
A Hypervisor for Shared-Memory FPGA Platforms
Jiacheng Ma∗ Gefei Zuo∗ Kevin Loughlin∗ Xiaohe Cheng§ Yanqiang Liu†

Abel Mulugeta Eneyew‡ Zhengwei Qi† Baris Kasikci∗
∗University of Michigan §Hong Kong University of Science and Technology

†Shanghai Jiao Tong University ‡Addis Ababa Institute of Technology

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for proft or commercial advantage and that copies bear
this notice and the full citation on the frst page. Copyrights for components
of this work owned by others than the author(s) must be honored. Abstracting
with credit is permitted. To copy otherwise, or republish, to post on servers or
to redistribute to lists, requires prior specifc permission and/or a fee. Request
permissions from permissions@acm.org.
ASPLOS ’20, March 16–20, 2020, Lausanne, Switzerland
© 2020 Copyright held by the owner/author(s). Publication rights licensed to
ACM.
ACM ISBN 978-1-4503-7102-5/20/03. . . $15.00
https://doi.org/10.1145/3373376.3378482

Abstract
Cloud providers widely deploy FPGAs as application-specifc
accelerators for customer use. These providers seek to multi-
plex their FPGAs among customers via virtualization, thereby
reducing running costs. Unfortunately, most virtualization
support is confned to FPGAs that expose a restrictive, host-
centric programming model in which accelerators cannot is-
sue direct memory accesses (DMAs). The host-centric model
incurs high runtime overhead for workloads that exhibit pointer
chasing. Thus, FPGAs are beginning to support a shared-
memory programming model in which accelerators can issue
DMAs. However, virtualization support for shared-memory
FPGAs is limited.

This paper presents OPTIMUS, the frst hypervisor that
supports scalable shared-memory FPGA virtualization. OPTI-
MUS offers both spatial multiplexing and temporal multiplex-
ing to provide effcient and fexible sharing of each accelerator
on an FPGA. To share the FPGA-CPU interconnect at a high
clock frequency, OPTIMUS implements a multiplexer tree.
To isolate each guest’s address space, OPTIMUS introduces
the technique of page table slicing as a hardware-software
co-design. To support preemptive temporal multiplexing, OP-
TIMUS provides an accelerator preemption interface. We show
that OPTIMUS supports eight physical accelerators on a sin-
gle FPGA and improves the aggregate throughput of twelve
real-world benchmarks by 1.98x-7x.

CCS Concepts • Hardware Reconfgurable logic and
FPGAs; • Software and its engineering Virtual
machines.

Keywords OPTIMUS, FPGA, Virtualization

ACM Reference Format:
Jiacheng Ma, Gefei Zuo, Kevin Loughlin, Xiaohe Cheng, Yanqiang
Liu, Abel Mulugeta Eneyew, Zhengwei Qi, and Baris Kasikci. 2020.

A Hypervisor for Shared-Memory FPGA Platforms. In Proceedings
of the Twenty-Fifth International Conference on Architectural Sup-
port for Programming Languages and Operating Systems (ASPLOS

’20), March 16–20, 2020, Lausanne, Switzerland. ACM, New York,
NY, USA, 18 pages. https://doi.org/10.1145/3373376.3378482

1 Introduction
Field Programmable Gate Arrays (FPGAs) allow users to
signifcantly accelerate custom workloads, including those of
machine learning [60–62, 85, 87], compression [57], scien-
tifc computing [23], database operations [52, 62], and graph
analytics [10, 89]. As the set of data center workloads changes
over time, cloud providers can reconfgure their FPGAs into
different accelerators, making FPGAs a cost-effective and
fexible alternative to ASICs [16, 63].

Considering the high non-recurring engineering cost [38]
of hardware design and the fact that most cloud application
developers are software programmers, cloud providers such
as Amazon and Microsoft confgure their FPGAs into popular
accelerators, which the providers then make available for
customer use [6, 50].

As with other hardware devices, cloud providers desire the
ability to multiplex their FPGAs among different customers
via virtualization, thereby increasing resource utilization and
return on investment (ROI) [37, 71]. Although multi-tenant
FPGA hypervisors and operating systems exist [15, 18, 21, 37,
40, 53, 55, 72–74, 86], these solutions are restricted to FPGA
platforms that expose a host-centric programming model, as
opposed to a shared-memory model.

The key difference between host-centric and shared-memory
FPGA programming models is whether or not accelerators
can issue direct memory accesses (DMAs, via which an I/O
device obtains data from system memory). In host-centric
models, the host issues all DMAs via a CPU-confgured DMA
engine, which passes the accessed data to the necessary ac-
celerator; the accelerators themselves cannot issue DMAs.
Most FPGA manufacturers [7, 68, 81] adopt this program-
ming model. Unfortunately, the host-centric model cannot
effciently support applications that exhibit pointer chasing
(e.g., graph processing [76] and database acceleration [62]),
as such applications require repeated communication between
the CPU and FPGA to coordinate each DMA. In particular,
the software programmer must either 1) initiate multiple data
transmissions separately and sequentially, or 2) marshal the
data every time before transmission, both of which hurt per-
formance.

https://doi.org/10.1145/3373376.3378482
https://doi.org/10.1145/3373376.3378482
mailto:permissions@acm.org

ASPLOS ’20, March 16–20, 2020, Lausanne, Switzerland J. Ma, G. Zuo, K. Loughlin, X. Cheng, Y. Liu, A. Eneyew, Z. Qi, and B. Kasikci

To overcome the performance penalties of the host-centric
programming model, emerging FPGAs are alternatively ex-
posing a lighter, more fexible shared-memory programming
model [9, 25, 27, 66]. Under this new model, each accelerator
can issue its own DMAs and shares an address space with
a process on the CPU. The CPU is merely responsible for
providing the accelerator with a pointer to its initial input
data. Upon receiving the pointer, the accelerator can issue the
initial and subsequent DMAs without CPU intervention. As
we demonstrate in §2.1, the shared-memory model can out-
perform the host-centric model by 37%–85% in a virtualized
environment.

Unfortunately, virtualizing system memory on shared-
memory FPGA platforms is challenging. In particular, be-
cause both the CPU and FPGA can directly access system
memory, virtualization solutions must provide consistent views
to applications on the CPU and accelerators on the FPGA. For
instance, if a software process updates a page’s data/metadata,
these changes must be immediately visible to its correspond-
ing accelerator, and vice-versa.

Furthermore, while SR-IOV [43] (i.e., hardware-assisted
IO virtualization) provides a method of isolating virtual DMAs
on PCIe links, shared-memory platforms can expose an inter-
face that encapsulates both a PCIe link and a UPI link (e.g.,
Intel HARP [25]). Thus, on such platforms, SR-IOV does
not provide a comprehensive solution to virtual DMA iso-
lation. Additionally, for the past fve years, shared-memory
platforms have been unable to support more than one VF
per FPGA [25, 27], limiting SR-IOV’s scalability on these
platforms.

In this paper, we introduce OPTIMUS, the frst scalable
hypervisor that virtualizes shared-memory FPGAs. Deployed
by cloud providers, OPTIMUS can confgure a single FPGA
into well-isolated accelerators, simultaneously accelerating a
variety of jobs and improving resource utilization.

OPTIMUS targets a use case in which cloud providers con-
fgure FPGAs as a set of popular accelerators for their cus-
tomers (e.g., the accelerator libraries/registries of Amazon
F1 [6] and others [18, 37]). Notably, OPTIMUS does not aim
to virtualize an FPGA’s reconfguration capabilities, opting
instead to schedule VMs on FPGAs pre-confgured with the
necessary accelerator(s). Such a model is desirable in a cloud
setting, as it 1) avoids the high performance overheads—and
therefore, revenue losses—of reconfguration during acceler-
ator context switches, and 2) still allows cloud providers to
reconfgure their physical FPGAs as customer needs change
over time.

OPTIMUS virtualizes shared-memory FPGAs via a compo-
sition of spatial multiplexing and temporal multiplexing. Spa-
tial multiplexing partitions the physical FPGA into multiple
accelerators that can be individually controlled by different
VMs [15, 18, 21, 37, 41, 72, 74]. Temporal multiplexing then
oversubscribes these accelerators—multiple VMs take turns
running atop a fxed-confguration accelerator [16, 73]. To

support temporal multiplexing, OPTIMUS offers a preemption
interface for accelerator design, such that it can instruct vir-
tual accelerators to swap their state to/from system memory
on a context switch.

OPTIMUS is implemented atop Intel Skylake HARP [25],
but its design can be generalized to different shared-memory
FPGA platforms. OPTIMUS effciently overcomes the DMA
isolation limitations of existing shared-memory FPGAs with
a virtualization technique called page table slicing. Page table
slicing is inspired by prior software-only techniques on isolat-
ing DMAs [70, 78], but is instead implemented as a generic
hardware-software co-design to provide virtualization inde-
pendent of specifc accelerator confgurations. Using page
table slicing, OPTIMUS confgures the FPGA to include a
hardware monitor, which assists in partitioning a single IO
page table among all guests without incurring IO page table
context switching overhead.

OPTIMUS spatially multiplexes up to eight unique physical
accelerators and improves the aggregate throughput of twelve
real-world benchmark workloads by 1.98x-7x. Additionally,
OPTIMUS’s hardware monitor occupies less than 7% of FPGA
resources. Finally, OPTIMUS stringently enforces real-time
bandwidth sharing policies for both spatially- and temporally-
multiplexed accelerators.

In summary, this paper makes the following contributions:

• We design OPTIMUS, the frst scalable hypervisor to
offer virtualization support for shared-memory FPGAs,
using both spatial multiplexing and temporal multiplex-
ing to provide effcient, fair, and fexible sharing of
individual accelerators on an FPGA.

• We introduce a hardware-software co-design for IO
virtualization—page table slicing—that isolates each
virtual accelerator’s DMAs via a combination of hyper-
visor and on-FPGA support.

• We provide an interface to support the inclusion of
preemption capabilities in accelerator design.

2 Background
Field Programmable Gate Arrays (FPGAs) are chips that can
be confgured (and reconfgured) into custom circuits (e.g., ac-
celerators). FPGA developers often use hardware description
languages such as Verilog [69] and VHDL [12] to describe
their circuit designs. A synthesizer program translates these
designs into native FPGA bitstreams (i.e., binaries).

In the rest of this section, we give detailed background on
FPGA programming models as well as FPGA virtualization.
We focus on FPGAs designed to be used as accelerators.

2.1 FPGA Programming Models
The software interface (i.e., programming model) for an
FPGA is determined via a reserved portion of the FPGA
called a shell, often provided by the manufacturer. The shell

A Hypervisor for Shared-Memory FPGA Platforms ASPLOS ’20, March 16–20, 2020, Lausanne, Switzerland

is responsible for sending, receiving, and processing I/O pack-
ets (such as those from the CPU, network, system memory,
etc.), and generally presents one of two programming mod-
els to system software: host-centric or shared-memory. In
both of these models, the shell exposes a memory-mapped IO
(MMIO) control plane for software to manage the accelerator.
The key difference between these models is whether accelera-
tors can issue their own direct memory accesses (DMAs).

In the more widespread host-centric model, the accelerators
are unaware of the system memory map and thus cannot
issue DMAs. Instead, the CPU confgures a DMA engine to
transfer data from system memory to the accelerators. The
host-centric model yields simpler hardware, as accelerator
architects need not add DMA logic to their designs, instead
relying on software programmers to manage DMAs.

However, the host-centric model incurs the latency of re-
peated communication between the CPU and accelerators
for applications that exhibit pointer chasing. Specifcally, the
CPU must repeatedly confgure the DMA engine to fetch
new data for each accelerator. While scatter-gather DMA en-
gines [81] can alleviate the penalty of certain non-contiguous
access patterns (e.g., those where the sequence of DMA ad-
dresses is known prior to accelerator execution), they cannot
alleviate the penalty of pointer chasing, as the sequence of
DMA addresses is determined during accelerator execution.

In the emerging shared-memory model (e.g., that of Intel
HARP [25]), each accelerator is cognizant of the system
memory map and can issue its own DMAs. Therefore, shared-
memory accelerators can engage in pointer chasing without
interrupting the host to issue subsequent DMAs, avoiding the
latency of host-centric platforms for such applications.

We use a graph processing application that uses the single
source shortest path (SSSP) algorithm [89] to demonstrate
the benefts of the shared-memory programming model. The
algorithm needs to iteratively access a non-contiguous set of
vertices and edges, thereby emulating the behavior of pointer
chasing in the absence of scatter-gather DMA support (i.e.,
on our evaluation platform).

We implement this algorithm on Intel HARP, under the
original shared-memory interface and a host-centric interface.
Fig. 1 shows the processing time of the algorithm on a set of

graphs with 800K vertices and an increasing number of edges.
“Host-Centric+Confg” indicates that the host-centric FPGA’s
DMA engine has been confgured to fetch each individual
data segment, while “Host-Centric+Copy” indicates that the
host copies all data segments to a contiguous buffer before
invoking the DMA engine. As shown, the shared-memory im-
plementation is 17%–60% faster than that of the host-centric.
The beneft of the shared-memory model is even more strik-
ing in a virtualized environment (37%–85% faster execution),
where control plane operations become more expensive due
to hypervisor trap-and-emulate. In sum, the DMA capabilities
of shared-memory accelerators allow workloads to engage in
pointer chasing without CPU involvement, reducing commu-
nication costs and improving performance.

