2) an attacker can use EMI generated from
a BE device to inject these malicious PCFs into the network
and get them accepted by TTE devices.

Figure 3 gives an overview of PCSPOOF. The attack pro-
ceeds in two stages. In the first stage, the attacker learns how
to craft authentic-looking PCFs, which requires two pieces of
information. The first is the critical traffic marker, a special
bit pattern found at the start of every PCF. The second is

1While, to our knowledge, no commercial airplanes currently share switches
between the passenger cabin and critical devices, device manufacturers have
advocated that TTE’s isolation guarantees would make such sharing safe,
while reducing size, weight, power, and cost [5], [6].
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Fig. 3: High-level overview of PCSPOOF.

a virtual link ID, which identifies the switch that sends a
given PCF. As we will show in §IV-A, the first value is
found indirectly by observing how the switches respond when
forwarding different types of BE traffic. The second value
is inferred using knowledge of common network scheduling
practices and public hardware documentation.

In the second stage, the attacker injects malicious PCFs
into the network. However, since switches block PCFs from
BE devices, this requires somehow bypassing the switch. To
accomplish this, we leverage the fact that, by conducting EMI
through the Ethernet cable and into the switch, it is possible
to induce link resets in different switch ports. These link resets
can be used to “transform” BE traffic, which the attacker is
allowed to send, into PCFs as they leave the switch. Since
the transformation happens downstream of the switch logic,
it cannot be prevented by extra switch error checking or self-
checking pair processors [53].

Next, we describe in detail how to craft malicious PCFs
(§IV-A) and inject them into the network (§IV-B).

A. Stage 1: Crafting Malicious PCFs

In the first stage of PCSPOOF, the attacker learns how to craft
authentic-looking PCFs. Below, we describe the structure of
a PCF, as well as how to obtain the information necessary to
make injected PCFs look legitimate.
Anatomy of a PCF. In general, the structure of a PCF is
the same as a standard minimum-sized IEEE 802.3 Ethernet
frame [2], [54]. However, unlike standard Ethernet frames,
PCFs are not forwarded according to a destination media
access control (MAC) address. Instead, the first 6 bytes of the
frame, which would normally contain the destination MAC
address, are replaced with the following two fields:

• Critical Traffic Marker — A special value used to identify
all PCFs and TT traffic in the network.

• Virtual Link ID — Identifies the source of the PCF. For
our purposes, it typically identifies a switch.

In order for a PCF to be seen as legitimate, these fields must
both match values specified in the network schedule loaded
onto the TTE devices when the network was deployed.

PCFs also contain several other fields. However, unlike the
critical traffic marker and virtual link ID, it is easy for an
attacker to pick suitable values for these fields. This is because
either (1) the range of acceptable values is very small or (2)
the fields are simply not checked by the TTE hardware. For

example, since the virtual link ID identifies the source of a
frame, the source MAC address field in the Ethernet header
is not checked in practice. We tested a large array of modern
and legacy TTE hardware (listed later in Table I), and found
that it can be set to any value.

In Appendix A, we list all the other fields found in a PCF,
as well as suitable values for these fields for the purpose of the
PCSPOOF attack. Since the critical traffic marker and virtual
link ID are the only fields that are difficult for an attacker to
select, we focus the rest of this section on how an attacker
can determine them.
Finding the critical traffic marker. Generating authentic-
looking PCFs requires the attacker to find the critical traffic
marker used in the network schedule. To accomplish this, they
can take advantage of the following rules, which TTE switches
use when determining how to forward frames [2].

• If the destination MAC address contains the critical
traffic marker, the virtual link ID is valid, and the frame
comes from a known TTE device, the frame is forwarded
according to the TTE schedule.

• If the destination MAC address contains the critical traffic
marker but the virtual link ID is invalid, or the frame
comes from a BE device, the frame is dropped.

• If the destination MAC address does not contain the
critical traffic marker, the frame is forwarded according
to the rules of IEEE 802.3 (standard Ethernet) [54].

From these rules, we see that all frames sent by BE devices
should be delivered (as bandwidth allows), except those con-
taining the critical traffic marker. Thus, an attacker can infer
the critical traffic marker by tricking other BE devices into
sending the attacker frames containing possible critical traffic
markers and checking which frames do not arrive. Below, we
describe one method for accomplishing this by abusing the
Address Resolution Protocol (ARP) [32], which is used by
nearly all BE Ethernet devices.

To start, the attacker must find the IP address of another
BE device in the network, which we refer to as the target.
Any device can be used, such as a router used for passenger
Wi-Fi in an airplane, or an inventory management computer
in a factory. To get the target’s IP address, the attacker sends
Internet Control Message Protocol (ICMP) echo requests to all
IP addresses in the subnetwork and sees who responds. The
standard fping utility can do this out of the box, and the
process takes tens of seconds even in large networks.

Next, the attacker cycles through a list of possible critical
traffic markers. For each one, the attacker sends an ARP
request to the target saying “Which MAC address goes with IP
X? Tell MAC Y ,” where X is the IP address of the target, and
Y is the MAC address containing the critical traffic marker to
test. Upon receiving this message, the target replies to MAC
address Y with the target’s MAC address.

Assuming the attacker spoofs their source MAC address as
Y in each ARP request, each reply for which Y does not
contain the critical traffic marker is forwarded to the attacker.
This is because, with each ARP request, the switch learns to
associate MAC address Y with the attacker’s port. Otherwise,



the reply is dropped. Thus, the attacker can identify the critical
traffic marker by sending an ARP request for each possible
critical traffic marker and checking which request gets no
reply. To handle the fact that BE messages can be dropped
for reasons unrelated to the critical traffic marker (e.g., buffer
overflows), the attacker repeats this process in phases; in each
phase, only testing critical traffic markers for which no reply
was received previously.

