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Abstract 
Cloud providers widely deploy FPGAs as application-specifc 
accelerators for customer use. These providers seek to multi-
plex their FPGAs among customers via virtualization, thereby 
reducing running costs. Unfortunately, most virtualization 
support is confned to FPGAs that expose a restrictive, host-
centric programming model in which accelerators cannot is-
sue direct memory accesses (DMAs). The host-centric model 
incurs high runtime overhead for workloads that exhibit pointer 
chasing. Thus, FPGAs are beginning to support a shared-
memory programming model in which accelerators can issue 
DMAs. However, virtualization support for shared-memory 
FPGAs is limited. 

This paper presents OPTIMUS, the frst hypervisor that 
supports scalable shared-memory FPGA virtualization. OPTI-
MUS offers both spatial multiplexing and temporal multiplex-
ing to provide effcient and fexible sharing of each accelerator 
on an FPGA. To share the FPGA-CPU interconnect at a high 
clock frequency, OPTIMUS implements a multiplexer tree. 
To isolate each guest’s address space, OPTIMUS introduces 
the technique of page table slicing as a hardware-software 
co-design. To support preemptive temporal multiplexing, OP-
TIMUS provides an accelerator preemption interface. We show 
that OPTIMUS supports eight physical accelerators on a sin-
gle FPGA and improves the aggregate throughput of twelve 
real-world benchmarks by 1.98x-7x. 

CCS Concepts • Hardware Reconfgurable logic and 
FPGAs; • Software and its engineering Virtual 
machines. 
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1 Introduction 
Field Programmable Gate Arrays (FPGAs) allow users to 
signifcantly accelerate custom workloads, including those of 
machine learning [60–62, 85, 87], compression [57], scien-
tifc computing [23], database operations [52, 62], and graph 
analytics [10, 89]. As the set of data center workloads changes 
over time, cloud providers can reconfgure their FPGAs into 
different accelerators, making FPGAs a cost-effective and 
fexible alternative to ASICs [16, 63]. 

Considering the high non-recurring engineering cost [38] 
of hardware design and the fact that most cloud application 
developers are software programmers, cloud providers such 
as Amazon and Microsoft confgure their FPGAs into popular 
accelerators, which the providers then make available for 
customer use [6, 50]. 

As with other hardware devices, cloud providers desire the 
ability to multiplex their FPGAs among different customers 
via virtualization, thereby increasing resource utilization and 
return on investment (ROI) [37, 71]. Although multi-tenant 
FPGA hypervisors and operating systems exist [15, 18, 21, 37, 
40, 53, 55, 72–74, 86], these solutions are restricted to FPGA 
platforms that expose a host-centric programming model, as 
opposed to a shared-memory model. 

The key difference between host-centric and shared-memory 
FPGA programming models is whether or not accelerators 
can issue direct memory accesses (DMAs, via which an I/O 
device obtains data from system memory). In host-centric 
models, the host issues all DMAs via a CPU-confgured DMA 
engine, which passes the accessed data to the necessary ac-
celerator; the accelerators themselves cannot issue DMAs. 
Most FPGA manufacturers [7, 68, 81] adopt this program-
ming model. Unfortunately, the host-centric model cannot 
effciently support applications that exhibit pointer chasing 
(e.g., graph processing [76] and database acceleration [62]), 
as such applications require repeated communication between 
the CPU and FPGA to coordinate each DMA. In particular, 
the software programmer must either 1) initiate multiple data 
transmissions separately and sequentially, or 2) marshal the 
data every time before transmission, both of which hurt per-
formance. 

https://doi.org/10.1145/3373376.3378482
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To overcome the performance penalties of the host-centric 
programming model, emerging FPGAs are alternatively ex-
posing a lighter, more fexible shared-memory programming 
model [9, 25, 27, 66]. Under this new model, each accelerator 
can issue its own DMAs and shares an address space with 
a process on the CPU. The CPU is merely responsible for 
providing the accelerator with a pointer to its initial input 
data. Upon receiving the pointer, the accelerator can issue the 
initial and subsequent DMAs without CPU intervention. As 
we demonstrate in §2.1, the shared-memory model can out-
perform the host-centric model by 37%–85% in a virtualized 
environment. 

Unfortunately, virtualizing system memory on shared-
memory FPGA platforms is challenging. In particular, be-
cause both the CPU and FPGA can directly access system 
memory, virtualization solutions must provide consistent views 
to applications on the CPU and accelerators on the FPGA. For 
instance, if a software process updates a page’s data/metadata, 
these changes must be immediately visible to its correspond-
ing accelerator, and vice-versa. 

Furthermore, while SR-IOV [43] (i.e., hardware-assisted 
IO virtualization) provides a method of isolating virtual DMAs 
on PCIe links, shared-memory platforms can expose an inter-
face that encapsulates both a PCIe link and a UPI link (e.g., 
Intel HARP [25]). Thus, on such platforms, SR-IOV does 
not provide a comprehensive solution to virtual DMA iso-
lation. Additionally, for the past fve years, shared-memory 
platforms have been unable to support more than one VF 
per FPGA [25, 27], limiting SR-IOV’s scalability on these 
platforms. 