Figure 1. Graph processing time using the SSSP algorithm.

3.2M 6.4M 12.8M 25.6M 51.2M
Number of Edges

0

2

4

6

8

10

12

Pr
oc

es
si

ng
 T

im
e

(s
)

Shared-Memory
Host-Centric+Config
Host-Centric+Copy
Shared-Memory (Virtualized)
Host-Centric+Config (Virtualized)
Host-Centric+Copy (Virtualized)

2.2 FPGA Virtualization
The accelerators on an FPGA can be multiplexed spatially [15,
18, 37, 53, 55, 72, 74] and temporally [18, 37, 53, 55, 73, 84].
Spatial multiplexing allows different accelerator confgura-
tions to simultaneously occupy the same FPGA. Temporal
multiplexing allows each individual accelerator confgura-
tion on an FPGA to be shared by multiple VMs. Tempo-
ral multiplexing can either be non-preemptive (i.e., run-to-
completion) [73] or preemptive (i.e., pause-and-resume) [37].

To virtualize an FPGA, each virtual accelerator’s on-FPGA
resources as well as IO channels must be isolated [37]. The
FPGA synthesizer handles most on-FPGA resource isolation.
Specifcally, the synthesizer ensures that each accelerator on a
spatially-multiplexed FPGA is provisioned a distinct portion
of device resources. If a physical accelerator is additionally
overprovisioned via preemptive temporal multiplexing, accel-
erator designs must include support for saving and restoring
their execution states upon preemption.

As for IO channels, FPGAs utilize both an MMIO con-
trol plane and a DMA data plane. Since software initiates all
MMIO accesses in both the host-centric and shared-memory
programming models, a hypervisor can easily virtualize guest
access to MMIO registers via trap-and-emulate. In the host-
centric model, software also initiates all DMAs, meaning host-
centric DMAs can also be virtualized via trap-and-emulate [18]
or paravirtualization [73].

However, in the shared-memory model, accelerators is-
sue their own DMAs without software intervention, posing a
problem for DMA virtualization. The traditional virtualization
solution for DMA-capable IO devices has been a combination
of SR-IOV [43] and PASID [28]. With SR-IOV, the IO mem-
ory management unit (IOMMU) provides a unique IO page
table for each virtual device, thereby allowing the hypervisor
to install unique address mappings that are enforced by the
IOMMU at the time of DMA for each guest. With PASID, the
IOMMU uses a CPU page table to translate DMAs, thereby
allowing IO devices to directly access a process’s address
space. Each DMA is tagged with a process identifer, which
the CPU uses to select the correct page table.

ASPLOS ’20, March 16–20, 2020, Lausanne, Switzerland J. Ma, G. Zuo, K. Loughlin, X. Cheng, Y. Liu, A. Eneyew, Z. Qi, and B. Kasikci

Unfortunately, the applicability of these techniques to
shared-memory platforms is currently limited for two rea-
sons. First, SR-IOV and PASID only virtualize PCIe links.
Thus, on shared-memory platforms that expose both a UPI
link and a PCIe link (e.g., Intel HARP [25]), SR-IOV and
PASID cannot provide complete virtualization.

Second, the scalability of SR-IOV implementations in
shared-memory FPGAs is severely limited. Although the
SR-IOV standard supports thousands of VFs [43], shared-
memory FPGAs have only supported one VF for the past
fve years [25, 27]. Because SR-IOV implementations are
proprietary, our knowledge of the factors restricting scalabil-
ity in shared-memory FPGAs is limited. However, certain
shared-memory platforms such as Intel HARP [25] currently
implement both the SR-IOV and the (related) IOMMU as soft
IP in the FPGA shell, restricting scalability as compared to
that of more resource-effcient hard IP implementations.

3 Goals and Challenges
OPTIMUS targets a use case in which cloud providers confg-
ure FPGAs as a set of popular accelerators for their customers,
avoiding the penalty of virtual accelerator reconfguration in
favor of increased uptime [6, 18, 37]. To enable effcient
and fexible sharing of accelerators on FPGAs, OPTIMUS
utilizes spatial multiplexing [15, 18, 37, 53, 55, 72, 74] to par-
tition an FPGA into a fxed set of accelerators, and temporal
multiplexing [18, 37, 53, 55, 73, 84] to overprovision each
of these accelerators. Because OPTIMUS novelly virtualizes
shared-memory FPGAs, OPTIMUS tailors the goals of FPGA
virtualization to shared-memory platforms as follows:

Programmability Unlike virtualization solutions for host-
centric platforms [15, 18, 37, 53, 55, 72–74], OPTIMUS aims
to share a unifed virtual memory address space between
software and hardware, similar to the original HARP inter-
face [25]. However, programmability implies that cloud ap-
plication developers should not have to deal with low-level
platform details such as memory isolation, and should in-
stead rely on straightforward memory abstractions of unifed
address spaces [1, 47, 58, 88]. Therefore, OPTIMUS must pro-
vide user-friendly abstractions for its unifed CPU and FPGA
address spaces to achieve programmability.

Isolation While host-centric FPGA virtualization solutions
focus on the isolation of on-FPGA DRAM [15, 18, 37, 53, 72–
74], OPTIMUS must consider the isolation of system memory
in the presence of accelerator DMAs. Given limited support
for hardware-assisted virtualization, OPTIMUS must provide
strong DMA isolation within a single IOMMU address space.

We note that OPTIMUS assumes the synthesizer places
each physical accelerator on isolated pieces of the FPGA fab-
ric. Additionally, OPTIMUS does not consider side channels,
which are an interesting direction for future work.

Scalability As the number of accelerators on an FPGA in-
creases, the FPGA’s multiplexers (i.e., the hardware compo-
nents that propagate signals between the set of accelerators
and the singular system interconnect) must process data from
a greater number of sources within timing constraints (e.g.,
a given number of cycles). At some point, a fat multiplexer
arrangement physically cannot process all the signals under
timing constraints; a multiplexer tree hierarchy must instead
be used [37]. Given that OPTIMUS targets hardware operating
at higher frequencies than state-of-the-art solutions—thereby
placing tighter constraints on timing—OPTIMUS must pro-
vide a multiplexer tree by default to achieve scalability.

Effciency OPTIMUS must have low virtualization overhead
to provide suffcient performance to each VM. Specifcally,
the sum of each virtual accelerator’s bandwidth must be as
close as possible to the FPGA’s total bandwidth. Furthermore,
the latency added by hypervisor and hardware monitor ex-
ecution must be minimized. Given the frequent occurrence
of DMAs as compared to MMIOs, the primary challenge is
ensuring that DMAs occur with minimal overhead. Unfortu-
nately, traditionally-effcient DMA isolation methods such as
SR-IOV and PASID do not currently provide a comprehensive
and scalable DMA virtualization solution. Therefore, OPTI-
MUS must synthesize virtualization support into the FPGA to
achieve the effciency of hardware-assisted virtualization.

Fairness In line with prior work [37], OPTIMUS aims to en-
sure that each accelerator receives a fair share of the FPGA’s
total bandwidth. Given N spatially multiplexed physical ac-
celerators, each accelerator must receive at least 1/N of the
total real-time bandwidth when transmitting data. In temporal
multiplexing, the physical accelerator must be assigned to
each virtual accelerator for the same amount of time.

Figure 2. OPTIMUS design overview, shown with two physi-
cal accelerators for brevity. OPTIMUS spatially multiplexes
a shared-memory FPGA as physical accelerators (A and B),
and temporally multiplexes physical accelerators as virtual
accelerators (A0, A1, and B0).

VMX VMY

OPTIMUS

Shell

HW Monitor

A0

Apps

VMs

HV

FPGA

DRAM

MMU Page Tables

IOMMU Page Table

GVA

IO
VA

HPA

HPA

A0 B0

B0A0

MMIOA MMIOB

Accelerator A Accelerator B

A0 A1

A0

A1

...

B0

A1

B0

A0

A0

A1

B0

...

A1

A Hypervisor for Shared-Memory FPGA Platforms ASPLOS ’20, March 16–20, 2020, Lausanne, Switzerland

4 Design
OPTIMUS follows a mediated pass-through [70] architecture
in which control plane operations are trapped by the hypervi-
sor, while data plane operations bypass the hypervisor. Fig. 2
shows the high-level architecture of OPTIMUS, limited to two
accelerators for brevity. OPTIMUS uses the FPGA’s shell to
confgure a shared-memory FPGA as a fxed set of physical
accelerators (A and B), thereby offering spatial multiplexing.
OPTIMUS can additionally expand its virtualization scalabil-
ity by temporally sharing a physical accelerator among sev-
eral virtual accelerators (A0 and A1). For example, in Fig. 2,
virtual accelerator A0 is scheduled on physical accelerator
A (meaning A holds A0’s execution state), while OPTIMUS
stores virtual accelerator A1’s execution state in DRAM until
re-scheduling A1 on physical accelerator A.

MMIO Control Plane OPTIMUS traps all virtual accelerator
control plane operations (MMIOs) to redirect the operations
to the correct physical location. For scheduled virtual accel-
erators (A0 and B0), OPTIMUS adds an offset to the trapped
MMIOs in order to address the appropriate physical accel-
erator, forwarding the adjusted MMIOs to the FPGA. The
hardware monitor then routes each MMIO to the appropri-
ate physical accelerator (A or B) based on the offset MMIO
address. For a queued virtual accelerator (A1), OPTIMUS
postpones the MMIO access until the virtual accelerator is
re-scheduled on a physical accelerator. The details of MMIO
operations in temporal multiplexing will be discussed in §4.2.

DMA Data Plane Guest applications and their accelerators
interact with DRAM using virtual addresses, which are trans-
lated to host physical addresses by the MMU and IOMMU
respectively. However, the IO virtual addresses (IOVAs) used
for virtual DMAs are offset versions of guest virtual addresses
(GVAs). Although the CPU can provision a separate hardware
page table in the MMU (i.e., an extended page table) for each
application, only a single hardware page table is available to
the FPGA in the IOMMU. Thus, OPTIMUS must partition
the single IO virtual address space among virtual accelerators
using a technique called page table slicing, where each virtual
accelerator’s DMA region begins at a unique offset within
the IO virtual address space. OPTIMUS stores an offset table
within the hardware monitor to translate from guest virtual
addresses to IO virtual addresses during DMAs.

Figure 3. An example OPTIMUS FPGA architecture, with
the hardware monitor components shaded in gray. A two-
level binary multiplexer tree is shown for brevity, but the
multiplexer tree arrangement is confgurable.

Virtualization Control Unit

Multiplexer AB

Auditor A Auditor B

Accelerator A Accelerator B

System Interconnect
O

ffset Table

R
es

et
 T

ab
le

Auditor D

Accelerator C Accelerator D

Multiplexer ABCD

Shell

Auditor C

Multiplexer CD

4.1 Hardware Monitor
Fig. 3 shows the FPGA confguration to support OPTIMUS.
The manufacturer provides the shell, which serves as the IO
interface for the FPGA. OPTIMUS uses the shell to load the
cloud provider’s desired accelerator confgurations onto the
FPGA. OPTIMUS also includes a hardware monitor (shown
in gray) on the FPGA.

Virtualization Control Unit OPTIMUS uses the virtualiza-
tion control unit (VCU) to confgure the runtime behavior of

the hardware monitor. Specifcally, VCU presents an accelera-
tor management interface to allow OPTIMUS to confgure the
offset and reset tables. The offset table stores offsets between
guest virtual addresses and IO virtual addresses for each ac-
celerator (necessary to support page table slicing). The reset
table is used to specify the reset signal for each accelerator,
thus enabling OPTIMUS to reset individual accelerators to
clear state for isolation purposes on a VM context switch.

OPTIMUS reserves a special region of MMIO for commu-
nication with VCU. If the incoming packets fall in this range,
the virtual control unit intercepts the packets to confgure the
hardware monitor. Otherwise, VCU forwards the packets to
the multiplexer tree.

Multiplexer Tree The multiplexer tree is responsible for
propagating input packets from the shell to each accelera-
tor, and transmitting output packets from each accelerator to
the shell. Each multiplexer in the multiplexer tree operates
on a round robin scheduling policy, thereby ensuring equal
bandwidth for each accelerator on the same path through the
multiplexer tree (and thus, fair real-time bandwidth sharing
as mentioned in §3). However, if cloud providers seek to pro-
vide greater bandwidth to some accelerator A, the multiplexer
tree can be confgured to place fewer accelerators under the
multiplexers on A’s path.

Auditors Unlike AXI or Avalon interconnects [31, 79], the
multiplexer tree does not make routing decisions based on
the accessed address. Instead, the multiplexer tree propagates
packets to a set of auditors (one per physical accelerator),
where each auditor determines whether incoming packets
are intended for its associated accelerator. This lazy packet
routing (i.e., waiting until the packets arrive at the auditor
to make routing decisions) results in simpler circuitry than
eager packet routing (i.e., including routing logic within the
multiplexer tree).

If the incoming packet is an MMIO, the auditor checks
that the MMIO offset falls within the accelerator’s MMIO
range. If so, the auditor forwards the packet to its associated
accelerator. If not, the packet is discarded.