There are only around 1 billion possible critical traffic
markers [1], [2], so brute forcing the critical traffic marker is
fast in practice. We used a Raspberry Pi 4 to find the critical
traffic marker in multiple representative spacecraft networks
with real surrogate spaceflight hardware. It took only 6–7
hours on average when sending ARP requests at 100 Mbps,
and 24 hours when sending requests at 25 Mbps.

We note that, since the critical traffic marker is part of the
TTE schedule, it typically does not change over a system’s
lifetime [55]. The reason is that the schedule typically under-
goes a thorough verification and validation process [56]–[58].
Changes to the schedule can require repeating this process,
which is expensive and time consuming [55], [56]. This means
the attacker does not need to determine the critical traffic
marker all at once, or at the same time as they execute the
rest of the attack.

Finally, we acknowledge that if all BE devices in the
network were configured to use static MAC/IP mappings and
drop ARP requests, the method described above would not
work. However, when testing on real COTS devices used in
flight (e.g., routers), we found that these devices respond to
ARP requests. Also, our discussions with avionic designers
have revealed industry is explicitly embracing ARP to avoid
the complexity of managing static MAC/IP mappings.

However, we note that even if ARP is disabled on all BE
devices, an attacker can still easily find the critical traffic
marker by using two malicious devices. One device simply
sends frames with every possible critical traffic marker to the
other device. Since the switch does not know the identity of
every BE device, it will flood each frame out of all ports.
The second device then tracks which frames are not received.
This method cannot be prevented in any TTE switch that has
default routes enabled, and we have successfully tested it on
a variety of real spaceflight switches.
Finding the virtual link ID. The last piece of information
the attacker needs to generate PCFs is the virtual link ID
corresponding to a real compression master (i.e., switch) that
generates PCFs in the network. That way, once a PCF is
injected on a given network segment, downstream TTE devices
cannot tell that the injected PCF is illegitimate.

Theoretically, the virtual link ID could be any 16-bit num-
ber, so there are 65536 possibilities. However, there are two
pieces of information an attacker can use to reduce the number
of possible virtual link IDs to 2 or fewer.

First, even though there are theoretically 65536 possible
virtual link IDs, existing switches do not support that many.
Also, the number of IDs that switches do support is public
information. For example, TTTech’s Space ASIC, which is

used in NASA’s Gateway and ESA’s Ariane 6 launcher, only
supports 4096 virtual link IDs [59]. TTTech’s aircraft switches
are limited to the same number [60].

Second, existing TTE scheduling tools use extremely pre-
dictable rules for assigning virtual link IDs to PCFs. For
example, the most popular scheduling tools assign virtual
link IDs in reverse order from the maximum value supported
by the hardware (i.e., 4096) [61]. Virtual link IDs for sync
masters (i.e., end systems) are assigned first, with a different
ID used for each of three PCF types [2]. Virtual link IDs for
compression masters (i.e., switches) are assigned next, with
each switch using the same ID for all PCF types.

As the number of sync masters and compression masters in
a system is predictable, so is the virtual link ID the attacker
needs. For example, existing switches support at most 8 sync
masters [62]. Also, most TTE systems have one compression
master per plane. We are not aware of any existing system
with more than two compression masters per plane. Thus, in
a large system like a spacecraft or aircraft, the virtual link ID
needed by the attacker is likely 4095 − (8 × 3) = 4071, and
more rarely 4070.

As we show in §VI, PCF injection is so fast that, even if
the attacker cannot determine the virtual link ID with certainty,
they can simply try all possible values until injection succeeds.
Also, we note that, like the critical traffic marker, virtual link
IDs are part of the TTE schedule [61], so are unlikely to
change once a system is deployed [55].

B. Stage 2: Injecting PCFs into the Network

Now that the attacker knows how to construct a PCF, they
need a way to inject the PCF into the network. The attacker
cannot simply send the PCF directly, since all PCFs sent from
BE devices will be dropped by the switch. To overcome this
challenge, PCSPOOF uses EMI to “transform” a BE frame,
which the BE device is allowed to send, into a PCF.

In order to perform this transformation, the attacker stores
a PCF inside the payload of a benign BE frame. By carefully
corrupting the BE frame in transit, it is possible to then
trick the switch into sending the PCF. Attacks that use this
general approach, hiding a malicious message inside a benign
message, are called packet-in-packet attacks [33].

Below, we describe what makes Ethernet susceptible to
packet-in-packet attacks, how TTE hardware can prevent these
attacks, and how PCSPOOF defeats these defenses.
Packet-in-packet attacks on Ethernet. To understand why
Ethernet is susceptible to packet-in-packet attacks, it is first
necessary to understand how Ethernet frames are generated
and interpreted by Ethernet devices.

Two types of integrated circuits are needed for a device to
send and receive Ethernet frames –– the media access con-
troller (MAC) and the physical layer transceiver (PHY). The
MAC is responsible for assembling and validating Ethernet
frames, and for passing them between the host processor and
PHY. The PHY is responsible for translating these frames
between bytes understood by the MAC, and special symbols
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Fig. 5: Packet-in-packet attacks on wired Ethernet.

used at the physical layer, and for writing and reading these
symbols to and from the Ethernet wiring.

Figure 4 shows the path of a frame through the MAC and
PHY. Each circuit adds additional information to the frame.
Specifically, the MAC adds the preamble (7 bytes of 0x55),
which allows a receiver to “lock on” to the incoming frame,
as well as the start frame delimiter (SFD) (1 byte of 0xd5),
which signals the start of the Ethernet header. The MAC also
adds the frame check sequence (FCS) at the end of the frame.
The PHY adds a start-of-stream delimiter (SSD) to signal the
start of the transmission, as well as an end-of-stream delimiter
(ESD) to signal the end of the transmission.