In this paper, we introduce OPTIMUS, the frst scalable 
hypervisor that virtualizes shared-memory FPGAs. Deployed 
by cloud providers, OPTIMUS can confgure a single FPGA 
into well-isolated accelerators, simultaneously accelerating a 
variety of jobs and improving resource utilization. 

OPTIMUS targets a use case in which cloud providers con-
fgure FPGAs as a set of popular accelerators for their cus-
tomers (e.g., the accelerator libraries/registries of Amazon 
F1 [6] and others [18, 37]). Notably, OPTIMUS does not aim 
to virtualize an FPGA’s reconfguration capabilities, opting 
instead to schedule VMs on FPGAs pre-confgured with the 
necessary accelerator(s). Such a model is desirable in a cloud 
setting, as it 1) avoids the high performance overheads—and 
therefore, revenue losses—of reconfguration during acceler-
ator context switches, and 2) still allows cloud providers to 
reconfgure their physical FPGAs as customer needs change 
over time. 

OPTIMUS virtualizes shared-memory FPGAs via a compo-
sition of spatial multiplexing and temporal multiplexing. Spa-
tial multiplexing partitions the physical FPGA into multiple 
accelerators that can be individually controlled by different 
VMs [15, 18, 21, 37, 41, 72, 74]. Temporal multiplexing then 
oversubscribes these accelerators—multiple VMs take turns 
running atop a fxed-confguration accelerator [16, 73]. To 

support temporal multiplexing, OPTIMUS offers a preemption 
interface for accelerator design, such that it can instruct vir-
tual accelerators to swap their state to/from system memory 
on a context switch. 

OPTIMUS is implemented atop Intel Skylake HARP [25], 
but its design can be generalized to different shared-memory 
FPGA platforms. OPTIMUS effciently overcomes the DMA 
isolation limitations of existing shared-memory FPGAs with 
a virtualization technique called page table slicing. Page table 
slicing is inspired by prior software-only techniques on isolat-
ing DMAs [70, 78], but is instead implemented as a generic 
hardware-software co-design to provide virtualization inde-
pendent of specifc accelerator confgurations. Using page 
table slicing, OPTIMUS confgures the FPGA to include a 
hardware monitor, which assists in partitioning a single IO 
page table among all guests without incurring IO page table 
context switching overhead. 

OPTIMUS spatially multiplexes up to eight unique physical 
accelerators and improves the aggregate throughput of twelve 
real-world benchmark workloads by 1.98x-7x. Additionally, 
OPTIMUS’s hardware monitor occupies less than 7% of FPGA 
resources. Finally, OPTIMUS stringently enforces real-time 
bandwidth sharing policies for both spatially- and temporally-
multiplexed accelerators. 

In summary, this paper makes the following contributions: 

• We design OPTIMUS, the frst scalable hypervisor to 
offer virtualization support for shared-memory FPGAs, 
using both spatial multiplexing and temporal multiplex-
ing to provide effcient, fair, and fexible sharing of 
individual accelerators on an FPGA. 

• We introduce a hardware-software co-design for IO 
virtualization—page table slicing—that isolates each 
virtual accelerator’s DMAs via a combination of hyper-
visor and on-FPGA support. 

• We provide an interface to support the inclusion of 
preemption capabilities in accelerator design. 

2 Background 
Field Programmable Gate Arrays (FPGAs) are chips that can 
be confgured (and reconfgured) into custom circuits (e.g., ac-
celerators). FPGA developers often use hardware description 
languages such as Verilog [69] and VHDL [12] to describe 
their circuit designs. A synthesizer program translates these 
designs into native FPGA bitstreams (i.e., binaries). 

In the rest of this section, we give detailed background on 
FPGA programming models as well as FPGA virtualization. 
We focus on FPGAs designed to be used as accelerators. 

2.1 FPGA Programming Models 
The software interface (i.e., programming model) for an 
FPGA is determined via a reserved portion of the FPGA 
called a shell, often provided by the manufacturer. The shell 
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is responsible for sending, receiving, and processing I/O pack-
ets (such as those from the CPU, network, system memory, 
etc.), and generally presents one of two programming mod-
els to system software: host-centric or shared-memory. In 
both of these models, the shell exposes a memory-mapped IO 
(MMIO) control plane for software to manage the accelerator. 
The key difference between these models is whether accelera-
tors can issue their own direct memory accesses (DMAs). 

In the more widespread host-centric model, the accelerators 
are unaware of the system memory map and thus cannot 
issue DMAs. Instead, the CPU confgures a DMA engine to 
transfer data from system memory to the accelerators. The 
host-centric model yields simpler hardware, as accelerator 
architects need not add DMA logic to their designs, instead 
relying on software programmers to manage DMAs. 