ASPLOS ’20, March 16–20, 2020, Lausanne, Switzerland J. Ma, G. Zuo, K. Loughlin, X. Cheng, Y. Liu, A. Eneyew, Z. Qi, and B. Kasikci

If the incoming packet contains DMA data, the auditor
must determine if the packet is a response to a DMA that the
accelerator initiated. When an accelerator wishes to perform a
DMA, the auditor tags the outgoing packet with an accelerator
ID, which is preserved in the response packet. Thus, an auditor
can verify if a DMA packet is intended for its accelerator by
checking the packet’s accelerator ID feld. If so, the packet is
forwarded to the accelerator. If not, the packet is discarded.

Page Table Slicing For simplicity, guest applications and
their virtual accelerators would both access memory using
guest virtual addresses, which would ultimately be translated
to host physical addresses by the MMU and IOMMU respec-
tively. However, given the limitation of a single IO virtual
address space, the guest virtual addresses of different appli-
cations would confict if used as keys in the IO page table.
To isolate guest memory, OPTIMUS introduces a hardware-
software co-design called page table slicing, which adapts
prior software-only techniques for virtualizing GPUs [70] and
wireless NICs [78].

Page table slicing confgures the auditors with a linear ad-
dress mapping policy, where guest virtual addresses (GVAs)
map to IO virtual addresses (IOVAs). OPTIMUS allows each
accelerator to access a contiguous DMA memory range [g,g+
p) in the application’s address space. It also divides IOVAs
into several p-sized partitions, and assigns each partition to
a unique (virtual) accelerator. For a given IOVA partition
[i, i+ p), OPTIMUS stores the offset value (i− g) in the corre-
sponding accelerator’s entry in the offset table. Afterward, the
accelerator’s auditor can convert between IOVAs and GVAs
during DMAs within a single cycle, ensuring effcient mem-
ory isolation. In the presence of temporal multiplexing (i.e.,
oversubscription of individual accelerators), OPTIMUS up-
dates the physical accelerator’s offset table entry with the
newly-scheduled virtual accelerator’s offset entry.

We consider page table slicing as a lightweight isolation
method which is complementary to SR-IOV. Specifcally,
even if SR-IOV scalability increases for future shared-memory
FPGAs, page table slicing would allow for nested virtualiza-
tion on SR-IOV enabled devices; a cloud provider could use
SR-IOV to provide a “vFPGA” to a VM acting as a nested
hypervisor. The nested hypervisor could then use page table
slicing to share this vFPGA among its own guests.

Shadow Paging An important goal of OPTIMUS is to share
a contiguous range of virtual memory between software and
hardware, which requires the IOMMU (together with page ta-
ble slicing) to directly map GVAs to HPAs. Since the IOMMU
does not support nested paging, OPTIMUS maintains a shadow
page table for each accelerator.

4.2 Preemption Interface
While spatial multiplexing allows different accelerators to run
on the same FPGA, OPTIMUS uses temporal multiplexing to
share a fxed accelerator confguration among different VMs,

with each VM’s virtual accelerator occupying the physical
accelerator for a short time-slice. OPTIMUS must be able to
preempt acceleration jobs to provide fair temporal multiplex-
ing, and therefore exposes a preemption interface similar to
that of AmorphOS [37].

A preemption-capable accelerator should implement a set
of control registers which serves two purposes: 1) saving
and restoring internal execution states, and 2) starting, pre-
empting, and resuming acceleration jobs. Control registers
are privileged resources, thus should not be accessible by
virtual machines directly. The hypervisor traps and emulates
accesses to control registers, and hides the hardware status of
the physical accelerator. Registers besides the control regis-
ters are called application registers. Accesses to application
registers are postponed until the virtual accelerator is sched-
uled. Specifcally, if the register does not have side effects
(i.e., read/write to the register is idempotent), the hypervisor
can cache the register’s value in software and synchronize the
cache and the physical register while scheduling.

During virtual accelerator initialization, the accelerator
informs OPTIMUS how much memory is needed to store
internal execution states. OPTIMUS then allocates a memory
buffer for the states and informs the physical accelerator of
the buffer’s base address via the control registers.

When OPTIMUS wishes to schedule a virtual accelerator
on a physical accelerator, OPTIMUS reads the current job sta-
tus from the physical accelerator. If the physical accelerator
is occupied, OPTIMUS sends a preempt command, causing
the physical accelerator to write the virtual accelerator’s exe-
cution state to the system memory buffer. Once all in-fight
transactions have been processed, the accelerator notifes OP-
TIMUS that context has been successfully saved and a new job
may be scheduled, as in prior work [37]. If an accelerator fails
to cede control, OPTIMUS can forcibly reset the accelerator
after a confgurable timeout period.

Later, when OPTIMUS re-schedules the original virtual ac-
celerator job on the physical accelerator, it issues a resume
command that instructs the physical accelerator to load exe-
cution state from its memory buffer and continue execution.

OPTIMUS’s decision to leave the implementation of pre-
emption to accelerator designers is a complexity-performance
trade-off. On one hand, designers using OPTIMUS must rea-
son about the state to save upon preemption, in contrast to
automatic mechanisms such as Cascade [59]. On the other
hand, designers using OPTIMUS can identify the minimal
amount of state to save. For example, when preempting a
linked-list walker, saving the address of the next node can
be suffcient. In contrast, Cascade conservatively requires all
latches to be saved. This results in a more complex circuit,
consuming more resources, inhibiting a circuit’s ability to
scale to higher frequencies, and ultimately hurting perfor-
mance. Thus, given OPTIMUS’s performance and scalability
goals, OPTIMUS relies on accelerator designers to implement
the preemption interface.

A Hypervisor for Shared-Memory FPGA Platforms ASPLOS ’20, March 16–20, 2020, Lausanne, Switzerland

4.3 Userspace API
Because native platform APIs can be complex [29], OPTIMUS
offers a simplifed API for software application developers.
OPTIMUS provides a separate implementation of the same
simplifed API to accelerator developers for use in Verilog
simulations.

From the guest’s perspective, each accelerator is a PCIe
device. OPTIMUS offers a customized driver and a userspace
library that work in tandem to allow for application-level
programming of accelerators. The driver is responsible for
initializing the virtual accelerator, including mapping MMIO
regions to userspace and registering DMA memory with the
hypervisor. The userspace library allows the programmer to
easily connect to and disconnect from a virtual accelerator,
reset the accelerator, program the virtual accelerator through
its MMIO region, and manage DMA memory.

5 Implementation
OPTIMUS is implemented atop the Intel HARP shared-memory
FPGA platform [25] using Intel’s Core Cache Interface (CCI-
P) [24]; however, OPTIMUS’s design can be applied to any
shared-memory FPGA platform with IOMMU support (which
is necessary to implement page table slicing). OPTIMUS is
implemented as a kernel module in 3,199 lines of C code,
using the vfo-mdev [36] framework for device mediation and
KVM [39] for CPU and memory virtualization. The guest
FPGA driver and user API library are an additional 2,033
lines of C code, not including a ported memory allocation li-
brary [46] used to help manage DMA regions for accelerators.
The Verilog implementation of the hardware monitor relies on
Intel’s open-source multiplexer (MUX) module [33], which
adds 1,237 lines of code. Altogether, the hardware monitor
occupies less than 7% of on-FPGA confgurable resources.

FPGA Interface HARP’s shell provides a request/response
interface called CCI-P for memory access [24], which encap-
sulates PCIe and UPI transactions. In order to access CPU
memory, an accelerator sends a request packet and then waits
for a corresponding response packet. While waiting, the accel-
erator may send out other requests to saturate the bandwidth.

MMIO Slicing The MMIO address space of OPTIMUS con-
sists of three portions. The frst portion of the MMIO space is
reserved for the HARP shell. The next 4 KB is reserved for
the virtualization control unit’s accelerator management in-
terface, via which the hypervisor can confgure the hardware
monitor (e.g., the offset and reset tables) and obtain the FPGA
confguration information (e.g., the number of physical accel-
erators on the device and whether or not the confguration is
compatible with OPTIMUS). Finally, each physical accelera-
tor receives a 4 KB page for its individual MMIO state, with
isolation enforced by the accelerator’s auditor.

Guest-MMIO Layout From a guest’s perspective, a virtual
accelerator is a PCIe device. PCIe BAR0 points to the accel-
erator MMIO space, and PCIe BAR2 points to the hypervisor
MMIO space (used to communicate with the hypervisor).

Page Table Slicing By default, OPTIMUS uses a 64 GB
slice of the 48-bit IO virtual address space for each virtual
accelerator. However, this can be increased on systems where
more than 64 GB of RAM is needed per virtual accelerator.

OPTIMUS’s guest library uses the mmap() system call with
the MAP_NORESERVE fag to reserve a 64 GB slice without al-
locating physical memory or swap. OPTIMUS writes the base
address of each slice to a register in BAR2 (the hypervisor
MMIO space). The slicing offset is calculated based on the
value stored in this register.

Shadow Paging For prototype simplicity, OPTIMUS cur-
rently features a hypercall-style shadow paging mechanism,
reserving a register in the hypervisor MMIO space. During
the initialization of each accelerator, OPTIMUS allocates a 2
MB page, and initializes the IOPT entries of the accelerator
to map to the physical address of the page. When a guest
wants to make a page FPGA-accessible, it uses this register
to notify the hypervisor of the GVA and GPA for the page.
The hypervisor then checks page permissions, calculates the
correct IOVA and HPA, pins the HPA in memory, and inserts
the IOVA→HPA mapping into the IO page table.

Multiplexer Tree Hierarchy OPTIMUS uses a three-level
binary tree which supports up to 8 physical accelerators. We
experimented with different hierarchies for the multiplexer
tree (e.g., more layers and more nodes per layer); however,
for some benchmarks, the synthesizer was unable to synthe-
size greater than eight accelerator instances on the FPGA
without lowering the multiplexer tree frequency below 400
MHz, which is necessary to fully utilize the memory band-
width. Hence, we limited the tree’s support to eight physical
accelerators.

AMORPHOS [37]—a prior FPGA virtualization solution—
uses a fat multiplexer to avoid the complexity and latency of
a multiplexer-tree when there are eight or fewer accelerators,
and uses a layered multiplexer-tree when there are greater than
eight accelerators. However, in OPTIMUS, a fat multiplexer
is not feasible even with a smaller number of accelerators, as
it prevents OPTIMUS from multiplexing the accelerators at a
high frequency (400 MHz).

Huge Pages In line with prior work [2, 4, 5, 11, 44, 45, 49],
OPTIMUS uses huge pages to avoid IOTLB (IO translation
lookaside buffer) thrashing and improve DMA performance.
To the best of our knowledge, on the Intel HARP platform, the
IOTLB for both 4 KB pages and 2 MB pages can only store
512 IOVA to HPA mappings. Only using 4 KB pages may
cause frequent IOTLB misses, which hurts performance on
HARP. OPTIMUS uses 2 MB huge pages for DMA memory,

ASPLOS ’20, March 16–20, 2020, Lausanne, Switzerland J. Ma, G. Zuo, K. Loughlin, X. Cheng, Y. Liu, A. Eneyew, Z. Qi, and B. Kasikci

thereby allowing the IOTLB to cache 2 MB ∗ 512 = 1 GB
worth of mappings.

We do not see 2 MB pages as a signifcant drawback for
three reasons. First, hypervisors are already unable to over-
subscribe memory in the presence of pass-through or SR-IOV-
enabled devices; the device-accessible memory pages must
be pinned due to the IOMMU’s inability to handle page faults.
Second, as opposed to pass-through or SR-IOV, OPTIMUS
only pins FPGA-accessible pages once they are allocated by
the guest. Third, data center servers are often equipped with
hundreds of gigabytes of memory; therefore, 2 MB pages are
relatively small.

IOTLB Confict Mitigation When using our original page
table slicing technique (in which each 64 GB slice is laid out
contiguously in the IO virtual address space), we discovered
that IOTLB mappings for different virtual accelerators were
frequently evicting each other, hurting system performance.

While the exact eviction policy for the IOTLB is unknown,
we believe the problem stems from a confict in the set indices
of IOVAs for different virtual accelerators. To the best of our
knowledge, when the page size is 2 MB, the IOTLB uses 9
bits after the 21-bit huge page offset as the set index (bits
21-29). We believe each set consists of a single entry. Thus, if
a virtual accelerator accesses a virtual page with the same set
index as another virtual accelerator’s page, an IOTLB confict
will occur. More precisely, a given page p1 will confict with
any page p2 where p1 ≡ p2 mod 29.

To work around this problem in software (given the IOTLB
could not be altered), we added an extra 128 MB of address
space between each 64 GB IOVA slice to offset the set indices
of different virtual accelerator pages. Because OPTIMUS sup-
ports eight physical accelerators and the IOTLB can address 1
GB of memory without conficts, OPTIMUS divides this 1 GB
of memory evenly among the accelerators, yielding 128 MB
per accelerator. Thus, each virtual accelerator’s working set
must exceed 128 MB before IOTLB conficts potentially oc-
cur among accelerators. If sequential accesses are performed,
IOTLB misses are rare, regardless of the working set size.

Tiling and Partial Reconfguration Like other FPGAs [6,
16, 56], HARP FPGAs can be reconfgured at tile granular-
ity (i.e., a manufacturer-defned portion of the fabric). The
reconfguration of an individual tile is known as partial recon-
fguration. However, HARP only provides a single tile, and
therefore would require re-fashing all spatially-multiplexed
accelerators to reconfgure an individual accelerator. As such,
OPTIMUS does not support partial reconfguration.

Temporal Multiplexing Interface For fexible memory man-
agement, each guest application allocates a buffer in host
DRAM for storing accelerator state upon preemption.