When receiving a frame, the PHY waits until it sees the
SSD, at which point it tells the MAC the preamble is starting.
The MAC then reads the preamble until it gets to the SFD
byte, at which point it reads in the Ethernet frame. When the
PHY receives the ESD symbol, it again signals the MAC, at
which point the MAC knows the frame is complete. The last
4 bytes read by the MAC are treated as the FCS.

This design has been shown to be susceptible to two types
of packet-in-packet attacks, which we show in Figure 5. In the
figure, assume an attacker wants to send a malicious frame (the
“inner frame”) past a switch to some receiver. However, the
switch is configured to drop this frame.

The first type of packet-in-packet attack is a runaway
preamble attack. Here an attacker exploits the fact that, if a
frame’s SFD byte is corrupted after the frame is forwarded
by the switch, the receiver’s MAC will treat this SFD byte
(and any following bytes) as preamble [63]. Many MACs
do not check that the preamble matches the expected pattern
(all 0x55). Thus, by placing a fake SFD byte in the frame’s
payload, immediately before the inner frame, an attacker can
trick a receiver into reading the inner frame [63].

The second type of packet-in-packet attack uses link re-
sets [64]. In Ethernet, the PHY continuously checks for link
pulses and idle symbols produced by the device on the other
side of the cable [54]. If these indicators are disrupted, the link
is “lost,” and the PHY stops transmitting frames. However, the
MAC is not aware of link status changes and will continue
transmitting [64]. An attacker can exploit this by sending a
frame (the same structure as above) through the switch while

PreambleDevice Too Long Too Short Non-0x55
TTTech Dev. 1G SW Y, ≤11 bytes N N
TTTech PMC 1G NIC Y, ≤11 bytes N N
TTTech A664 Lab SW Y, ≤1451 bytes Y, ≥3 bytes Y, 1st two bytes
TTTech OBC HiRel SW Y, ≤1451 bytes Y, ≥3 bytes Y, 1st byte
TTTech Space Lab SW Y, ≤1451 bytes Y, ≥3 bytes Y, 1st byte
TTTech A664 Lab NIC Y, ≤1451 bytes Y, ≥3 bytes Y, 1st two bytes

TABLE I: Indicates whether TTE switches (SWs) and network
cards (NICs) accept PCFs with non-standard preambles. “Too
Long, Y, ≤ 11 bytes” means the device accepts PCFs with
longer-than-normal preambles up to 11 bytes. Devices labeled
“1G” are an older generation of devices.

the link is down on the outgoing port. If the attacker is lucky,
the link will recover in the middle of the fake preamble being
transmitted by the MAC, resulting in only the inner frame
actually being sent by the switch.

Note that for either approach to work, the FCS of the
original frame must be made to match that of the inner frame.
For this, an attacker can exploit the fact that, by adding a 4-
byte FCS complement to a frame’s payload, it is possible to
force the frame’s FCS to any value [63]. For more details on
calculating and using the FCS complement, see past work on
packet-in-packet attacks [63], [64].
Susceptibility of TTE hardware. We tested a wide variety of
modern and legacy TTE devices to determine how susceptible
they are to both types of packet-in-packet attacks. For each
device, we used an XMOS XCORE-200 [65] to generate PCFs
with various non-standard preamble and SFD patterns, and
determined whether the PCFs were accepted.

Our results are shown in Table I. In all cases, a PCF is only
accepted if either (1) the preamble contains only 0x55 bytes,
or (2) the preamble starts with one or two non-0x55 bytes,
but the rest of the preamble is all 0x55 bytes.

These results show that, unlike standard Ethernet hard-
ware [63], TTE hardware can completely prevent runaway
preamble attacks. There are two reasons. First, the original
frame’s header, as well as the FCS complement, will not be
treated as preamble by the receiver unless they both only
contain 0x55 bytes. Second, the switch can prevent the frame
from ever being forwarded to the receiver by filtering all
BE traffic with a destination MAC starting with a valid
preamble/SFD pattern (e.g. 0xd5, 0x55d5, 0x5555d5). This
is a capability of all TTE switches we have tested.

In contrast, the fact that modern TTE devices accept frames
with such long preambles makes them very susceptible to link
reset attacks. The reason is the attacker can send packet-in-
packet frames with 1000+ bytes of fake preamble, maximizing
the chance that the link recovers while this fake preamble
is being forwarded, while still ensuring the resulting PCF is
accepted by downstream TTE devices.
Enabling PCF injection. In the past, link reset packet-
in-packet attacks on wired Ethernet have been considered
impractical, since there was no known way for an attacker to
cause link resets without physically manipulating the network
— e.g., unplugging a cable or rebooting a switch [64].

In contrast, PCSPOOF allows a networked device, controlled
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by the attacker, to cause link resets between the switch and
other devices. In general, it accomplishes this by conducting
electrical noise into the switch over the Ethernet cable, which
results in radiated EMI inside the switch and disrupts the
operation of the PHYs on other switch ports.

Figure 6 shows how this EMI is generated in more detail.
The figure depicts a malicious BE device connected to a
TTE switch. For simplicity, we assume the connection uses
a twisted-pair Ethernet cable (e.g., 100BASE-TX), which is
the most popular choice today due to cost and reliability [66],
[67]. When the cable is plugged in, the wires in the cable are
electrically connected to copper traces on the switch printed
circuit board (PCB) inside the switch chassis.

Faraday’s Law tells us that, by causing rapid high-voltage
surges on the wires in the cable, and thus on the above traces,
it is possible to generate a changing magnetic field that induces
errors in different traces and chips on the switch PCB through
inductive coupling [68]. Similarly, it is possible to generate
strong electric fields that induce errors in parallel traces on
the switch PCB through capacitive coupling [68]. Both fields
are examples of EMI.

Due to the proximity and parallel orientation of traces and
circuitry related to different switch ports on the switch PCB,
it is common for EMI generated from one port to cause link
resets on other ports. This is due to the EMI directly causing
glitches in other PHYs, or causing noise on traces between
other PHYs and their respective switch ports.