However, the host-centric model incurs the latency of re-
peated communication between the CPU and accelerators 
for applications that exhibit pointer chasing. Specifcally, the 
CPU must repeatedly confgure the DMA engine to fetch 
new data for each accelerator. While scatter-gather DMA en-
gines [81] can alleviate the penalty of certain non-contiguous 
access patterns (e.g., those where the sequence of DMA ad-
dresses is known prior to accelerator execution), they cannot 
alleviate the penalty of pointer chasing, as the sequence of 
DMA addresses is determined during accelerator execution. 

In the emerging shared-memory model (e.g., that of Intel 
HARP [25]), each accelerator is cognizant of the system 
memory map and can issue its own DMAs. Therefore, shared-
memory accelerators can engage in pointer chasing without 
interrupting the host to issue subsequent DMAs, avoiding the 
latency of host-centric platforms for such applications. 

We use a graph processing application that uses the single 
source shortest path (SSSP) algorithm [89] to demonstrate 
the benefts of the shared-memory programming model. The 
algorithm needs to iteratively access a non-contiguous set of 
vertices and edges, thereby emulating the behavior of pointer 
chasing in the absence of scatter-gather DMA support (i.e., 
on our evaluation platform). 

We implement this algorithm on Intel HARP, under the 
original shared-memory interface and a host-centric interface. 
Fig. 1 shows the processing time of the algorithm on a set of 

graphs with 800K vertices and an increasing number of edges. 
“Host-Centric+Confg” indicates that the host-centric FPGA’s 
DMA engine has been confgured to fetch each individual 
data segment, while “Host-Centric+Copy” indicates that the 
host copies all data segments to a contiguous buffer before 
invoking the DMA engine. As shown, the shared-memory im-
plementation is 17%–60% faster than that of the host-centric. 
The beneft of the shared-memory model is even more strik-
ing in a virtualized environment (37%–85% faster execution), 
where control plane operations become more expensive due 
to hypervisor trap-and-emulate. In sum, the DMA capabilities 
of shared-memory accelerators allow workloads to engage in 
pointer chasing without CPU involvement, reducing commu-
nication costs and improving performance. 

Figure 1. Graph processing time using the SSSP algorithm. 
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2.2 FPGA Virtualization 
The accelerators on an FPGA can be multiplexed spatially [15, 
18, 37, 53, 55, 72, 74] and temporally [18, 37, 53, 55, 73, 84]. 
Spatial multiplexing allows different accelerator confgura-
tions to simultaneously occupy the same FPGA. Temporal 
multiplexing allows each individual accelerator confgura-
tion on an FPGA to be shared by multiple VMs. Tempo-
ral multiplexing can either be non-preemptive (i.e., run-to-
completion) [73] or preemptive (i.e., pause-and-resume) [37]. 

To virtualize an FPGA, each virtual accelerator’s on-FPGA 
resources as well as IO channels must be isolated [37]. The 
FPGA synthesizer handles most on-FPGA resource isolation. 
Specifcally, the synthesizer ensures that each accelerator on a 
spatially-multiplexed FPGA is provisioned a distinct portion 
of device resources. If a physical accelerator is additionally 
overprovisioned via preemptive temporal multiplexing, accel-
erator designs must include support for saving and restoring 
their execution states upon preemption. 

As for IO channels, FPGAs utilize both an MMIO con-
trol plane and a DMA data plane. Since software initiates all 
MMIO accesses in both the host-centric and shared-memory 
programming models, a hypervisor can easily virtualize guest 
access to MMIO registers via trap-and-emulate. In the host-
centric model, software also initiates all DMAs, meaning host-
centric DMAs can also be virtualized via trap-and-emulate [18] 
or paravirtualization [73]. 

However, in the shared-memory model, accelerators is-
sue their own DMAs without software intervention, posing a 
problem for DMA virtualization. The traditional virtualization 
solution for DMA-capable IO devices has been a combination 
of SR-IOV [43] and PASID [28]. With SR-IOV, the IO mem-
ory management unit (IOMMU) provides a unique IO page 
table for each virtual device, thereby allowing the hypervisor 
to install unique address mappings that are enforced by the 
IOMMU at the time of DMA for each guest. With PASID, the 
IOMMU uses a CPU page table to translate DMAs, thereby 
allowing IO devices to directly access a process’s address 
space. Each DMA is tagged with a process identifer, which 
the CPU uses to select the correct page table. 
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Unfortunately, the applicability of these techniques to 
shared-memory platforms is currently limited for two rea-
sons. First, SR-IOV and PASID only virtualize PCIe links. 
Thus, on shared-memory platforms that expose both a UPI 
link and a PCIe link (e.g., Intel HARP [25]), SR-IOV and 
PASID cannot provide complete virtualization. 

Second, the scalability of SR-IOV implementations in 
shared-memory FPGAs is severely limited. Although the 
SR-IOV standard supports thousands of VFs [43], shared-
memory FPGAs have only supported one VF for the past 
fve years [25, 27]. Because SR-IOV implementations are 
proprietary, our knowledge of the factors restricting scalabil-
ity in shared-memory FPGAs is limited. However, certain 
shared-memory platforms such as Intel HARP [25] currently 
implement both the SR-IOV and the (related) IOMMU as soft 
IP in the FPGA shell, restricting scalability as compared to 
that of more resource-effcient hard IP implementations. 