Time Slice in Temporal Multiplexing The time slice used
for temporal multiplexing is confgurable; however the default

value is 10 ms. A 10 ms time slice is possible because OPTI-
MUS does not reconfgure the FPGA upon preemption, since
the temporally-multiplexed accelerators on a given physical
accelerator share the same confguration. If partial reconfg-
uration support is added in the future, the time slice would
need to be increased to allow for suffcient time to reconfgure
individual tiles.

Temporal Multiplexing Scheduling OPTIMUS uses un-
weighted round-robin (i.e., equal time slices) as the default
scheduling algorithm. However, OPTIMUS also implements
a scheduler with weighted time slices and a priority-based
scheduler.

6 Evaluation
In this section, we evaluate our prototype implementation of
OPTIMUS and answer the following questions:

Effciency What is the overhead of the hardware monitor in
terms of FPGA resource utilization? To what extent does spa-
tial multiplexing improve FPGA resource utilization (§6.2)?
How much virtualization overhead does OPTIMUS incur com-
pared to pass-through (i.e., direct assignment) (§6.3)? How
does the use of huge pages infuence memory throughput and
latency? (§6.5)

Scalability How does OPTIMUS scale with respect to the
number of acceleration jobs concurrently executing on the
FPGA (§6.4)? How does OPTIMUS scale with respect to the
oversubscription factor of each accelerator (i.e., the number
of virtual accelerators per physical accelerator) (§6.6)?

Fairness How similar is the DMA bandwidth for each phys-
ical accelerator (§6.7)? Does OPTIMUS enforce different
scheduling policies among its virtual accelerators (§6.8)?

6.1 Experimental Setup
Hardware We evaluate OPTIMUS on Intel Skylake HARP
[25]. The platform features a 2.8 GHz Xeon CPU and a 400
MHz Arria 10 FPGA [32] located in the same package. The
CPU and FPGA are connected via a single UPI [51] link as
well as two PCIe 3.0 links. The server has 188 GB of DRAM.

Software OPTIMUS runs CentOS 7.5 with Linux kernel ver-
sion 5.1.0-rc6 as the host OS, using QEMU version 3.0.1.
Each guest also runs CentOS 7.5 and is allocated 10 GB of
the server’s 188 GB of DRAM.

Baseline We compare OPTIMUS’s performance with virtu-
alization via pass-through (i.e., direct assignment). To allow
the FPGA to directly access the application’s virtual address
space, we enable vIOMMU [83] (virtual IOMMU) support
in QEMU. To our knowledge, there are no shared-memory
FPGA hypervisors to which we can compare OPTIMUS.

Confguration Unless mentioned specifcally, OPTIMUS uses
2MB huge pages with IOTLB Confict Mitigation enabled.

A Hypervisor for Shared-Memory FPGA Platforms ASPLOS ’20, March 16–20, 2020, Lausanne, Switzerland

Table 1. The benchmarks used to evaluate OPTIMUS, the num-
ber of lines of Verilog code used to implement benchmarks,
and the frequencies at which benchmarks are executed.

App Description LoC Freq.
(MHz)

AES AES128 Encryption Algorithm 1965 200
MD5 MD5 Hashing Algorithm 1266 100
SHA SHA512 Hashing Algorithm 2218 200
FIR Finite Impulse Response Filter 1090 200
GRN Gaussian Random Number Generator 1238 200
RSD Reed Solomon Decoder 5324 200
SW Smith Waterman Algorithm 1265 100
GAU Gaussian Image Filter 2406 200
GRS Grayscale Image Filter 2266 200
SBL Sobel Image Filter 2451 200
SSSP Single Source Shortest Path 3140 200
BTC Bitcoin Miner 1009 100
MB Random Memory Accesses 1020 400
LL Linked List Walker 695 400

Benchmarks Table 1 shows the fourteen benchmarks with
which we evaluate OPTIMUS. Ten of these benchmarks are
ported from HardCloud [17], an open-source framework that
offoads OpenMP [20] computation tasks to the FPGA. Our
HardCloud benchmarks are all compute-intensive; they in-
clude signal processing, cryptography, scientifc computing,
and image processing applications. We port these benchmarks
to our virtualization platform, and use their default confgura-
tion during synthesis. Besides, we also port an FPGA based
graph processing application (single source shortest path or
SSSP) [89], and a bitcoin miner [3] to our virtualization plat-
form. Unlike in §2.1, we only evaluate the shared-memory
implementation of SSSP in this section, while confguring
the benchmark to use a graph with 800K vertices and 12.8M
edges. HardCloud benchmarks, SSSP, and Bitcoin are chosen
to represent real-world applications.

Since no open-source benchmarks for HARP place suff-
cient strain on OPTIMUS’s bandwidth and latency for a single
acceleration job, and because no existing benchmarks con-
form to OPTIMUS’s preemption interface, we provide two
benchmarks ourselves. Both of these benchmarks implement
OPTIMUS’s preemption interface in order to evaluate OPTI-
MUS’s temporal multiplexing capabilities.

MemBench (MB) concurrently issues random DMA read
and write requests in order to saturate HARP’s bandwidth.
The random reads and writes result in the worst-case effects of
IOTLB misses, and thus minimize throughput benefts from
memory locality.

LinkedList (LL) sequentially fetches cache line sized nodes
from a linked list distributed randomly in DRAM, connect-
ing the performance of LinkedList to worst-case DMA pat-
terns and thus creating a latency bottleneck. Because shared-
memory FPGAs are an emerging technology, there are cur-
rently few open-source benchmarks that leverage this model.

However, LinkedList represents the fundamental limitations
for irregular parallel applications (i.e., with a lot of pointer
chasing), and prior work [77] has demonstrated that linked
lists are suffcient to study the overhead of latency-bound
workloads on shared-memory FPGA platforms.

The latency sensitivity of LinkedList requires special treat-
ment due to the intricacies of the HARP platform. All Hard-
Cloud benchmarks allow the HARP shell to automatically
select the interconnect channel (PCIe or UPI) used for each IO
packet; for throughput-bound workloads, this confguration
generally yields optimal performance [24]. However, for a
highly latency-sensitive benchmark such as LinkedList, auto-
matic channel selection yields unstable performance. HARP’s
channel selector is optimized for throughput rather than la-
tency. Thus, although UPI has lower latency for reads [24],
the channel selector places some reads on PCIe, leading to
wide performance variation for latency-sensitive benchmarks.
As such, we measure the performance of LinkedList under
two confgurations: PCIe-only and UPI-only.

Table 1 shows the frequency at which each benchmark is
run. Ideally, each benchmark would be run at the highest fre-
quency that the FPGA board supports (400 MHz). However,
a number of the benchmarks are too complex for HARP’s
current synthesizer to be able to ensure that their circuits can
correctly operate at this maximum frequency; the synthesizer
cannot place the FPGA logic elements suffciently close in
order to propagate signals quickly enough. We therefore syn-
thesize each benchmark at the highest frequency achievable
with OPTIMUS’s maximum number of physical accelerators
(eight). As synthesis algorithms improve, we anticipate being
able to run the benchmarks at higher frequencies.

6.2 FPGA Resource Utilization
In this section, we evaluate the impact of OPTIMUS on FPGA
resource utilization as reported by Intel’s FPGA toolchain.
We measure the percent of on-FPGA resources consumed
by the hardware monitor (indicating virtualization overhead),
and we explore the extent to which spatial multiplexing can
improve FPGA resource utilization.

Table 2 displays the percentage of Adaptive Logic Modules
(ALMs) and Block RAM (BRAM) that each major FPGA
component utilizes on (1) a single accelerator pass-through
baseline versus (2) eight accelerators under OPTIMUS. The
FPGA shell is an inherent component in both OPTIMUS and
the pass-through baseline, and consumes 23.44% of ALMs
and 6.57% of BRAM. The hardware monitor is only present
in OPTIMUS, but utilizes just 6.16% of the ALMs and 0.48%
of the BRAM, indicating low virtualization overhead in terms
of resource utilization.

Without the spatial multiplexing of OPTIMUS, benchmarks
in the pass-through accelerator confguration utilize no more
than 5% of available FPGA resources. OPTIMUS’s spatial
multiplexing increases aggregate accelerator resource utiliza-
tion roughly linearly. With eight accelerators, OPTIMUS’s

ASPLOS ’20, March 16–20, 2020, Lausanne, Switzerland J. Ma, G. Zuo, K. Loughlin, X. Cheng, Y. Liu, A. Eneyew, Z. Qi, and B. Kasikci

Table 2. Breakdown of FPGA resource utilization by com-
ponent (ALM and BRAM). Each component’s utilization is
reported as a percentage of the total amount of each resource
type available on the FPGA. The pass-through (PT) base-
line features a single instance of the accelerator benchmark,
while OPTIMUS features eight instances in order to compare
resource utilization in the presence of spatial multiplexing.

FPGA Component ALM Usage (%) BRAM Usage (%)
OPTIMUS PT OPTIMUS PT

Shell 23.44 23.44 6.57 6.57
Hardware Monitor 6.16 0.00 0.48 0.00

AES 27.80 3.62 23.01 2.82
MD5 34.27 4.35 23.01 2.82
SHA 18.16 2.16 22.46 2.82
FIR 15.77 1.92 22.46 2.82

GRN 12.53 1.76 7.98 1.02
RSD 17.93 2.21 22.87 2.87

App SW 10.34 1.42 11.67 1.47
GRS 9.92 1.32 18.15 2.28
GAU 25.28 3.41 21.24 2.60
SBL 18.49 2.39 20.30 2.55
SSSP 15.73 1.96 22.47 2.82
BTC 8.99 1.32 4.16 0.48
MB 4.84 0.83 0.00 0.00
LL -0.24 0.15 0.00 0.00

Figure 4. Performance overhead of different benchmarks
compared to pass-through.

(a) Latency (b) Throughput

UPI
PCIe

0

25

50

75

100

125

N
or

m
al

iz
ed

 L
at

en
cy

 (%
) 124.2

 111.1

MB
MD5

SHA
AES

GRN FIR SW
RSD

GAU
GRS

SBL
SSSP

BTC
0

25

50

75

100

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t (

%
)

 90.1
 99.6 99.8 99.8 95.9 99.9 99.9 99.9

 94.4 93.9 92.7
 99.4 100.0

slight overhead beyond 8x stems from increased circuit com-
plexity as the number of accelerators increases. Specifcally,
the synthesizer must consume extra resources in order to route
signals to different locations on the FPGA chip under timing
requirements.

MemBench and LinkedList are suffciently simple that
the synthesizer is able to optimize the FPGA confguration,
yielding a sublinear relationship. MemBench only uses 6x
the number of ALMs as the pass-through baseline. As for
LinkedList, overall resource usage actually decreases, and is
thus listed as using a negative portion of resources in Table 2.

6.3 Performance Overhead
To measure the virtualization overhead introduced by OP-
TIMUS, we compare the performance of an accelerator vir-
tualized via pass-through (i.e., direct assignment) with an
accelerator virtualized via OPTIMUS, as shown in Fig. 4.

Latency Fig. 4a shows the latency overhead for LinkedList—
a microbenchmark which represents the worst-case for latency-
bound applications—when running in PCIe-only mode and
UPI-only mode. The 24% latency overhead of LinkedList
stems from a decision to favor scalability over latency in the
arrangement of our hardware multiplexers. In order to pass
timing requirements when scaling to eight accelerators, we
require a three-level binary tree (as opposed to a single mul-
tiplexer with eight child accelerators). Unfortunately, each
added layer of the tree adds approximately 33 ns of latency;
therefore, our design induces approximately 100 ns of latency

on the path through the multiplexer tree in order to provide
scalability.

Throughput Fig. 4b displays the throughput overhead for
the remaining benchmarks. For MemBench (a microbench-
mark which represents the worst-case for bandwidth-intensive
applications), the relative throughput overhead is 9.9%. Mem-
Bench is specifcally designed to stress the interconnection
as much as possible, and therefore issues memory requests
at every possible FPGA cycle. However, given the routing
complexity of the multiplexer tree, the accelerator can only
transmit a memory request packet every two cycles. Thus,
the multiplexer tree is again the primary source of overhead.
Despite this worst-case scenario, our HardCloud benchmark
results indicate that the throughput overhead of OPTIMUS is
less than 5% for realistic applications.

6.4 Scalability of Spatial Multiplexing
In this section, we assess OPTIMUS’s ability to scale with
respect to the number of acceleration jobs executing concur-
rently on the FPGA. For each benchmark, we place eight
instances of the accelerator on the FPGA (i.e., the maximum
number of physical accelerators that can be synthesized on
our platform). We measure the performance of each bench-
mark as the number of concurrent acceleration jobs increases.

Latency Because LinkedList is highly sensitive to memory
access latency, we measure the benchmark’s execution time
as the number of acceleration jobs increases to determine the
effects of scaling on latency. As shown in Fig. 5a, increas-
ing the number of acceleration jobs has negligible effect on
aggregate latency if the working set does not exceed IOTLB
capacity. The slight (< 6%) increase from 1 job to 8 jobs is
due to IO queuing delays.

When the working set barely exceeds IOTLB capacity (2G),
latency only suffers a slight increase, since address translation
is not overwhelmed. However, once the working set reaches
4G, the queuing delay is exacerbated by frequent address

A Hypervisor for Shared-Memory FPGA Platforms ASPLOS ’20, March 16–20, 2020, Lausanne, Switzerland

translation, resulting in a rapid increase in average latency as
the number of jobs grows.