Of course, it is not possible to cause surges on wires while
they are being used for communication. Instead, the attacker
has two options. First, they can cause surges on unused wires
in the cable. For example, a Cat 5/6 cable has 4 twisted
pairs, but only two are used for 100BASE-TX communication.
Second, the attacker can alternate between using the same pairs
for inducing link resets and sending BE frames.

We note that, in addition to causing link resets in other
ports, PCSPOOF causes link resets in the port connected to the
attacker. This is fine; as long as the attacker’s link recovers
before the outgoing port, meaning the outgoing port could
wake up while a frame is in flight, PCF injection is possible.
In our tests, this happened about half the time.
Avoid killing the switch. The challenge of using high voltage
to induce link resets is that we must be careful not to kill the
switch or PHY connected to the attacker. Doing so would
close our attack vector and result in the network continuing
to operate normally over the redundant planes.

To accomplish this, PCSPOOF takes advantage of the fact
that IEEE 802.3 requires galvanic isolation to protect the
PHY from large voltage surges on the Ethernet cable, such
as from lightning [54]. In twisted-pair Ethernet, this isolation
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of Ethernet wire pairs

Fig. 7: Simple transformer driver circuit that, when placed
inside a BE device, generates EMI inside a switch.

is performed using small transformers, which in TTE switches
are packaged in magnetics chips on the switch PCB [69] or
on a connected daughter card [60].

Figure 6 shows the design of an Ethernet transformer. A
different transformer is connected to each twisted pair in
the Ethernet cable. In normal operation, opposite voltages
are applied to each wire in a pair, causing current to flow
through the primary winding of the transformer. As the current
changes, it creates a changing magnetic field, inducing a
voltage across the secondary that is seen by the PHY.

This means that, if PCSPOOF caused high-voltage surges on
only one wire in a twisted pair, high voltages would be induced
in the PHY and kill it. To avoid this, PCSPOOF generates
common mode surges [70] in which the same voltage is applied
to both wires in a pair. In this case, a “center tap” in the
primary winding allows the current to return to ground. Since
current flows in opposite directions from each wire towards the
tap, the magnetic fields cancel and high voltage is not directly
induced in the PHY.
Example attack circuit. Figure 7 shows a simple circuit
capable of generating the common mode surges needed for
PCSPOOF. Disclaimer: The high voltages produced by this
circuit can be extremely dangerous.

The circuit briefly works as follows. When power is applied,
current flows to the base of the transistor, turning it on
and letting current flow through the primary winding of the
transformer. As current in the primary rises, the magnetic field
increases in the transformer core, decreasing current in the
feedback winding and turning the transistor back off.

When this happens, current abruptly stops flowing through
the primary, generating a high-voltage spike known as an
inductive kick, which we measured as around 100 V.

The kick induces a voltage across the secondary, causing
current to rush into the Ethernet cable. Since the secondary
has so many turns, this voltage is very large (10–20 kV).
Eventually, the voltage gets so large that current arcs across
the spark gap, and the secondary voltage drops back to zero.

Meanwhile, the power supply turns the transistor back on,
and the process repeats (i.e., the circuit oscillates on its own).
This means that, as long the circuit is powered, it will generate
EMI in the switch that can cause link resets.

The design of the circuit makes it easy to hide inside
another device. Even with large through-hole parts, the whole
circuit fits on a 2.5 cm × 2.5 cm PCB. There exist suitable
transformers (the largest part) that are just 2.5 cm × 1.25
cm [71] and look like those in typical embedded computers



and power supplies. Similarly, glass-enclosed spark gaps that
look like small light emitting diodes are available [72]. Finally,
we note that the circuit oscillates so fast that, with small gap
sizes, it makes almost no audible noise.

V. IMPLEMENTATION

To evaluate our attack, we implemented PCSPOOF and exe-
cuted it on a real TTE testbed used to verify real-life avionic
systems. The testbed was designed to mimic a typical fault-
tolerant network in a crewed spacecraft or aircraft [7], [10],
[11]. Four switches acted as compression masters, and four
end systems acted as sync masters. Also, a fifth end system
acted as a sync client [2]. The end systems communicated over
two redundant planes, each containing half of the switches.

The end systems were implemented on a Dell PowerEdge
T620 running CentOS 7.9 with kernel 3.10.0-1160.11. We
used TTTech A664 Lab NICs — lab versions of real TTE
NICs used in flight. Due to limited hardware availability, we
also used older TTTech 1G NICs for some network-level
experiments. However, in these cases, the older and newer
NICs were verified to behave the same.

For switches, we used modern TTTech OBC HiRel
switches [73], as well as older TTTech Development 1G
switches in cases where behavior differences were not relevant.
We selected the OBC HiRel switch because it is an engineer-
ing development unit of a real radiation-hardened spaceflight
switch. It also uses TTTech’s Space ASIC, which is currently
being used in real space vehicles [11], [74].

For scheduling the TTE network, we used TTTech’s TTE
Tools v5.4 [61], which were the most up-to-date scheduling
tools for our hardware, and the same tools used in real systems.
We stress that we used the same configurations and settings
as are used for real spacecraft avionic systems.

We created an attack device that connected to one TTE
switch in one plane. The device used a Raspberry Pi (RPi)
4B with Ubuntu 20.04 LTS and kernel 5.4.0-1041 to run
the PCSPOOF code. The device used a high-voltage circuit,
based on Figure 7, to induce link resets and enable PCF
injections. The RPi communicated using 100BASE-TX, and
the two unused cable pairs carried the high voltage signal.

We used SF/FTP shielded Cat 6A cables for all the con-
nections between the various devices. The connection from
the attack device to the switch consisted of a 10 m cable, an
Ethernet coupler, and a 3 m cable.