3 Goals and Challenges 
OPTIMUS targets a use case in which cloud providers confg-
ure FPGAs as a set of popular accelerators for their customers, 
avoiding the penalty of virtual accelerator reconfguration in 
favor of increased uptime [6, 18, 37]. To enable effcient 
and fexible sharing of accelerators on FPGAs, OPTIMUS 
utilizes spatial multiplexing [15, 18, 37, 53, 55, 72, 74] to par-
tition an FPGA into a fxed set of accelerators, and temporal 
multiplexing [18, 37, 53, 55, 73, 84] to overprovision each 
of these accelerators. Because OPTIMUS novelly virtualizes 
shared-memory FPGAs, OPTIMUS tailors the goals of FPGA 
virtualization to shared-memory platforms as follows: 

Programmability Unlike virtualization solutions for host-
centric platforms [15, 18, 37, 53, 55, 72–74], OPTIMUS aims 
to share a unifed virtual memory address space between 
software and hardware, similar to the original HARP inter-
face [25]. However, programmability implies that cloud ap-
plication developers should not have to deal with low-level 
platform details such as memory isolation, and should in-
stead rely on straightforward memory abstractions of unifed 
address spaces [1, 47, 58, 88]. Therefore, OPTIMUS must pro-
vide user-friendly abstractions for its unifed CPU and FPGA 
address spaces to achieve programmability. 

Isolation While host-centric FPGA virtualization solutions 
focus on the isolation of on-FPGA DRAM [15, 18, 37, 53, 72– 
74], OPTIMUS must consider the isolation of system memory 
in the presence of accelerator DMAs. Given limited support 
for hardware-assisted virtualization, OPTIMUS must provide 
strong DMA isolation within a single IOMMU address space. 

We note that OPTIMUS assumes the synthesizer places 
each physical accelerator on isolated pieces of the FPGA fab-
ric. Additionally, OPTIMUS does not consider side channels, 
which are an interesting direction for future work. 

Scalability As the number of accelerators on an FPGA in-
creases, the FPGA’s multiplexers (i.e., the hardware compo-
nents that propagate signals between the set of accelerators 
and the singular system interconnect) must process data from 
a greater number of sources within timing constraints (e.g., 
a given number of cycles). At some point, a fat multiplexer 
arrangement physically cannot process all the signals under 
timing constraints; a multiplexer tree hierarchy must instead 
be used [37]. Given that OPTIMUS targets hardware operating 
at higher frequencies than state-of-the-art solutions—thereby 
placing tighter constraints on timing—OPTIMUS must pro-
vide a multiplexer tree by default to achieve scalability. 

Effciency OPTIMUS must have low virtualization overhead 
to provide suffcient performance to each VM. Specifcally, 
the sum of each virtual accelerator’s bandwidth must be as 
close as possible to the FPGA’s total bandwidth. Furthermore, 
the latency added by hypervisor and hardware monitor ex-
ecution must be minimized. Given the frequent occurrence 
of DMAs as compared to MMIOs, the primary challenge is 
ensuring that DMAs occur with minimal overhead. Unfortu-
nately, traditionally-effcient DMA isolation methods such as 
SR-IOV and PASID do not currently provide a comprehensive 
and scalable DMA virtualization solution. Therefore, OPTI-
MUS must synthesize virtualization support into the FPGA to 
achieve the effciency of hardware-assisted virtualization. 

Fairness In line with prior work [37], OPTIMUS aims to en-
sure that each accelerator receives a fair share of the FPGA’s 
total bandwidth. Given N spatially multiplexed physical ac-
celerators, each accelerator must receive at least 1/N of the 
total real-time bandwidth when transmitting data. In temporal 
multiplexing, the physical accelerator must be assigned to 
each virtual accelerator for the same amount of time. 

Figure 2. OPTIMUS design overview, shown with two physi-
cal accelerators for brevity. OPTIMUS spatially multiplexes 
a shared-memory FPGA as physical accelerators (A and B), 
and temporally multiplexes physical accelerators as virtual 
accelerators (A0, A1, and B0). 
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4 Design 
OPTIMUS follows a mediated pass-through [70] architecture 
in which control plane operations are trapped by the hypervi-
sor, while data plane operations bypass the hypervisor. Fig. 2 
shows the high-level architecture of OPTIMUS, limited to two 
accelerators for brevity. OPTIMUS uses the FPGA’s shell to 
confgure a shared-memory FPGA as a fxed set of physical 
accelerators (A and B), thereby offering spatial multiplexing. 
OPTIMUS can additionally expand its virtualization scalabil-
ity by temporally sharing a physical accelerator among sev-
eral virtual accelerators (A0 and A1). For example, in Fig. 2, 
virtual accelerator A0 is scheduled on physical accelerator 
A (meaning A holds A0’s execution state), while OPTIMUS 
stores virtual accelerator A1’s execution state in DRAM until 
re-scheduling A1 on physical accelerator A. 