Figure 5. Average memory access latency of LinkedList with different working set sizes and number of virtual machines.

(a) With 2M Pages (b) With 4K Pages

16M 32M 64M 128M 256M 512M 1G 2G 4G 8G
0

1000

1 Job 2 Jobs 4 Jobs 8 Jobs

16M 32M 64M 128M 256M 512M 1G 2G 4G 8G
Total Working Set Size

0

1000

2000

 A
ve

ra
ge

 L
at

en
cy

 (n
s) UPI Channel

PCIe Channel

32K 64K 128K 256K 512K 1M 2M 4M 8M 16M
0

1000

1 Job 2 Jobs 4 Jobs 8 Jobs

32K 64K 128K 256K 512K 1M 2M 4M 8M 16M
Total Working Set Size

0

1000

2000

A

ve
ra

ge
 L

at
en

cy
 (n

s)

UPI Channel (with 4K Pages)

PCIe Channel (with 4K Pages)

Figure 6. Aggregate throughput of MemBench with different working set sizes and number of virtual machines.

(a) With 2M Pages (b) With 4K Pages

16M 32M 64M 128M 256M 512M 1G 2G 4G 8G
0

10

1 Job
2 Jobs
4 Jobs
8 Jobs

16M 32M 64M 128M 256M 512M 1G 2G 4G 8G
Total Working Set Size

0

5

10

A

gg
re

ga
te

 M
em

or
y

Th
ro

ug
hp

ut
 (G

B
/s

)

Random Read

Random Write
32K 64K 128K 256K 512K 1M 2M 4M 8M 16M

0

10

1 Job
2 Jobs
4 Jobs
8 Jobs

32K 64K 128K 256K 512K 1M 2M 4M 8M 16M
Total Working Set Size

0

5

10

A

gg
re

ga
te

 M
em

or
y

Th
ro

ug
hp

ut
 (G

B
/s

)

Random Read (with 4K Pages)

Random Write (with 4K Pages)

Throughput Since a single instance of MemBench saturates
the platform’s bandwidth, MemBench indicates the worst-
case measurement of throughput scalability. Fig. 6a shows
the aggregate throughput of MemBench as the number of
acceleration jobs and aggregate working set size are increased.
As demonstrated, increasing the number of acceleration jobs
does not diminish the aggregate throughput. Thus, OPTIMUS
scales well in terms of memory access throughput.

The drop-off in throughput beyond 1 GB is not due to OP-
TIMUS, but rather due to the limitations of the current HARP
IOMMU. Since we believe that the IOTLB only contains 512
entries when the page size is 2 MB, the IOTLB is limited
to only caching the mappings of 1 GB virtual address space.
Thus, when the aggregate working set size exceeds 1 GB,
throughput degrades as a result of IOTLB misses.

In HARP, the IOMMU is not integrated into the CPU in
order to minimize CPU modifcations needed to support the
experimental platform. As a result, upon each IOTLB miss,
the IOMMU must go through the system interconnection to

fetch the required IO page table from the CPU. We argue that
in future generations of shared-memory FPGA platforms, the
manufacturer should increase the number of IOTLB entries
and integrate the IOMMU into the CPU in order to mitigate
the frequency and severity of IOTLB misses. Additionally,
supplementing a CPU-integrated IOMMU with hard-wired
support for SR-IOV could potentially allow SR-IOV to scale
on shared-memory platforms. Further modifying the IOMMU
to support SR-IOV on UPI links could even allow SR-IOV to
virtualize encapsulated PCIe and UPI transactions.

Fig. 7 shows the aggregate throughput (normalized to a
single acceleration job) of our real-world applications as the
number of acceleration jobs is increased. Unlike MemBench,
none of these applications fully utilize the bandwidth for a
single acceleration job. As a result, the aggregate throughput
increases as the number of acceleration jobs increases. Except
for Gaussian, Grayscale, Sobel, and Bitcoin, whose working
set sizes are relatively small, the total working set sizes of
other applications vary from 2GB to 32GB, which means
the capacity of IOTLB is exceeded. However, since all these
applications are well-designed to have good memory locality,
performance is not impacted due to IOTLB thrashing.

ASPLOS ’20, March 16–20, 2020, Lausanne, Switzerland J. Ma, G. Zuo, K. Loughlin, X. Cheng, Y. Liu, A. Eneyew, Z. Qi, and B. Kasikci

Figure 7. The aggregate throughput of different real-world
applications, normalized to the throughput of a single VM.
GAU, GRS, SBL, and SSSP fail to scale because the intercon-
nection bandwidth becomes saturated, creating a performance
bottleneck beyond four accelerators.

MD5
SHA AES

GRN FIR SW RSD
GAU GRS SBL

SSSP
BTC

0

2

4

6

8

A
gg

re
ga

te
 T

hr
ou

gh
pu

t
(N

or
m

al
iz

ed
 to

 1
 Jo

b)

1 Job
2 Jobs
4 Jobs
8 Jobs

Figure 8. Normalized aggregate throughput in the presence
of preemptive temporal multiplexing. All virtual accelerators
are scheduled on a single physical accelerator.

(a) LinkedList (b) MemBench (c) MD5 Worst Case
0.00

0.25

0.50

0.75

1.00

A
gg

re
ga

te
 T

hr
ou

gh
pu

t
(N

or
m

al
iz

ed
 to

 1
 Jo

b)

1 Job 2 Jobs 4 Jobs 8 Jobs 16 Jobs

6.5 Beneft of Using Huge Pages
To measure the performance beneft of “huge” (2M) pages, we
compare the throughput and latency when using 2M versus
4K pages. Fig. 5 and Fig. 6 compare the results of 2M versus
4K paging in terms of latency and throughput, respectively.

OPTIMUS suffers from a performance drop when the ag-
gregate working set exceeds the IOTLB capacity (512 pages);
a 2M TLB entry can serve 512 times more memory than
a 4K entry. Using 2M pages can thus postpone the perfor-
mance drop from a 4M aggregate working set to 2G, which is
benefcial for applications with a large working set.

As shown in Fig. 6b, we discovered an unusually-high
read throughput when (a) there is only one accelerator, and
(b) the working set does not exceed 2M. We noticed a sim-
ilar phenomenon with 2M pages, which is not pictured due
to spacing constraints. While we cannot defnitively deter-
mine the source of this behavior, we believe the phenomena
arise due to a speculative optimization in the IOTLB pipeline,
which assumes that subsequent memory accesses will access
the same 2 MB region as previous accesses.

6.6 Scalability of Temporal Multiplexing
In this section, we evaluate how OPTIMUS scales with respect
to the oversubscription factor (i.e., the number of virtual accel-
erators per physical accelerator). Since only MemBench and
LinkedList conform to OPTIMUS’s preemption interface, we
are limited to directly evaluate these benchmarks. However,
preemption overhead is correlated to the amount of execution
state that must be saved. Therefore, because we know the total
set of resources consumed by each accelerator confguration,
we can use this percentage as an upper bound on the amount
of state that must be saved, thus establishing an upper bound
on context-switching overhead.

Fig. 8 presents the aggregate throughput of running a vary-
ing number of virtual accelerators on a physical accelerator,
normalized against a single job on an accelerator. Theoreti-
cally, OPTIMUS does not have a hard limitation on the scal-
ability of temporal multiplexing. Our evaluation stops at 16

because we are able to show that the context-switching over-
head does not increase as the number of jobs increases.

As indicated by the drop-in throughput between 1 and 2
jobs, the overhead of preemption for LinkedList is approx-
imately 0.5%. For MemBench, this number is 0.7%. The
overhead remains constant beyond 2 jobs because preemption
occurs at a fxed interval in the presence of temporal multi-
plexing, regardless of the number of jobs being multiplexed.

We estimate the worst-case overhead of temporal multi-
plexing for real-world applications by simulation. Since MD5
occupies the most on-FPGA resources of any real-world ap-
plication, we use this benchmark to establish an upper bound.
Our estimation yields 9% temporal multiplexing overhead in
the worst case (i.e., assuming all resources occupied by MD5
must be saved on a context switch).

We stress that the amount of state that must be saved is
application-dependent. If the amount of state is large, the
length of each time slice can be increased to reduce the num-
ber of context switches, thereby mitigating the penalty.

6.7 Fairness of Spatial Multiplexing
In this section, we measure the fairness of the hardware sched-
uler in terms of its ability to guarantee at least 1/N of the total
real-time bandwidth to each of N physical accelerators, as-
suming those accelerators are actively transmitting data. We
assess the bandwidth fairness in both homogeneous confgura-
tions (where the FPGA is confgured with multiple instances
of the same accelerator) and heterogeneous confgurations
(where the FPGA is confgured with various accelerators).

Homogeneous Confgurations For each benchmark, we con-
fgure the FPGA with eight homogeneous accelerators and
measure the per-accelerator throughput. Table 3 presents the
normalized throughput range (i.e., the difference between the
maximum and minimum accelerator throughput divided by
the average throughput) for each benchmark. The maximum
normalized throughput range is approximately 1%, demon-
strating that the difference in throughput between any two
accelerators is at most 1%. In other words, given eight ho-
mogeneous accelerators, each accelerator achieves roughly
1/8 of the aggregate throughput. Thus, the hardware monitor

A Hypervisor for Shared-Memory FPGA Platforms ASPLOS ’20, March 16–20, 2020, Lausanne, Switzerland

fairly multiplexes the FPGA among physical accelerators in
homogeneous FPGA confgurations.

Table 3. Normalized throughput range among eight homogeneous physical accelerators.

Accelerators AES MD5 SHA FIR GRN RSD SW GAU GRS SBL SSSP BTC MB LL
Normalized Throughput Range (10−4) 21.9 11.9 4.40 30.1 108 1.77 3.79 63.1 1.60 147 595 0.468 1.83 3.25

Heterogeneous Confgurations

Table 4. MemBench’s throughput when co-located with a second active accelerator, normalized against a standalone instance.

Co-located Accelerator AES MD5 SHA FIR GRN RSD SW GAU GRS SBL SSSP BTC MB LL
Normalized Throughput 0.86x 0.50x 0.77x 0.75x 1.00x 0.78x 0.78x 0.80x 0.80x 0.79x 0.75x 1.00x 0.50x 1.00x

MemBench is designed to
saturate HARP’s bandwidth for a single job. Therefore, we
use it as a baseline for full throughput, and measure the rela-
tive decrease in MemBench’s throughput in the presence of a
second active accelerator benchmark.

Table 4 shows the normalized throughput reported by the
MemBench accelerator for each confguration. In the presence
of a second active accelerator, MemBench is guaranteed to
receive at least half of the original bandwidth.

Upon frst glance, MemBench receiving more than half
of the total bandwidth may appear to be unfair. However,
most accelerators do not transmit data as often as MemBench.
For instance, in the cases where data is rarely transmitted by
the other accelerator (e.g., LinkedList), MemBench receives
a near-complete share of the bandwidth. When the second
accelerator is also bandwidth-hungry (e.g., MD5 and a second
instance of MemBench), the bandwidth is evenly split.

6.8 Fairness of Temporal Multiplexing
Enforcing fairness in the context of a software scheduler
means being able to enforce the cloud provider’s custom
time-sharing policy. OPTIMUS implements an unweighted
round-robin scheduler (i.e., equal time slices), a weighted
scheduling policy (i.e., weighted time slices), and a priority
scheduler (i.e., the job with the greatest priority runs at each
time slice). We verify that the software scheduler successfully
enforces each policy by measuring the execution time of each
virtual accelerator across varying oversubscription factors,
time slice lengths, and job weights/priorities. On average, the
actual execution times are within 0.32% of the expected times,
with the greatest difference being 1.42%. Thus, OPTIMUS
successfully enforces each of its software scheduling policies.

7 Discussion

AM

7.1 OPTIMUS vs. AMORPHOS
ORPHOS [37] targets OS management of FPGAs. Like

OPTIMUS, AMORPHOS enables both spatial and temporal
multiplexing of FPGAs. AMORPHOS overcomes the static
limitations of partial reconfguration (i.e., forcing accelera-
tor designs to ft into a fxed-size FPGA partition) through
an abstraction called morphlets. Specifcally, AMORPHOS

virtualizes an FPGA as a set of morphable tasks, which can
alter their resource requirements at runtime to dynamically
accommodate a greater or lesser number of accelerators on
the same FPGA. OPTIMUS does not support dynamic scala-
bility on a single FPGA. However, since OPTIMUS supports
acceleration preemption, OPTIMUS’s virtual accelerators can
theoretically be migrated in the event that a cloud provider
wishes to alter an FPGA confguration.

The fundamental difference between AMORPHOS and OP-
TIMUS is that they target different FPGA platforms (host-
centric vs shared-memory, respectively). The differences be-
tween these platforms are substantial (e.g., different soft-
ware/hardware programming interfaces, memory latencies/-
capacities, hardware topologies, and so forth).

Most importantly, these platforms necessitate signifcantly
different forms of memory management. Because AMOR-
PHOS targets host-centric platforms—where accelerators can-
not issue their own DMAs—it focuses on virtualizing each
accelerator’s view of on-FPGA DRAM. Thus, AMORPHOS’s
memory protection logic only needs to manage on-FPGA
DRAM, and can do so with segment-based translations.