VI. EVALUATION

As we showed in §IV-A, an attacker can reasonably determine
how to craft a legitimate PCF in a matter of hours, even with
modest embedded hardware and limited network bandwidth.
Therefore, we focused our evaluation on assessing the likeli-
hood and impact of successful PCF injections.

Specifically, we conducted a series of experiments on our
testbed to answer four key questions: (1) What is the proba-
bility of successfully injecting a PCF? (2) How much does a
PCF injection disrupt synchronization between TTE devices?
(3) How much does a PCF injection disrupt the delivery of

TT messages? and (4) How much damage do PCF injections
cause in a real spaceflight application?

A. Probability

Experimental setup. To determine the probability of success-
fully injecting a PCF, we needed to answer two questions.
Question 1: How often is an attacker able to inject a PCF —
i.e., transform a BE frame into a PCF that gets forwarded
by the switch connected to the attack device? Question 2:
Given a PCF is injected, how often does a downstream TTE
device, which receives the PCF from the switch, accept that
PCF? Moreover, we wanted to determine how the network
settings (e.g., transmission rate, background traffic load, drop
rate) impacted the answers to these questions.

To answer Question 1, we varied the distance between the
switch port connected to the attack device (attack port) and
the nearest switch port connected to a TTE device (target
port) from 4 ports away (14 cm) to 7 ports away (21 cm),
where 7 ports is the maximum separation between two ports
on the OBC HiRel switch. For each distance, we continuously
sent a 1500-byte BE frame containing a PCF from the attack
device to the switch for 5 minutes. To induce link resets in
the target port, we enabled/disabled the high-voltage circuit
approximately every 1.5–2 s. We used a Fluke OptiView XG
analyzer to capture frames forwarded out of the target port
and identify the injected PCF.

We repeated the above experiments in four different setups.
In the first, there was no background traffic, and we varied
the attacker’s transmission rate from {25, 50, 100} Mbps,
where 100 Mbps is the maximum rate of the network. In the
second, we configured background BE traffic flowing through
the switch and out the target port to consume all but {20, 50,
80} Mbps of the bandwidth, and the attacker to send at the
maximum rate. This range was chosen to span the network’s
total bandwidth, while reflecting the fact that real systems
leave bandwidth margin for performance reasons and to enable
future expansion [75]. In the third, we repeated the second
setup except with background TT traffic instead of BE traffic.
In the fourth, we configured background TT traffic to flow
at 20 Mbps, background BE traffic to flow at 70 Mbps, the
attacker to send at the maximum rate, and the network to drop
{0.01, 0.1, 1}% of all frames. The fourth setup is a realistic
representation of real systems, where TT traffic is commonly
limited to 10–20 Mbps [76], [77], and a bandwidth margin of
at least 10% is typical [78].

To answer Question 2, we varied the integration cycle of the
network from {0.5, 1, 2, 4, 8} ms, where a smaller integration
cycle causes tighter synchronization. This range reflects values
used in real avionic systems [79]–[81]. For each cycle, we used
a hardware tap to inject 1000 PCFs on the link between two
switches, and recorded the number of injections that caused at
least one end system to lose synchronization. We then repeated
the process for a link between a switch and end system.

We performed the above experiment in four different setups
representing the most extreme configurations from Question
1: (1) no background traffic, (2) 80 Mbps of background BE
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Fig. 8: Number of PCF injections in 5 minutes under different
conditions (e.g., background traffic, drop rate) and with dif-
ferent distances between attack and target ports.

traffic, (3) 80 Mbps of background TT traffic, and (4) 20 Mbps
of background TT traffic, 70 Mbps of background BE traffic,
and a 1% drop rate. We report results for coldstart acknowl-
edgement (CA) PCFs only, as the results for integration (IN)
PCFs are nearly identical.
Results. Figure 8 shows our results for Question 1. As
the figure shows, PCSPOOF can inject PCFs in a matter
of seconds. This is true even in configurations with heavy
background traffic. For example, in a realistic configuration
with 90% of the bandwidth consumed by TT and BE traffic,
and with an extremely high 1% drop rate [82], we observed 20
injections in 5 minutes (roughly one every 15 seconds). The
injection rate decreases as the amount of background TT traffic
increases, since the attacker is limited to a smaller portion
of the bandwidth, resulting in more of the attacker’s frames
being dropped. However, even in the unlikely case of TT traffic
consuming 80% of the bandwidth [76], we still observed more
than one injection per minute on average. The figure also
shows that PCF injections are possible when the attack and
target ports are far apart from each other.

Tables II and III show our results for Question 2. With
a 1 ms integration cycle, which is common in practice [81],
switches accepted 3.9% of injected PCFs under realistic traffic
loads and a 1% drop rate. When combined with the results
from Figure 8, this means PCSPOOF is likely to inject a PCF
and get it accepted by a switch in 6–7 minutes. Even with a
larger 4 ms integration cycle, PCSPOOF is likely to inject
a PCF and get it accepted by a switch in 30–40 minutes.
Unlike switches, end systems accept all PCFs they receive (i.e.,
all injections succeed). Thus, PCSPOOF is likely to inject a

Background TrafficIntegration Cycle None BE TT TT+BE (1% drop)
8 ms 0.4% 0.3% 0.3% 0.5%
4 ms 0.7% 0.7% 0.5% 0.8%
2 ms 2.0% 1.7% 1.8% 1.6%
1 ms 4.4% 4.2% 3.3% 3.9%

500 µs 8.0% 7.1% 7.2% 6.3%

TABLE II: Percentage of injected PCFs that were accepted on
links to switches.

Background TrafficIntegration Cycle None BE TT TT+BE (1% drop)
8 ms 100% 100% 100% 99.0%
4 ms 100% 100% 100% 99.1%
2 ms 100% 100% 100% 99.0%
1 ms 100% 100% 100% 99.1%

500 µs 100% 100% 100% 98.8%

TABLE III: Percentage of injected PCFs that were accepted
on links to end systems.