MMIO Control Plane OPTIMUS traps all virtual accelerator 
control plane operations (MMIOs) to redirect the operations 
to the correct physical location. For scheduled virtual accel-
erators (A0 and B0), OPTIMUS adds an offset to the trapped 
MMIOs in order to address the appropriate physical accel-
erator, forwarding the adjusted MMIOs to the FPGA. The 
hardware monitor then routes each MMIO to the appropri-
ate physical accelerator (A or B) based on the offset MMIO 
address. For a queued virtual accelerator (A1), OPTIMUS 
postpones the MMIO access until the virtual accelerator is 
re-scheduled on a physical accelerator. The details of MMIO 
operations in temporal multiplexing will be discussed in §4.2. 

DMA Data Plane Guest applications and their accelerators 
interact with DRAM using virtual addresses, which are trans-
lated to host physical addresses by the MMU and IOMMU 
respectively. However, the IO virtual addresses (IOVAs) used 
for virtual DMAs are offset versions of guest virtual addresses 
(GVAs). Although the CPU can provision a separate hardware 
page table in the MMU (i.e., an extended page table) for each 
application, only a single hardware page table is available to 
the FPGA in the IOMMU. Thus, OPTIMUS must partition 
the single IO virtual address space among virtual accelerators 
using a technique called page table slicing, where each virtual 
accelerator’s DMA region begins at a unique offset within 
the IO virtual address space. OPTIMUS stores an offset table 
within the hardware monitor to translate from guest virtual 
addresses to IO virtual addresses during DMAs. 

Figure 3. An example OPTIMUS FPGA architecture, with 
the hardware monitor components shaded in gray. A two-
level binary multiplexer tree is shown for brevity, but the 
multiplexer tree arrangement is confgurable. 
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4.1 Hardware Monitor 
Fig. 3 shows the FPGA confguration to support OPTIMUS. 
The manufacturer provides the shell, which serves as the IO 
interface for the FPGA. OPTIMUS uses the shell to load the 
cloud provider’s desired accelerator confgurations onto the 
FPGA. OPTIMUS also includes a hardware monitor (shown 
in gray) on the FPGA. 

Virtualization Control Unit OPTIMUS uses the virtualiza-
tion control unit (VCU) to confgure the runtime behavior of 

the hardware monitor. Specifcally, VCU presents an accelera-
tor management interface to allow OPTIMUS to confgure the 
offset and reset tables. The offset table stores offsets between 
guest virtual addresses and IO virtual addresses for each ac-
celerator (necessary to support page table slicing). The reset 
table is used to specify the reset signal for each accelerator, 
thus enabling OPTIMUS to reset individual accelerators to 
clear state for isolation purposes on a VM context switch. 

OPTIMUS reserves a special region of MMIO for commu-
nication with VCU. If the incoming packets fall in this range, 
the virtual control unit intercepts the packets to confgure the 
hardware monitor. Otherwise, VCU forwards the packets to 
the multiplexer tree. 

Multiplexer Tree The multiplexer tree is responsible for 
propagating input packets from the shell to each accelera-
tor, and transmitting output packets from each accelerator to 
the shell. Each multiplexer in the multiplexer tree operates 
on a round robin scheduling policy, thereby ensuring equal 
bandwidth for each accelerator on the same path through the 
multiplexer tree (and thus, fair real-time bandwidth sharing 
as mentioned in §3). However, if cloud providers seek to pro-
vide greater bandwidth to some accelerator A, the multiplexer 
tree can be confgured to place fewer accelerators under the 
multiplexers on A’s path. 

Auditors Unlike AXI or Avalon interconnects [31, 79], the 
multiplexer tree does not make routing decisions based on 
the accessed address. Instead, the multiplexer tree propagates 
packets to a set of auditors (one per physical accelerator), 
where each auditor determines whether incoming packets 
are intended for its associated accelerator. This lazy packet 
routing (i.e., waiting until the packets arrive at the auditor 
to make routing decisions) results in simpler circuitry than 
eager packet routing (i.e., including routing logic within the 
multiplexer tree). 

If the incoming packet is an MMIO, the auditor checks 
that the MMIO offset falls within the accelerator’s MMIO 
range. If so, the auditor forwards the packet to its associated 
accelerator. If not, the packet is discarded. 
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If the incoming packet contains DMA data, the auditor 
must determine if the packet is a response to a DMA that the 
accelerator initiated. When an accelerator wishes to perform a 
DMA, the auditor tags the outgoing packet with an accelerator 
ID, which is preserved in the response packet. Thus, an auditor 
can verify if a DMA packet is intended for its accelerator by 
checking the packet’s accelerator ID feld. If so, the packet is 
forwarded to the accelerator. If not, the packet is discarded. 