On the other hand, OPTIMUS targets platforms in which
the FPGA uses the system DRAM. Thus, OPTIMUS must
integrate accelerator memory protection with the host’s page-
level memory management, while maintaining consistent
views of each address space for the CPU and FPGA. Nonethe-
less, given that platforms such as Intel PAC [27] give FP-
GAs access to both system and on-FPGA DRAM, our ap-
proaches to memory virtualization are complementary to
those of AMORPHOS.

7.2 Key Takeaways
We believe our work highlights two key areas for improve-
ment in systems and architectural support for heterogeneous
computing. First, there is a need for new OS abstractions.
Currently, each FPGA vendor uses a different programming
interface. Thus, standard OS abstractions (e.g., to send mes-
sages to the CPU and access different memories) would im-
mensely increase program portability. FPGA manufacturers
can hasten the arrival of such OS abstractions by providing a
standardized hardware interface.

Second, a hard-wired multiplexer tree is needed to provide
more effcient and scalable packet routing. Like AMORPHOS,
OPTIMUS also confrms that a fat multiplexer becomes a

ASPLOS ’20, March 16–20, 2020, Lausanne, Switzerland J. Ma, G. Zuo, K. Loughlin, X. Cheng, Y. Liu, A. Eneyew, Z. Qi, and B. Kasikci

bottleneck for scalability. Furthermore, OPTIMUS shows that
even a programmer-synthesized multiplexer tree can be a
bottleneck at higher frequencies. These bottlenecks arise due
to the diffculty of placing multiplexer resources suffciently
close to pass timing constraints, but could be mitigated via a
hard-wired multiplexer tree.

8 Related Work
Accelerator Libraries Amazon F1 [6] and Microsoft Brain-
wave [14, 50] offer accelerator libraries to their customers.
The customer chooses from among these accelerators, ulti-
mately running their acceleration job on an FPGA that has
been confgured accordingly. OPTIMUS is targeted for this use
case, and allows the cloud provider to spatially and temporally
multiplex their FPGAs among customers.

Sharing On-FPGA Memory Asiatici et al. propose a hy-
pervisor featuring a high-level framework to facilitate FPGA
application development [8]. The hypervisor provides a frame-
work to share on-FPGA memory among multiple accelerators.
CoRAM [19] and CoRAM++ [75] similarly allow software
to read and write on-FPGA BRAMs. Unlike OPTIMUS, none
of these designs grant the CPU and FPGA a unifed view of
memory.

Sharing System Memory FPGAs can share system memory
with the CPU on platforms such as Intel PAC [27] (PCIe-only),
Intel HARP [25] (PCIe and UPI), and Enzian [9] (forthcom-
ing). GPUs from Intel [30, 70] and NVIDIA [1, 47, 58, 88]
can transparently share memory regions with the CPU, using
both software-only and hardware-assisted techniques. OPTI-
MUS’s page table slicing is inspired by such GPU page table
partitioning techniques (as well as those of Virtual WiFi [78])
in a hardware-software co-design that is independent of ac-
celerator design and behavior.

Overlays FPGA overlays [13, 34, 35, 42] provide an abstrac-
tion of FPGA hardware such that confgurations can be made
architecture-agnostic. Unfortunately, the abstractions of over-
lays sacrifce throughput and resource utilization compared
to confgurations built for specifc FPGA architectures. Given
that the burden of developing accelerators is not placed on the
customer in OPTIMUS, we believe that cloud providers and
customers would prefer the effciency of native builds over
the ease of cross-platform porting.

Virtualizing FPGA Pools Xilinx SDAccel [82], Tarafdar et
al. [67], and Microsoft Catapult [16, 56] target the virtual-
ization of FPGA pools, allowing jobs to be scheduled on
available accelerators within the pool. Unlike these systems,
OPTIMUS targets the virtualization of individual FPGAs.

Virtualizing Individual FPGAs Prior work explores spatial
multiplexing [15, 18, 53, 55, 72, 74] and temporal multiplex-
ing [18, 53, 55, 73, 84] of FPGAs. While most of these works

focus on host-centric FPGAs, OPTIMUS focuses on shared-
memory FPGAs. An exception is AvA [84], which uses API
remoting to virtualize accelerators. Unlike OPTIMUS, AvA
targets a higher level of abstraction (e.g., OpenCL), and virtu-
alizes the userspace library instead of low-level hardware.

FPGA OSes BORPH [64, 65] supplements software pro-
cesses with hardware processes, which communicate with
other processes via standard UNIX interfaces. ReconOS [48]
and Hthreads [54] extend the domain of multi-threaded pro-
gramming to an FPGA, and provide support for inter-thread
communication and synchronization. LEAP [22] offers reli-
able and latency-insensitive communication channels between
different hardware modules. AMORPHOS [37] provides sup-
port for sharing different on-FPGA resources. Unlike these
works, OPTIMUS is a hypervisor that focuses on virtualizing
shared-memory FPGAs as a set of accelerators.

SR-IOV for FPGAs Intel [26] and Xilinx [80] both offer
IP to support hardware-assisted FPGA virtualization of PCIe
transactions via SR-IOV [43]. However, state-of-the-art shared-
memory FPGA platforms that use SR-IOV do not support
more than one VF [25, 27]. OPTIMUS supports up to eight
physical accelerators, which can each support both UPI and
PCIe transactions as well as an arbitrary number of virtual
accelerators.

Partial Reconfguration A number of FPGA virtualization
solutions [15, 18, 37, 74] target partial reconfguration ca-
pabilities of FPGAs, where an individual accelerator can be
reconfgured without needing to reconfgure the entire FPGA.
Because Intel HARP currently only provides a single recon-
fgurable region on the FPGA, OPTIMUS does not support
partial reconfguration; doing so would overwrite the hard-
ware monitor.

9 Conclusion
In this paper, we presented OPTIMUS, the frst scalable hy-
pervisor for shared-memory FPGA platforms. OPTIMUS pro-
vides both spatial and preemptive temporal multiplexing of
FPGAs, such that individual accelerators on an FPGA can
be fairly overprovisioned to guests. OPTIMUS offers effcient
virtual DMA isolation via page table slicing. Our experiments
show that OPTIMUS can support eight physical accelerators
on a single FPGA, and improves the aggregate throughput of
twelve realistic benchmark workloads by 1.98x-7x.

Acknowledgments
We thank our shepherd, Christopher J. Rossbach, and anony-
mous reviewers for their insightful feedback. This work was
supported by Applications Driving Architectures (ADA) Re-
search Center, a JUMP Center co-sponsored by SRC and
DARPA. The testbed was supported in part by Intel Corpora-
tion and National Key Research & Development Program of
China (No. 2016YFB1000502).

A Hypervisor for Shared-Memory FPGA Platforms ASPLOS ’20, March 16–20, 2020, Lausanne, Switzerland

References
[1] [n.d.]. GP100 Pascal Whitepaper. https://images.nvidia.com/content/

pdf/tesla/whitepaper/pascal-architecture-whitepaper.pdf.
[2] [n.d.]. Hugetlbfs Reservation. https://www.kernel.org/doc/html/v4.18/

vm/hugetlbfs_reserv.html.
[3] [n.d.]. Open-Source FPGA Bitcoin Miner. https://github.com/progran

ism/Open-Source-FPGA-Bitcoin-Miner.
[4] [n.d.]. Transparent huge pages in 2.6.38. https://lwn.net/Articles

/423584/.
[5] [n.d.]. Transparent Hugepage Support. https://www.kernel.org/doc/D

ocumentation/vm/transhuge.txt.
[6] Amazon. [n.d.]. Amazon EC2 F1 Instances - Run Customizable FPGAs

in the AWS Cloud. https://aws.amazon.com/ec2/instance-types/f1.
[7] Amazon. [n.d.]. Offcial repository of the AWS EC2 FPGA Hardware

and Software Development Kit. https://github.com/aws/aws-fpga.
[8] Mikhail Asiatici, Nithin George, Kizheppatt Vipin, Suhaib A Fahmy,

and Paolo Ienne. 2017. Virtualized execution runtime for fpga accelera-
tors in the cloud. Ieee Access 5 (2017), 1900–1910.

[9] Systems Group at ETH Zurich. [n.d.]. Enzian is a research computer
built by the Systems Group at ETH Zurich. http://www.enzian.syste
ms/.

[10] Osama G Attia, Tyler Johnson, Kevin Townsend, Philip Jones, and
Joseph Zambreno. 2014. Cygraph: A reconfgurable architecture for
parallel breadth-frst search. In 2014 IEEE International Parallel &
Distributed Processing Symposium Workshops. IEEE, 228–235.

[11] Rachata Ausavarungnirun, Joshua Landgraf, Vance Miller, Saugata
Ghose, Jayneel Gandhi, Christopher J. Rossbach, and Onur Mutlu.
2018. Mosaic: Enabling Application-Transparent Support for Multiple
Page Sizes in Throughput Processors. SIGOPS Oper. Syst. Rev. 52, 1
(Aug. 2018), 27–44. https://doi.org/10.1145/3273982.3273986

[12] Jayaram Bhasker. 1999. A Vhdl Primer. Prentice-Hall.
[13] Alexander Brant and Guy GF Lemieux. 2012. ZUMA: An open FPGA

overlay architecture. In 2012 IEEE 20th international symposium on
feld-programmable custom computing machines. IEEE, 93–96.

[14] Doug Burger. 2017. Microsoft unveils Project Brainwave for real-time
AI. Microsoft Research, Microsoft 22 (2017).

[15] Stuart Byma, J Gregory Steffan, Hadi Bannazadeh, Alberto Leon Gar-
cia, and Paul Chow. 2014. Fpgas in the cloud: Booting virtualized
hardware accelerators with openstack. In Field-Programmable Custom
Computing Machines (FCCM), 2014 IEEE 22nd Annual International
Symposium on. IEEE, 109–116.

[16] Adrian M Caulfeld, Eric S Chung, Andrew Putnam, Hari Angepat,
Jeremy Fowers, Michael Haselman, Stephen Heil, Matt Humphrey,
Puneet Kaur, Joo-Young Kim, et al. 2016. A cloud-scale acceleration
architecture. In The 49th Annual IEEE/ACM International Symposium
on Microarchitecture. IEEE Press, 7.

[17] Ciro Ceissler, Ramon Nepomuceno, Marcio Pereira, and Guido Araujo.
2018. Automatic Offoading of Cluster Accelerators. In 2018 IEEE
26th Annual International Symposium on Field-Programmable Custom
Computing Machines (FCCM). IEEE, 224–224.

[18] Fei Chen, Yi Shan, Yu Zhang, Yu Wang, Hubertus Franke, Xiaotao
Chang, and Kun Wang. 2014. Enabling FPGAs in the cloud. In Pro-
ceedings of the 11th ACM Conference on Computing Frontiers. ACM,
3.

[19] Eric S Chung, James C Hoe, and Ken Mai. 2011. CoRAM: an in-fabric
memory architecture for FPGA-based computing. In Proceedings of
the 19th ACM/SIGDA international symposium on Field programmable
gate arrays. ACM, 97–106.

[20] L. Dagum and R. Menon. 1998. OpenMP: an industry standard API
for shared-memory programming. IEEE Computational Science and
Engineering 5, 1 (Jan 1998), 46–55. https://doi.org/10.1109/99.660313

[21] Suhaib A Fahmy, Kizheppatt Vipin, and Shanker Shreejith. 2015. Vir-
tualized FPGA accelerators for effcient cloud computing. In Cloud

Computing Technology and Science (CloudCom), 2015 IEEE 7th Inter-
national Conference on. IEEE, 430–435.

[22] K. Fleming, H. Yang, M. Adler, and J. Emer. 2014. The LEAP FPGA
operating system. In 2014 24th International Conference on Field
Programmable Logic and Applications (FPL). 1–8. https://doi.org/10.
1109/FPL.2014.6927488

[23] Gokul Govindu, Ronald Scrofano, and Viktor K Prasanna. 2005. A
library of parameterizable foating-point cores for FPGAs and their
application to scientifc computing. In Proc Int’l Conf. Eng. Reconfg-
urable Systems and Algorithms (ERSA’05). Citeseer.

[24] Intel. [n.d.]. Acceleration Stack for Intel Xeon CPU with
FPGAs Core Cache Interface (CCI-P) Reference Manual.
https://www.altera.com/content/dam/altera-www/global/en_
US/pdfs/literature/manual/mnl-ias-ccip.pdf.

[25] Intel. [n.d.]. Hardware Accelerator Research Program. https://sofwar
e.intel.com/en-us/hardware-accelerator-research-program.

[26] Intel. [n.d.]. Intel Arria 10 Avalon-ST Interface with SR-IOV PCIe
Solutions User Guide. https://www.altera.com/en_US/pdfs/literature
/ug/ug_a10_pcie_sriov.pdf.

[27] Intel. [n.d.]. Intel Programmable Acceleration Card with Intel Arria 10
GX FPGA. https://www.intel.com/content/www/us/en/programm
able/products/boards_and_kits/dev-kits/altera/acceleration-card-
arria-10-gx.html.

[28] Intel. [n.d.]. Intel Virtualization Technology for Directed
I/O. https://software.intel.com/sites/default/fles/managed/c5/15/vt-
directed-io-spec.pdf.

[29] Intel. [n.d.]. Open Programmable Acceleration Engine. https://opae.g
ithub.io/latest/index.html.

[30] Intel. 2017. Intel Open Source HD Graphics and Intel Iris Plus Graphics
Programmer’s Reference Manual for the 2016 - 2017 Intel Core Proces-
sors, Celeron Processors, and Pentium Processors based on the “Kaby
Lake” Platform. https://01.org/sites/default/files/documentation/intel-
gfx-prm-osrc-kbl-vol05-memory_views.pdf.