PCF and get it accepted by an end system in tens of seconds,
regardless of the integration cycle.

B. Interrupts

Experimental setup. TTE uses synchronized periodic inter-
rupts to coordinate the execution of software on the end
systems [7]. Often, two interrupts are used, a major interrupt
and a minor interrupt, where the major interrupt period divides
evenly by the minor interrupt period [20], [83], [84].

By interfering with these interrupts, an attacker could cause
significant problems that systems are not designed to handle,
such as end systems performing computations on old infor-
mation, sending data when it is not expected, or failing to
generate outputs when needed [42], [85], [86].

To determine how PCSPOOF affects these interrupts, we
configured our testbed with a 1 s major interrupt, 25 ms
minor interrupt, and 4 ms integration cycle. These values are
commonly used in real systems [84], [87], and match those in
our case study of a real spaceflight mission (§VI-D). We note
that 4 ms is the smallest integration cycle allowed with our
interrupt configuration [61], and minimizes the time it takes
the network to recover from PCF injections.

We used a hardware tap to perform 250 successful PCF in-
jections on both inter-switch links and links between switches
and end systems. We repeated this process for both CA and IN
PCFs, and report the time between the interrupts immediately
before and after each injection. We also report interrupt timing
for a 5 minute control case, in which no PCFs were injected.
Results. Figure 9 shows our results; a single PCF injection can
significantly disrupt interrupt timing. For example, a single
PCF injection on an end system link can delay the major
interrupt by more than a second and the minor interrupt by
more than 25 ms. An inter-switch link injection can delay the
minor interrupt by more than 40 ms.

In addition, PCF injections on inter-switch links cause
interrupt delays on multiple end systems at once. This hap-
pens because the injected PCF is forwarded to multiple end
systems. Importantly, this means that N-modular redundancy
[88], a fault tolerance technique where the same function is
performed on multiple end systems, cannot protect systems
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Fig. 9: Average-Max-Min charts showing the time between
interrupts following successful PCF injections on links to
switches (SWs) and end systems (ESs).

from PCSPOOF. A single injection could simply delay the
interrupts on all redundant end systems simultaneously.

In safety-critical systems, where N-modular redundancy
is widely trusted for important functions [76], [89], [90],
these delays could be disastrous. For example, in automobiles,
steering outages exceeding 50 ms can be non-recoverable [34].
Similarly, aircraft can require inputs as often as every 40 ms
to avoid failures [35]. Moreover, as we show in §VI-D, even
in cases where a single widespread outage (such as from an
inter-switch injection) does not cause system failure, repeated
isolated outages (such as from end system injections) can
cause redundant systems to fail.

Moreover, we observed that, in the worst case, a single PCF
injection can disrupt the interrupt timing of all end systems in
the network. This is because, when used in a fault-tolerant con-
figuration, TTE requires 3 sync masters to be operational for
synchronization between any end systems to be possible [61].
Thus, if enough end systems lose synchronization, all end
systems do — even ones that never receive the injected PCF.

C. Messaging

Experimental setup. To determine the effect PCSPOOF has
on TT messaging, we repeated the experiment from §VI-B,
with one end system configured as the sender, and the others
as receivers. The sender continuously wrote messages with
100-byte payloads to its NIC, representing typical traffic
in embedded systems [91]. The messages were stored in a
queuing buffer of default size for our hardware [61]. The
network was scheduled to continuously transmit the oldest
message in the queue to the receivers at a rate from {5, 40} Hz,
representing the minimum and maximum data rates typically
found in real systems [42], [87].

For each rate, we used a hardware tap to perform 250
successful PCF injections on both inter-switch links and links
between switches and end systems. We repeated the process
for both CA and IN PCFs, and report the time between when
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Fig. 10: Average-Max-Min charts showing the message delays
following successful PCF injections on links to switches
(SWs) and the sender end system (ES).

Data Rate: 10 Hz 40 Hz
PCF Type: CA IN CA IN
Link Type: SW ES SW ES SW ES SW ES
Min Drops: 20 20 20 20 20 19 20 20
Max Drops: 21 20 21 20 21 20 21 20

TABLE IV: Message drops following successful PCF injec-
tions on links to switches and the sender end system.

an end system last received a message before each injection
and next received a message after the injection. We also report
the number of message drops caused by each injection — i.e.,
the number of times the sender successfully stored a message
in its NIC, but the message was not received. Finally, we report
results for a 5 minute control case with no PCF injections.
Results. Figure 10 shows our results. As expected, by disrupt-
ing synchronization, PCF injections can cause large message
delays. For example, a single PCF injection caused a message
expected every 25 ms to not arrive for up to 65 ms. As
discussed in §VI-B, such delays can be disastrous for critical
applications like steering and engine control, where delays
beyond 40–50 ms can be nonrecoverable [34], [35].

Table IV shows the number of message drops caused by
each PCF injection. In summary, each successful injection
resulted in approximately 20 message drops in a row for all
receivers. Thus, successful PCF injections do not only result in
message delays but also cause TT messages to be permanently
lost. Interestingly, we observed a similar number of drops
regardless of the rate at which messages were transmitted,
seemingly due to messages being purged from NIC and switch
buffers when synchronization is disrupted.

We stress that PCF injections caused these message drops
even though TT traffic travels over multiple planes simul-
taneously, and PCFs were only injected on a single plane.
Therefore, redundant communication paths are not an effec-
tive way of mitigating PCSPOOF. The reason is that, since
PCSPOOF disrupts the synchronization protocol, it disrupts
communication on all planes simultaneously.



Fig. 11: NASA spaceflight simulation without (left) and with
(right) PCSPOOF. PCSPOOF caused a significant deviation in
the vehicle’s flight path, which prevented docking.