Page Table Slicing For simplicity, guest applications and 
their virtual accelerators would both access memory using 
guest virtual addresses, which would ultimately be translated 
to host physical addresses by the MMU and IOMMU respec-
tively. However, given the limitation of a single IO virtual 
address space, the guest virtual addresses of different appli-
cations would confict if used as keys in the IO page table. 
To isolate guest memory, OPTIMUS introduces a hardware-
software co-design called page table slicing, which adapts 
prior software-only techniques for virtualizing GPUs [70] and 
wireless NICs [78]. 

Page table slicing confgures the auditors with a linear ad-
dress mapping policy, where guest virtual addresses (GVAs) 
map to IO virtual addresses (IOVAs). OPTIMUS allows each 
accelerator to access a contiguous DMA memory range [g,g+ 
p) in the application’s address space. It also divides IOVAs 
into several p-sized partitions, and assigns each partition to 
a unique (virtual) accelerator. For a given IOVA partition 
[i, i+ p), OPTIMUS stores the offset value (i− g) in the corre-
sponding accelerator’s entry in the offset table. Afterward, the 
accelerator’s auditor can convert between IOVAs and GVAs 
during DMAs within a single cycle, ensuring effcient mem-
ory isolation. In the presence of temporal multiplexing (i.e., 
oversubscription of individual accelerators), OPTIMUS up-
dates the physical accelerator’s offset table entry with the 
newly-scheduled virtual accelerator’s offset entry. 

We consider page table slicing as a lightweight isolation 
method which is complementary to SR-IOV. Specifcally, 
even if SR-IOV scalability increases for future shared-memory 
FPGAs, page table slicing would allow for nested virtualiza-
tion on SR-IOV enabled devices; a cloud provider could use 
SR-IOV to provide a “vFPGA” to a VM acting as a nested 
hypervisor. The nested hypervisor could then use page table 
slicing to share this vFPGA among its own guests. 

Shadow Paging An important goal of OPTIMUS is to share 
a contiguous range of virtual memory between software and 
hardware, which requires the IOMMU (together with page ta-
ble slicing) to directly map GVAs to HPAs. Since the IOMMU 
does not support nested paging, OPTIMUS maintains a shadow 
page table for each accelerator. 

4.2 Preemption Interface 
While spatial multiplexing allows different accelerators to run 
on the same FPGA, OPTIMUS uses temporal multiplexing to 
share a fxed accelerator confguration among different VMs, 

with each VM’s virtual accelerator occupying the physical 
accelerator for a short time-slice. OPTIMUS must be able to 
preempt acceleration jobs to provide fair temporal multiplex-
ing, and therefore exposes a preemption interface similar to 
that of AmorphOS [37]. 

A preemption-capable accelerator should implement a set 
of control registers which serves two purposes: 1) saving 
and restoring internal execution states, and 2) starting, pre-
empting, and resuming acceleration jobs. Control registers 
are privileged resources, thus should not be accessible by 
virtual machines directly. The hypervisor traps and emulates 
accesses to control registers, and hides the hardware status of 
the physical accelerator. Registers besides the control regis-
ters are called application registers. Accesses to application 
registers are postponed until the virtual accelerator is sched-
uled. Specifcally, if the register does not have side effects 
(i.e., read/write to the register is idempotent), the hypervisor 
can cache the register’s value in software and synchronize the 
cache and the physical register while scheduling. 

During virtual accelerator initialization, the accelerator 
informs OPTIMUS how much memory is needed to store 
internal execution states. OPTIMUS then allocates a memory 
buffer for the states and informs the physical accelerator of 
the buffer’s base address via the control registers. 

When OPTIMUS wishes to schedule a virtual accelerator 
on a physical accelerator, OPTIMUS reads the current job sta-
tus from the physical accelerator. If the physical accelerator 
is occupied, OPTIMUS sends a preempt command, causing 
the physical accelerator to write the virtual accelerator’s exe-
cution state to the system memory buffer. Once all in-fight 
transactions have been processed, the accelerator notifes OP-
TIMUS that context has been successfully saved and a new job 
may be scheduled, as in prior work [37]. If an accelerator fails 
to cede control, OPTIMUS can forcibly reset the accelerator 
after a confgurable timeout period. 

Later, when OPTIMUS re-schedules the original virtual ac-
celerator job on the physical accelerator, it issues a resume 
command that instructs the physical accelerator to load exe-
cution state from its memory buffer and continue execution. 

OPTIMUS’s decision to leave the implementation of pre-
emption to accelerator designers is a complexity-performance 
trade-off. On one hand, designers using OPTIMUS must rea-
son about the state to save upon preemption, in contrast to 
automatic mechanisms such as Cascade [59]. On the other 
hand, designers using OPTIMUS can identify the minimal 
amount of state to save. For example, when preempting a 
linked-list walker, saving the address of the next node can 
be suffcient. In contrast, Cascade conservatively requires all 
latches to be saved. This results in a more complex circuit, 
consuming more resources, inhibiting a circuit’s ability to 
scale to higher frequencies, and ultimately hurting perfor-
mance. Thus, given OPTIMUS’s performance and scalability 
goals, OPTIMUS relies on accelerator designers to implement 
the preemption interface. 
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4.3 Userspace API 
Because native platform APIs can be complex [29], OPTIMUS 
offers a simplifed API for software application developers. 
OPTIMUS provides a separate implementation of the same 
simplifed API to accelerator developers for use in Verilog 
simulations. 