[31] Intel. 2019. Embedded Peripherals IP User Guide. https:
//www.intel.com/content/dam/www/programmable/us/en/pdf
s/literature/ug/ug_embedded_ip.pdf.

[32] Intel. 2019. Intel Arria 10 FPGAs. https://www.intel.com/content/ww
w/us/en/products/programmable/fpga/arria-10.html.

[33] Intel. 2019. Intel FPGA Basic Building Blocks (BBB). https://github
.com/OPAE/intel-fpga-bbb.

[34] Abhishek Kumar Jain, Suhaib A Fahmy, and Douglas L Maskell. 2015.
Effcient Overlay architecture based on DSP blocks. In 2015 IEEE
23rd Annual International Symposium on Field-Programmable Custom
Computing Machines. IEEE, 25–28.

[35] Abhishek Kumar Jain, Douglas L Maskell, and Suhaib A Fahmy. 2016.
Throughput oriented FPGA overlays using DSP blocks. In 2016 Design,
Automation & Test in Europe Conference & Exhibition (DATE). IEEE,
1628–1633.

[36] Neo Jia and Kirti Wankhede. [n.d.]. VFIO Mediated devices. https:
//www.kernel.org/doc/Documentation/vfio-mediated-device.txt.

[37] Ahmed Khawaja, Joshua Landgraf, Rohith Prakash, Michael Wei, Eric
Schkufza, and Christopher J Rossbach. 2018. Sharing, Protection,
and Compatibility for Reconfgurable Fabric with AmorphOS. In 13th
USENIX Symposium on Operating Systems Design and Implementation
(OSDI 18). USENIX Association, 107–127.

[38] Moein Khazraee, Lu Zhang, Luis Vega, and Michael Bedford Taylor.
2017. Moonwalk: NRE Optimization in ASIC Clouds. SIGPLAN Not.
52, 4 (April 2017), 511–526. https://doi.org/10.1145/3093336.3037749

[39] Avi Kivity, Yaniv Kamay, Dor Laor, Uri Lublin, and Anthony Liguori.
2007. KVM: the Linux Virtual Machine Monitor. In In Proceedings of
the 2007 Ottawa Linux Symposium (OLS).

[40] Oliver Knodel, Paul R Genssler, and Rainer G Spallek. 2017. Vir-
tualizing Reconfgurable Hardware to Provide Scalability in Cloud
Architectures. Reconfgurable Architectures, Tools and Applications,

https://images.nvidia.com/content/pdf/tesla/whitepaper/pascal-architecture-whitepaper.pdf
https://images.nvidia.com/content/pdf/tesla/whitepaper/pascal-architecture-whitepaper.pdf
https://www.kernel.org/doc/html/v4.18/vm/hugetlbfs_reserv.html
https://www.kernel.org/doc/html/v4.18/vm/hugetlbfs_reserv.html
https://github.com/progranism/Open-Source-FPGA-Bitcoin-Miner
https://github.com/progranism/Open-Source-FPGA-Bitcoin-Miner
https://lwn.net/Articles/423584/
https://lwn.net/Articles/423584/
https://www.kernel.org/doc/Documentation/vm/transhuge.txt
https://www.kernel.org/doc/Documentation/vm/transhuge.txt
https://aws.amazon.com/ec2/instance-types/f1
https://github.com/aws/aws-fpga
http://www.enzian.systems/
http://www.enzian.systems/
https://doi.org/10.1145/3273982.3273986
https://doi.org/10.1109/99.660313
https://doi.org/10.1109/FPL.2014.6927488
https://doi.org/10.1109/FPL.2014.6927488
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/manual/mnl-ias-ccip.pdf
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/manual/mnl-ias-ccip.pdf
https://software.intel.com/en-us/hardware-accelerator-research-program
https://software.intel.com/en-us/hardware-accelerator-research-program
https://www.altera.com/en_US/pdfs/literature/ug/ug_a10_pcie_sriov.pdf
https://www.altera.com/en_US/pdfs/literature/ug/ug_a10_pcie_sriov.pdf
https://www.intel.com/content/www/us/en/programmable/products/boards_and_kits/dev-kits/altera/acceleration-card-arria-10-gx.html
https://www.intel.com/content/www/us/en/programmable/products/boards_and_kits/dev-kits/altera/acceleration-card-arria-10-gx.html
https://www.intel.com/content/www/us/en/programmable/products/boards_and_kits/dev-kits/altera/acceleration-card-arria-10-gx.html
https://opae.github.io/latest/index.html
https://opae.github.io/latest/index.html
https://01.org/sites/default/files/documentation/intel-gfx-prm-osrc-kbl-vol05-memory_views.pdf
https://01.org/sites/default/files/documentation/intel-gfx-prm-osrc-kbl-vol05-memory_views.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/ug/ug_embedded_ip.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/ug/ug_embedded_ip.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/ug/ug_embedded_ip.pdf
https://www.intel.com/content/www/us/en/products/programmable/fpga/arria-10.html
https://www.intel.com/content/www/us/en/products/programmable/fpga/arria-10.html
https://github.com/OPAE/intel-fpga-bbb
https://github.com/OPAE/intel-fpga-bbb
https://www.kernel.org/doc/Documentation/vfio-mediated-device.txt
https://www.kernel.org/doc/Documentation/vfio-mediated-device.txt
https://doi.org/10.1145/3093336.3037749
https://software.intel.com/sites/default/files/managed/c5/15/vt

ASPLOS ’20, March 16–20, 2020, Lausanne, Switzerland J. Ma, G. Zuo, K. Loughlin, X. Cheng, Y. Liu, A. Eneyew, Z. Qi, and B. Kasikci

RECATA (2017).
[41] Oliver Knodel and Rainer G Spallek. 2015. RC3E: provision and

management of reconfgurable hardware accelerators in a cloud envi-
ronment. arXiv preprint arXiv:1508.06843 (2015).

[42] Dirk Koch, Christian Beckhoff, and Guy GF Lemieux. 2013. An
effcient FPGA overlay for portable custom instruction set extensions.
In 2013 23rd international conference on feld programmable logic and
applications. IEEE, 1–8.

[43] Patrick Kutch. 2011. Pci-sig sr-iov primer: An introduction to sr-iov
technology. Intel application note (2011), 321211–002.

[44] Youngjin Kwon, Hangchen Yu, Simon Peter, Christopher J Rossbach,
and Emmett Witchel. 2016. Coordinated and effcient huge page man-
agement with ingens. In 12th {USENIX} Symposium on Operating
Systems Design and Implementation ({OSDI} 16). 705–721.

[45] Youngjin Kwon, Hangchen Yu, Simon Peter, Christopher J Rossbach,
and Emmett Witchel. 2017. Ingens: Huge Page Support for the OS and
Hypervisor. ACM SIGOPS Operating Systems Review 51, 1 (2017),
83–93.

[46] Doug Lea. [n.d.]. A Memory Allocator. http://gee.cs.oswego.edu/dl/h
tml/malloc.html.

[47] W. Li, G. Jin, X. Cui, and S. See. 2015. An Evaluation of Unifed
Memory Technology on NVIDIA GPUs. In 2015 15th IEEE/ACM
International Symposium on Cluster, Cloud and Grid Computing. 1092–
1098. https://doi.org/10.1109/CCGrid.2015.105

[48] Enno Lübbers and Marco Platzner. 2009. ReconOS: Multithreaded
programming for reconfgurable computers. ACM Transactions on
Embedded Computing Systems (TECS) 9, 1 (2009), 8.

[49] Theodore Michailidis, Alex Delis, and Mema Roussopoulos. 2019.
MEGA: overcoming traditional problems with OS huge page manage-
ment. In Proceedings of the 12th ACM International Conference on
Systems and Storage. ACM, 121–131.

[50] Microsoft. 2019. What are FPGAs and Project Brain-
wave? https://docs.microsof.com/en-us/azure/machine-
learning/service/concept-accelerate-with-fpgas.

[51] David Mulnix. 2017. Intel Xeon processor scalable family technical
overview.

[52] Muhsen Owaida, David Sidler, Kaan Kara, and Gustavo Alonso. 2017.
Centaur: A framework for hybrid CPU-FPGA databases. In Field-
Programmable Custom Computing Machines (FCCM), 2017 IEEE
25th Annual International Symposium on. IEEE, 211–218.

[53] Michele Paolino, Sébastien Pinneterre, and Daniel Raho. 2017. FPGA
virtualization with accelerators overcommitment for Network Function
Virtualization. In 2017 International Conference on ReConFigurable
Computing and FPGAs (ReConFig). IEEE, 1–6.

[54] Wesley Peck, Erik Anderson, Jason Agron, Jim Stevens, Fabrice Baijot,
and David Andrews. 2006. Hthreads: A computational model for
reconfgurable devices. In 2006 International Conference on Field
Programmable Logic and Applications. IEEE, 1–4.

[55] Sébastien Pinneterre, Spyros Chiotakis, Michele Paolino, and Daniel
Raho. 2018. vFPGAmanager: A virtualization framework for orches-
trated FPGA accelerator sharing in 5G cloud environments. In 2018
IEEE International Symposium on Broadband Multimedia Systems and
Broadcasting (BMSB). IEEE, 1–5.

[56] Andrew Putnam, Adrian M Caulfeld, Eric S Chung, Derek Chiou,
Kypros Constantinides, John Demme, Hadi Esmaeilzadeh, Jeremy Fow-
ers, Gopi Prashanth Gopal, Jan Gray, et al. 2014. A reconfgurable
fabric for accelerating large-scale datacenter services. ACM SIGARCH
Computer Architecture News 42, 3 (2014), 13–24.

[57] W. Qiao, J. Du, Z. Fang, M. Lo, M. F. Chang, and J. Cong. 2018. High-
Throughput Lossless Compression on Tightly Coupled CPU-FPGA
Platforms. In 2018 IEEE 26th Annual International Symposium on
Field-Programmable Custom Computing Machines (FCCM). 37–44.
https://doi.org/10.1109/FCCM.2018.00015

[58] Nikolay Sakharnykh. 2018. EVERYTHING YOU NEED
TO KNOW ABOUT UNIFIED MEMORY. http://on-
demand.gputechconf.com/gtc/2018/presentation/s8430-everything-
you-need-to-know-about-unified-memory.pdf.

[59] Eric Schkufza, Michael Wei, and Christopher J Rossbach. 2019. Just-
In-Time Compilation for Verilog: A New Technique for Improving the
FPGA Programming Experience. In Proceedings of the Twenty-Fourth
International Conference on Architectural Support for Programming
Languages and Operating Systems. ACM, 271–286.

[60] Hardik Sharma, Jongse Park, Emmanuel Amaro, Bradley Thwaites,
Praneetha Kotha, Anmol Gupta, Joon Kyung Kim, Asit Mishra, and
Hadi Esmaeilzadeh. 2016. Dnnweaver: From high-level deep network
models to fpga acceleration. In the Workshop on Cognitive Architec-
tures.

[61] Hardik Sharma, Jongse Park, Divya Mahajan, Emmanuel Amaro,
Joon Kyung Kim, Chenkai Shao, Asit Mishra, and Hadi Esmaeilzadeh.
2016. From high-level deep neural models to FPGAs. In Microarchitec-
ture (MICRO), 2016 49th Annual IEEE/ACM International Symposium
on. IEEE, 1–12.

[62] David Sidler, Zsolt István, Muhsen Owaida, and Gustavo Alonso. 2017.
Accelerating pattern matching queries in hybrid CPU-FPGA architec-
tures. In Proceedings of the 2017 ACM International Conference on
Management of Data. ACM, 403–415.

[63] Any Silicon. [n.d.]. FPGA vs ASIC, What to Choose? https://anysilic
on.com/fpga-vs-asic-choose/.

[64] Hayden Kwok-Hay So and Robert Brodersen. 2008. A unifed hard-
ware/software runtime environment for FPGA-based reconfgurable
computers using BORPH. ACM Transactions on Embedded Computing
Systems (TECS) 7, 2 (2008), 14.

[65] Hayden Kwok-Hay So and Robert W Brodersen. 2007. Borph: An
operating system for fpga-based reconfgurable computers. University
of California, Berkeley.

[66] J. Stuecheli, B. Blaner, C. R. Johns, and M. S. Siegel. 2015. CAPI: A
Coherent Accelerator Processor Interface. IBM Journal of Research
and Development 59, 1 (Jan 2015), 7:1–7:7. https://doi.org/10.1147/
JRD.2014.2380198

[67] Naif Tarafdar, Thomas Lin, Eric Fukuda, Hadi Bannazadeh, Alberto
Leon-Garcia, and Paul Chow. 2017. Enabling fexible network FPGA
clusters in a heterogeneous cloud data center. In Proceedings of the
2017 ACM/SIGDA International Symposium on Field-Programmable
Gate Arrays. ACM, 237–246.

[68] Terasic and Altera. [n.d.]. DE5a-Net FPGA Development
Kit User Manual. https://www.intel.com/content/dam/altera-
www/global/en_US/portal/dsn/42/doc-us-dsnbk-42-1804382103-
de5a-net-user-manual.pdf.

[69] Donald Thomas and Philip Moorby. 2008. The Verilog® Hardware
Description Language. Springer Science & Business Media.