D. Case Study: NASA Asteroid Redirect Mission

To determine how much damage PCSPOOF causes in a real
spaceflight application, we conducted a case study based on
NASA’s planned Asteroid Redirect Mission [92], in which a
robotic spacecraft would move an asteroid into a stable orbit
around the Moon. A crewed spacecraft, such as NASA’s Orion,
would then carry astronauts to the asteroid in order to study
it, take samples, and return the samples to Earth.

We executed a subset of the mission on a real avion-
ics testbed, during which a representative Orion capsule
approached and attempted to dock with the robotic space-
craft. The Orion guidance software, which included several
genuine Orion flight software components (e.g., for optical
navigation) [20], ran against NASA’s Trick Simulation [93],
which modeled the vehicles in space, as well as Orion’s
sensors and actuators. The Orion subsystems and simulation
communicated over a fault-tolerant TTE network, similar to
Figure 1. We used network settings from the real mission.

We executed the mission twice. In the first trial, no PCFs
were injected. In the second trial, we executed the full end-
to-end attack, including finding the critical traffic marker and
injecting PCFs with the attack circuit. After determining the
rate at which PCFs were injected on links to the flight com-
puters (roughly every 16 seconds), we switched to injecting
PCFs on those links with a hardware tap. This let us assess
the impact of PCSPOOF over a long mission (hours), without
risk of damaging the switch.

Our results are shown in Figure 11. As expected, in the
absence of PCF injections, the mission completed successfully.
Orion approached the robotic spacecraft at a relative velocity
of 2–3 m/s until it was approximately 300 m away, aligned
itself with the robotic spacecraft, and proceeded straight at
0.1–0.5 m/s until docking was complete.

In contrast, PCSPOOF caused message drops and delays
that caused Orion to deviate from its intended flight path.
Rather than aligning with the robotic spacecraft, Orion swung
underneath it at a distance of approximately 115 m, missed the
docking opportunity, and floated away at a rate of 1–2 m/s.
These results show that PCSPOOF can significantly disrupt the
operation of critical systems that rely on TTE. PCSPOOF also
threatens safety, as the uncontrolled maneuvers we observed
could easily cause collisions with other objects or vehicles.

VII. MITIGATIONS

In this section, we discuss potential mitigations to PCSPOOF.
Block EMI. PCSPOOF enables PCF injections by conducting
EMI into the switch over an Ethernet cable. This interference
can be prevented by using optocouplers or surge protector
devices between the Ethernet cables and TTE switch ports.
However, such devices often suffer from performance limi-
tations [94], decrease system reliability by introducing new
points of failure, and can increase size, weight, and power
due to the inclusion of new hardware [95].

Another option is to use fiber-optic cables, which are
incapable of conducting EMI into the switch. However, such
cables have several downsides compared to copper, including
higher cost, worse durability, and decreased compatibility
with commercial hardware [67]. For these reasons, most TTE
systems use copper physical layers [8], [96]–[98].
Compression master placement. PCSPOOF requires injected
PCFs to look like they came from real compression masters
(CMs). By carefully placing the CMs, designers can ensure
injected PCFs will not be used. For example, if CMs and BE
devices are placed on opposite sides of the network, injected
PCFs will come from paths with no CMs, and thus be ignored.
However, this separation may not be possible in networks
with few switches, and can increase size, weight, and power
by requiring long cable runs between where BE devices are
needed and allowed to connect to the network.
Use link-layer security. One way to mitigate PCSPOOF
is to use a link-layer authentication protocol, like IEEE
802.1AE [99]. Unless the attacker knows the cryptographic
key used in the network, they cannot inject PCFs that are
accepted by TTE devices. Unfortunately, link-layer security is
not implemented in existing TTE devices. Adding authentica-
tion would require updates to the TTE hardware, as well as
impact compatibility with existing TTE systems.
Check the source MAC address. As shown in §IV-A, TTE
devices do not check the source MAC address field in PCFs
they receive. This means attackers do not need to determine
the MAC address of a real compression master in the network
in order to craft authentic-looking PCFs. TTE devices could
improve security by checking the source MAC address in
received PCFs against known correct values. However, doing
so would require changes to the TTE hardware.
Check the preamble length. PCSPOOF cuts the headers off
frames in flight, causing receivers to get injected PCFs with
potentially very long preambles. TTE devices would be less
likely to accept these PCFs if they rejected frames with long
preambles. This would force attackers to send smaller BE
frames, making the link less likely to recover in the region
required for successful injections. However, adding preamble
length checks would require updates to the TTE hardware.
Hide key PCF fields. In PCSPOOF, attackers determine the
critical traffic marker used in PCFs by sending BE frames
and seeing which frames are dropped by the switches. Thus,
designers can prevent attackers from finding the critical traffic
marker by configuring switches to drop additional BE traffic



that does not contain the critical traffic marker. However, this
prevents BE devices whose MAC addresses overlap with the
blacklisted addresses from receiving messages, and causes
certain BE multicast addresses to become unusable.

Similarly, attackers determine the virtual link IDs used
in PCFs by exploiting predictable patterns used by existing
schedulers (see §IV-A). Randomly assigning these virtual link
IDs, or regularly changing them, would improve security.
Use more sync masters. If PCSPOOF disrupts enough sync
masters, it causes the whole network to lose synchronization,
regardless of whether all devices received an injected PCF
or not (see §VI-B). Increasing the number of sync masters
can reduce the probability of this happening, but may not
be possible in small systems like automobiles. Also, even
if a network has many sync masters, care must be taken in
choosing their locations in the network. Otherwise, a single
injected PCF could still take out all the sync masters.
Disable dangerous state transitions. PCSPOOF exploits the
fact that end systems that receive a coldstart acknowledgement
PCF will temporarily lose synchronization (see §II-B). Thus,
one way to combat PCSPOOF is to disable this state transition
in the configurations loaded on the end systems [2]. Unfortu-
nately, removing this transition also impacts the ability for the
network to detect cliques at system startup [2]. It also does
nothing to prevent an attacker from injecting integration PCFs,
which can also disrupt synchronization (see §II-B).