From the guest’s perspective, each accelerator is a PCIe 
device. OPTIMUS offers a customized driver and a userspace 
library that work in tandem to allow for application-level 
programming of accelerators. The driver is responsible for 
initializing the virtual accelerator, including mapping MMIO 
regions to userspace and registering DMA memory with the 
hypervisor. The userspace library allows the programmer to 
easily connect to and disconnect from a virtual accelerator, 
reset the accelerator, program the virtual accelerator through 
its MMIO region, and manage DMA memory. 

5 Implementation 
OPTIMUS is implemented atop the Intel HARP shared-memory 
FPGA platform [25] using Intel’s Core Cache Interface (CCI-
P) [24]; however, OPTIMUS’s design can be applied to any 
shared-memory FPGA platform with IOMMU support (which 
is necessary to implement page table slicing). OPTIMUS is 
implemented as a kernel module in 3,199 lines of C code, 
using the vfo-mdev [36] framework for device mediation and 
KVM [39] for CPU and memory virtualization. The guest 
FPGA driver and user API library are an additional 2,033 
lines of C code, not including a ported memory allocation li-
brary [46] used to help manage DMA regions for accelerators. 
The Verilog implementation of the hardware monitor relies on 
Intel’s open-source multiplexer (MUX) module [33], which 
adds 1,237 lines of code. Altogether, the hardware monitor 
occupies less than 7% of on-FPGA confgurable resources. 

FPGA Interface HARP’s shell provides a request/response 
interface called CCI-P for memory access [24], which encap-
sulates PCIe and UPI transactions. In order to access CPU 
memory, an accelerator sends a request packet and then waits 
for a corresponding response packet. While waiting, the accel-
erator may send out other requests to saturate the bandwidth. 

MMIO Slicing The MMIO address space of OPTIMUS con-
sists of three portions. The frst portion of the MMIO space is 
reserved for the HARP shell. The next 4 KB is reserved for 
the virtualization control unit’s accelerator management in-
terface, via which the hypervisor can confgure the hardware 
monitor (e.g., the offset and reset tables) and obtain the FPGA 
confguration information (e.g., the number of physical accel-
erators on the device and whether or not the confguration is 
compatible with OPTIMUS). Finally, each physical accelera-
tor receives a 4 KB page for its individual MMIO state, with 
isolation enforced by the accelerator’s auditor. 

Guest-MMIO Layout From a guest’s perspective, a virtual 
accelerator is a PCIe device. PCIe BAR0 points to the accel-
erator MMIO space, and PCIe BAR2 points to the hypervisor 
MMIO space (used to communicate with the hypervisor). 

Page Table Slicing By default, OPTIMUS uses a 64 GB 
slice of the 48-bit IO virtual address space for each virtual 
accelerator. However, this can be increased on systems where 
more than 64 GB of RAM is needed per virtual accelerator. 

OPTIMUS’s guest library uses the mmap() system call with 
the MAP_NORESERVE fag to reserve a 64 GB slice without al-
locating physical memory or swap. OPTIMUS writes the base 
address of each slice to a register in BAR2 (the hypervisor 
MMIO space). The slicing offset is calculated based on the 
value stored in this register. 

Shadow Paging For prototype simplicity, OPTIMUS cur-
rently features a hypercall-style shadow paging mechanism, 
reserving a register in the hypervisor MMIO space. During 
the initialization of each accelerator, OPTIMUS allocates a 2 
MB page, and initializes the IOPT entries of the accelerator 
to map to the physical address of the page. When a guest 
wants to make a page FPGA-accessible, it uses this register 
to notify the hypervisor of the GVA and GPA for the page. 
The hypervisor then checks page permissions, calculates the 
correct IOVA and HPA, pins the HPA in memory, and inserts 
the IOVA→HPA mapping into the IO page table. 

Multiplexer Tree Hierarchy OPTIMUS uses a three-level 
binary tree which supports up to 8 physical accelerators. We 
experimented with different hierarchies for the multiplexer 
tree (e.g., more layers and more nodes per layer); however, 
for some benchmarks, the synthesizer was unable to synthe-
size greater than eight accelerator instances on the FPGA 
without lowering the multiplexer tree frequency below 400 
MHz, which is necessary to fully utilize the memory band-
width. Hence, we limited the tree’s support to eight physical 
accelerators. 

AMORPHOS [37]—a prior FPGA virtualization solution— 
uses a fat multiplexer to avoid the complexity and latency of 
a multiplexer-tree when there are eight or fewer accelerators, 
and uses a layered multiplexer-tree when there are greater than 
eight accelerators. However, in OPTIMUS, a fat multiplexer 
is not feasible even with a smaller number of accelerators, as 
it prevents OPTIMUS from multiplexing the accelerators at a 
high frequency (400 MHz). 