[70] Kun Tian, Yaozu Dong, and David Cowperthwaite. 2014. A Full
GPU Virtualization Solution with Mediated Pass-Through.. In USENIX
Annual Technical Conference. 121–132.

[71] Anuj Vaishnav, Khoa Dang Pham, and Dirk Koch. 2018. A survey on
fpga virtualization. In 2018 28th International Conference on Field
Programmable Logic and Applications (FPL). IEEE, 131–1317.

[72] Duy Viet Vu, Oliver Sander, Timo Sandmann, Steffen Baehr, Jan Hei-
delberger, and Juergen Becker. 2014. Enabling partial reconfguration
for coprocessors in mixed criticality multicore systems using PCI Ex-
press Single-Root I/O Virtualization. In 2014 International Conference
on ReConFigurable Computing and FPGAs (ReConFig14). IEEE, 1–6.

[73] Wei Wang, Miodrag Bolic, and Jonathan Parri. 2013. pvFPGA: access-
ing an FPGA-based hardware accelerator in a paravirtualized environ-
ment. In Hardware/Software Codesign and System Synthesis (CODES+
ISSS), 2013 International Conference on. IEEE, 1–9.

[74] Jagath Weerasinghe, Francois Abel, Christoph Hagleitner, and An-
dreas Herkersdorf. 2015. Enabling FPGAs in hyperscale data centers.

http://gee.cs.oswego.edu/dl/html/malloc.html
http://gee.cs.oswego.edu/dl/html/malloc.html
https://doi.org/10.1109/CCGrid.2015.105
https://docs.microsoft.com/en-us/azure/machine-learning/service/concept-accelerate-with-fpgas
https://docs.microsoft.com/en-us/azure/machine-learning/service/concept-accelerate-with-fpgas
https://doi.org/10.1109/FCCM.2018.00015
http://on-demand.gputechconf.com/gtc/2018/presentation/s8430-everything-you-need-to-know-about-unified-memory.pdf
http://on-demand.gputechconf.com/gtc/2018/presentation/s8430-everything-you-need-to-know-about-unified-memory.pdf
http://on-demand.gputechconf.com/gtc/2018/presentation/s8430-everything-you-need-to-know-about-unified-memory.pdf
https://anysilicon.com/fpga-vs-asic-choose/
https://anysilicon.com/fpga-vs-asic-choose/
https://doi.org/10.1147/JRD.2014.2380198
https://doi.org/10.1147/JRD.2014.2380198
https://www.intel.com/content/dam/altera-www/global/en_US/portal/dsn/42/doc-us-dsnbk-42-1804382103-de5a-net-user-manual.pdf
https://www.intel.com/content/dam/altera-www/global/en_US/portal/dsn/42/doc-us-dsnbk-42-1804382103-de5a-net-user-manual.pdf
https://www.intel.com/content/dam/altera-www/global/en_US/portal/dsn/42/doc-us-dsnbk-42-1804382103-de5a-net-user-manual.pdf

A Hypervisor for Shared-Memory FPGA Platforms ASPLOS ’20, March 16–20, 2020, Lausanne, Switzerland

In Ubiquitous Intelligence and Computing and 2015 IEEE 12th Intl
Conf on Autonomic and Trusted Computing and 2015 IEEE 15th Intl
Conf on Scalable Computing and Communications and Its Associated
Workshops (UIC-ATC-ScalCom), 2015 IEEE 12th Intl Conf on. IEEE,
1078–1086.

[75] Gabriel Weisz and James C Hoe. 2015. CoRAM++: Supporting data-
structure-specifc memory interfaces for FPGA computing. In 2015
25th International Conference on Field Programmable Logic and Ap-
plications (FPL). IEEE, 1–8.

[76] Gabriel Weisz, Joseph Melber, Yu Wang, Kermin Fleming, Eriko Nurvi-
tadhi, and James C Hoe. 2016. A study of pointer-chasing performance
on shared-memory processor-FPGA systems. In Proceedings of the
2016 ACM/SIGDA International Symposium on Field-Programmable
Gate Arrays. ACM, 264–273.

[77] Gabriel Weisz, Joseph Melber, Yu Wang, Kermin Fleming, Eriko
Nurvitadhi, and James C. Hoe. 2016. A Study of Pointer-Chasing
Performance on Shared-Memory Processor-FPGA Systems. In Pro-
ceedings of the 2016 ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays (FPGA ’16). ACM, New York, NY, USA,
264–273. https://doi.org/10.1145/2847263.2847269

[78] Lei Xia, Sanjay Kumar, Xue Yang, Praveen Gopalakrishnan, York Liu,
Sebastian Schoenberg, and Xingang Guo. 2011. Virtual WiFi: bring
virtualization from wired to wireless. In Acm sigplan notices, Vol. 46.
ACM, 181–192.

[79] Xilinx. [n.d.]. AXI Interconnect. https://www.xilinx.com/products/in
tellectual-property/axi_interconnect.html.

[80] Xilinx. [n.d.]. Designing with SR-IOV Capability of Xilinx Virtex-7
PCI Express Gen3 Integrated Block. https://www.xilinx.com/support
/documentation/application_notes/xapp1177-pcie-gen3-sriov.pdf.

[81] Xilinx. [n.d.]. DMA for PCI Express (PCIe) Subsystem. https://www.
xilinx.com/products/intellectual-property/pcie-dma.html.

[82] Xilinx. [n.d.]. SDAccel Development Environment. https://www.xili
nx.com/products/design-tools/sofware-zone/sdaccel.html.

[83] Peter Xu. 2018. Device Assignment with Nested Guest and
DPDK. https://www.linux-kvm.org/images/a/a6/KVM_Forum_2018_
viommu_vfio.pdf.

[84] Hangchen Yu, Arthur M. Peters, Amogh Akshintala, and Christopher J.
Rossbach. 2019. Automatic Virtualization of Accelerators. In 17th
Workshop on Hot Topics in Operating Systems (HotOS {XVII}).

[85] H. Zeng, C. Zhang, and V. Prasanna. 2017. Fast Generation of High
Throughput Customized Deep Learning Accelerators on FPGAs. In
2017 International Conference on ReConFigurable Computing and
FPGAs (ReConFig). 1–8. https://doi.org/10.1109/RECONFIG.2017.
8279792

[86] Jiansong Zhang, Yongqiang Xiong, Ningyi Xu, Ran Shu, Bojie Li,
Peng Cheng, Guo Chen, and Thomas Moscibroda. 2017. The Feniks
FPGA Operating System for Cloud Computing. In Proceedings of the
8th Asia-Pacifc Workshop on Systems. ACM, 22.

[87] Ritchie Zhao, Weinan Song, Wentao Zhang, Tianwei Xing, Jeng-
Hau Lin, Mani Srivastava, Rajesh Gupta, and Zhiru Zhang. 2017.
Accelerating binarized convolutional neural networks with software-
programmable fpgas. In Proceedings of the 2017 ACM/SIGDA Interna-
tional Symposium on Field-Programmable Gate Arrays. ACM, 15–24.

[88] Tianhao Zheng, David Nellans, Arslan Zulfqar, Mark Stephenson, and
Stephen W Keckler. 2016. Towards high performance paged memory
for GPUs. In 2016 IEEE International Symposium on High Perfor-
mance Computer Architecture (HPCA). IEEE, 345–357.

[89] S. Zhou and V. K. Prasanna. 2017. Accelerating Graph Analytics on
CPU-FPGA Heterogeneous Platform. In 2017 29th International Sym-
posium on Computer Architecture and High Performance Computing
(SBAC-PAD). 137–144. https://doi.org/10.1109/SBAC-PAD.2017.25

https://doi.org/10.1145/2847263.2847269
https://www.xilinx.com/products/intellectual-property/axi_interconnect.html
https://www.xilinx.com/products/intellectual-property/axi_interconnect.html
https://www.xilinx.com/support/documentation/application_notes/xapp1177-pcie-gen3-sriov.pdf
https://www.xilinx.com/support/documentation/application_notes/xapp1177-pcie-gen3-sriov.pdf
https://www.xilinx.com/products/intellectual-property/pcie-dma.html
https://www.xilinx.com/products/intellectual-property/pcie-dma.html
https://www.xilinx.com/products/design-tools/software-zone/sdaccel.html
https://www.xilinx.com/products/design-tools/software-zone/sdaccel.html
https://www.linux-kvm.org/images/a/a6/KVM_Forum_2018_viommu_vfio.pdf
https://www.linux-kvm.org/images/a/a6/KVM_Forum_2018_viommu_vfio.pdf
https://doi.org/10.1109/RECONFIG.2017.8279792
https://doi.org/10.1109/RECONFIG.2017.8279792
https://doi.org/10.1109/SBAC-PAD.2017.25

ASPLOS ’20, March 16–20, 2020, Lausanne, Switzerland

A Artifact Appendix
A.1 Abstract
Here, we include links to our source code, and offer tutorials
for installing the various components of OPTIMUS.

A.2 Artifact check-list (meta-information)
• Program: OPTIMUS hypervisor, hardware monitor, guest

driver, guest core library, guest MPF library, and all bench-
marks (including MemBench, LinkedList, Bitcoin, SSSP, and
HardCloud applications).

• Compilation: GCC 4.8, Quartus Prime Pro 17.0.0.
• Run-time environment: CentOS 7.5 with Linux kernel ver-

sion 5.1.0-rc6. When compiling the kernel, the confguration
option FPGA_DFL must be disabled. QEMU 3.0.1.

• Hardware: Intel HARP platform (with Skylake CPUs, Arria
10 FPGAs, and Blue Bitstream version SR-6.4.0). Intel VT-d
must be enabled in BIOS.

• Publicly available?: Yes

A.3 Description
A.3.1 How delivered:
All of the source code for OPTIMUS is open source, and can
be obtained via GitHub1 or Zenodo2.

1https://github.com/efeslab/optimus-hypervisor
2https://doi.org/10.5281/zenodo.3605682

A.3.2 Hardware dependencies:
OPTIMUS requires an Intel HARP platform with Skylake
CPUs, Arria 10 FPGAs, and Blue Bitstream SR-6.4.0. Intel
VT-d (IOMMU support) must be enabled in the BIOS.

A.3.3 Software dependencies:
OPTIMUS requires GCC 4.8 to compile kernel modules and
libraries and Quartus Prime Pro 17.0.0 for FPGA synthe-
sis. Our experiment runs on CentOS 7.5 with Linux kernel
5.1.0-rc6 and QEMU 3.0.1. When compiling the kernel, the
confguration option FPGA_DFL must be disabled.

A.4 Installation
Four components should be installed on the machine where
OPTIMUS is deployed: (a) the OPTIMUS hypervisor, which is
the key component of OPTIMUS and is used to provide FPGA
virtualization support; (b) the host tools, which are used to
confgure and control the physical FPGA; (c) the guest driver,
which is installed in guests and supports virtual accelerators;
(d) the guest libraries, which help guest software use virtual
accelerators.

The hardware monitor should be installed as a hardware
library on the machine where FPGA bitstreams are synthe-
sized. The hardware monitor is used to multiplex the FPGA
interface and provide virtualization support.

The source code of these components can be found in our
GitHub or DOI repository, we also provide a step-by-step tu-
torial (in our GitHub1 or Zenodo2 repositories) to help people

J. Ma, G. Zuo, K. Loughlin, X. Cheng, Y. Liu, A. Eneyew, Z. Qi, and B. Kasikci

who have a compatible HARP platform to build OPTIMUS
from scratch.

A.5 Experiment workfow
There are four steps to run FPGA-accelerated applications
in guest virtual machines: (a) synthesize a bitstream for a
select group of accelerators, (b) install different components
of OPTIMUS mentioned in A.4, (c) confgure the FPGA with
the bitstream synthesized in (a), and (d) boot guests and run
different applications.

We provide the source code of our benchmarks as well
as confguration fles (which are used during synthesis) in
our repository to help synthesize OPTIMUS compatible bit-
streams.

A.6 Methodology
Submission, reviewing and badging methodology:
• http://cTuning.org/ae/submission-20190109.html
• http://cTuning.org/ae/reviewing-20190109.html
• https://www.acm.org/publications/policies/artifact-re
view-badging

https://github.com/efeslab/optimus-hypervisor
https://doi.org/10.5281/zenodo.3605682
http://cTuning.org/ae/submission-20190109.html
http://cTuning.org/ae/reviewing-20190109.html
https://www.acm.org/publications/policies/artifact-review-badging
https://www.acm.org/publications/policies/artifact-review-badging

	Abstract
	1 Introduction
	2 Background
	2.1 FPGA Programming Models
	2.2 FPGA Virtualization

	3 Goals and Challenges
	4 Design
	4.1 Hardware Monitor
	4.2 Preemption Interface
	4.3 Userspace API

	5 Implementation
	6 Evaluation
	6.1 Experimental Setup
	6.2 FPGA Resource Utilization
	6.3 Performance Overhead
	6.4 Scalability of Spatial Multiplexing
	6.5 Benefit of Using Huge Pages
	6.6 Scalability of Temporal Multiplexing
	6.7 Fairness of Spatial Multiplexing
	6.8 Fairness of Temporal Multiplexing

	7 Discussion
	7.1 Optimus vs. AmorphOS
	7.2 Key Takeaways

	8 Related Work
	9 Conclusion
	Acknowledgments
	References
	A Artifact Appendix
	A.1 Abstract
	A.2 Artifact check-list (meta-information)
	A.3 Description
	A.4 Installation
	A.5 Experiment workflow
	A.6 Methodology