VIII. RELATED WORK

Attacks on TTE’s isolation guarantees. Because of its use
in critical applications, much effort has been spent trying to
break TTE’s isolation guarantees [21], [38], [100], [101]. For
example, the Aviation Cyber Security Study [100] analyzed the
ability of BE devices to interfere with TT traffic via denial-
of-service or MAC flooding attacks. To our knowledge, no
successful attacks have ever been reported. TTE’s security has
also been studied in much less restricted threat models, such as
when an attacker controls critical TTE devices [102], [103], or
has physical access to the system and can thus unplug cables
and intercept messages [40], [104]. In contrast, PCSPOOF does
not require the attacker to have physical access to the system,
and it can succeed from a single BE device connected to a
single network plane.
Ethernet packet-in-packet attacks. Several packet-in-packet
attacks have been developed [33], [63], [64], [105]. Recently,
EtherOops [63] showed that runaway preamble attacks on
wired Ethernet were possible by exploiting data corruptions,
like those caused by faulty cables. However, as shown in
§IV-B, this attack can easily be prevented in modern TTE
networks. Other researchers showed that Ethernet packet-in-
packet attacks could be accomplished by exploiting link resets,
like those caused by unplugging and replugging cables [64].
However, the attacker had no ability to cause these link resets
to occur. PCSPOOF also uses link resets to let an attacker
inject malicious PCFs into the network. However, importantly,
PCSPOOF lets the attacker induce those link resets at will from
a networked BE device.

EMI attacks on Ethernet. Several studies have explored
methods for inducing errors in Ethernet networks by exposing
switches and cables to EMI [63], [106]–[109]. For example,
[107] studied the susceptibility of office networks to nearby
electromagnetic pulse devices. However, such attacks are
mostly effective only on networks with unshielded cables,
require the attacker to be in close proximity to the network
(e.g., a few meters), and require large antennas to radiate
the EMI [63], [107]. In contrast, PCSPOOF induces switch
errors by conducting EMI from a networked device, through
an Ethernet cable, and into the switch. This means PCSPOOF
works on networks with shielded cables, works from any
distance — provided the attack device connects to a switch
— and takes up little physical space (see §IV-B).
Timing attacks on real-time systems. There exist several
timing-based attacks on TT and other real-time systems [110]–
[117]. Generally, these attacks work by (1) using side channels
to infer the task or communication schedule [110]–[115],
then (2) interfering with critical tasks or traffic by consuming
shared resources when they are needed [116], [117]. PCSPOOF
is orthogonal to these methods. In particular, PCSPOOF does
not rely on knowledge of timing to be successful. Also, while
designers can mitigate interference attacks by planning for the
worst-case contention that critical TT tasks and messages may
experience [116], [117], PCSPOOF can disrupt all TT tasks
and messages regardless of temporal overprovisioning.
Destructive high-voltage circuits. Several devices use high
voltage to damage electronic equipment [118]–[120]. For
example, the venerable EtherKiller [119] destroys Ethernet
switches by shorting a switch port to a wall socket. US-
BKill [118] devices destroy computers by discharging high-
voltage capacitors into the computer’s USB port. Unlike these
devices, PCSPOOF is not intended to damage a TTE switch;
doing so would prevent successful attacks. Rather, it is de-
signed to induce controlled errors in the switch that cause link
drops on other ports. Also, PCSPOOF is designed to introduce
these errors from a fully-functioning Ethernet device.

IX. CONCLUSION

TTE is a popular choice for mixed-criticality systems because
of its ability to share the network between critical TT and
non-critical BE devices. However, this design requires that
the critical TT services be completely isolated from the BE
devices. We presented PCSPOOF, the first attack capable of
breaking TTE’s isolation guarantees. Our results show that
PCSPOOF threatens the safety of critical TTE systems, like
spacecraft and aircraft. We hope the description of our attack,
as well as the mitigations we identified, will influence the
deployment of current TTE systems, as well as the designs of
future mixed-criticality network technologies.
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APPENDIX A
DESCRIPTION OF FIELDS IN A PCF

As described in §IV-A, a PCF’s header contains the critical
traffic marker, the virtual link ID, and the source MAC address.
In addition, the header contains the following field.

• EtherType / Length — Indicates that the frame is a PCF.
It must be set to 0x891d [2].

The PCF’s payload contains the following fields. For each
field, we state what value to set the field to in order for injected
PCFs to be accepted by TTE devices.

• Integration Cycle — Tracks the current synchronization
period. It must fall within a range defined in the sched-
ule [2]. However, a value of 0x0 is always valid.

• Membership New — Identifies which sync masters con-
tribute to the synchronized time base. When injecting
integration PCFs, setting this to a high enough value
tricks devices into detecting a clique [41]. In our tests, a
value of 0x1 was always sufficient.

• Sync Priority — Must match the compression master
priority in the network schedule. Most TTE networks use
only one priority [121], so the value 0x1 is usually cor-
rect. Otherwise, the hardware limits the possible values
to a small range (e.g., 0x1–0x3) [60], [61].

• Sync Domain — Identifies a specific set of synchronized
devices in the network. Most networks have only one
sync domain [22], so the value 0x0 is usually correct.
Otherwise, the hardware limits the possible values to a
small range (e.g., 0x0–0x7) [61].

• Type — Must be set to 0x8 (for a coldstart acknowledge-
ment PCF) or 0x2 (for a normal integration PCF).

• Transparent Clock — Tracks delay in the switches. It
must fall within a range determined by the hardware. In
our tests, a value of 0x0 was always valid.