Huge Pages In line with prior work [2, 4, 5, 11, 44, 45, 49], 
OPTIMUS uses huge pages to avoid IOTLB (IO translation 
lookaside buffer) thrashing and improve DMA performance. 
To the best of our knowledge, on the Intel HARP platform, the 
IOTLB for both 4 KB pages and 2 MB pages can only store 
512 IOVA to HPA mappings. Only using 4 KB pages may 
cause frequent IOTLB misses, which hurts performance on 
HARP. OPTIMUS uses 2 MB huge pages for DMA memory, 
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thereby allowing the IOTLB to cache 2 MB ∗ 512 = 1 GB 
worth of mappings. 

We do not see 2 MB pages as a signifcant drawback for 
three reasons. First, hypervisors are already unable to over-
subscribe memory in the presence of pass-through or SR-IOV-
enabled devices; the device-accessible memory pages must 
be pinned due to the IOMMU’s inability to handle page faults. 
Second, as opposed to pass-through or SR-IOV, OPTIMUS 
only pins FPGA-accessible pages once they are allocated by 
the guest. Third, data center servers are often equipped with 
hundreds of gigabytes of memory; therefore, 2 MB pages are 
relatively small. 

IOTLB Confict Mitigation When using our original page 
table slicing technique (in which each 64 GB slice is laid out 
contiguously in the IO virtual address space), we discovered 
that IOTLB mappings for different virtual accelerators were 
frequently evicting each other, hurting system performance. 

While the exact eviction policy for the IOTLB is unknown, 
we believe the problem stems from a confict in the set indices 
of IOVAs for different virtual accelerators. To the best of our 
knowledge, when the page size is 2 MB, the IOTLB uses 9 
bits after the 21-bit huge page offset as the set index (bits 
21-29). We believe each set consists of a single entry. Thus, if 
a virtual accelerator accesses a virtual page with the same set 
index as another virtual accelerator’s page, an IOTLB confict 
will occur. More precisely, a given page p1 will confict with 
any page p2 where p1 ≡ p2 mod 29. 

To work around this problem in software (given the IOTLB 
could not be altered), we added an extra 128 MB of address 
space between each 64 GB IOVA slice to offset the set indices 
of different virtual accelerator pages. Because OPTIMUS sup-
ports eight physical accelerators and the IOTLB can address 1 
GB of memory without conficts, OPTIMUS divides this 1 GB 
of memory evenly among the accelerators, yielding 128 MB 
per accelerator. Thus, each virtual accelerator’s working set 
must exceed 128 MB before IOTLB conficts potentially oc-
cur among accelerators. If sequential accesses are performed, 
IOTLB misses are rare, regardless of the working set size. 

Tiling and Partial Reconfguration Like other FPGAs [6, 
16, 56], HARP FPGAs can be reconfgured at tile granular-
ity (i.e., a manufacturer-defned portion of the fabric). The 
reconfguration of an individual tile is known as partial recon-
fguration. However, HARP only provides a single tile, and 
therefore would require re-fashing all spatially-multiplexed 
accelerators to reconfgure an individual accelerator. As such, 
OPTIMUS does not support partial reconfguration. 

Temporal Multiplexing Interface For fexible memory man-
agement, each guest application allocates a buffer in host 
DRAM for storing accelerator state upon preemption. 

Time Slice in Temporal Multiplexing The time slice used 
for temporal multiplexing is confgurable; however the default 

value is 10 ms. A 10 ms time slice is possible because OPTI-
MUS does not reconfgure the FPGA upon preemption, since 
the temporally-multiplexed accelerators on a given physical 
accelerator share the same confguration. If partial reconfg-
uration support is added in the future, the time slice would 
need to be increased to allow for suffcient time to reconfgure 
individual tiles. 

Temporal Multiplexing Scheduling OPTIMUS uses un-
weighted round-robin (i.e., equal time slices) as the default 
scheduling algorithm. However, OPTIMUS also implements 
a scheduler with weighted time slices and a priority-based 
scheduler. 

6 Evaluation 
In this section, we evaluate our prototype implementation of 
OPTIMUS and answer the following questions: 

Effciency What is the overhead of the hardware monitor in 
terms of FPGA resource utilization? To what extent does spa-
tial multiplexing improve FPGA resource utilization (§6.2)? 
How much virtualization overhead does OPTIMUS incur com-
pared to pass-through (i.e., direct assignment) (§6.3)? How 
does the use of huge pages infuence memory throughput and 
latency? (§6.5) 

Scalability How does OPTIMUS scale with respect to the 
number of acceleration jobs concurrently executing on the 
FPGA (§6.4)? How does OPTIMUS scale with respect to the 
oversubscription factor of each accelerator (i.e., the number 
of virtual accelerators per physical accelerator) (§6.6)? 

Fairness How similar is the DMA bandwidth for each phys-
ical accelerator (§6.7)? Does OPTIMUS enforce different 
scheduling policies among its virtual accelerators (§6.8)? 

6.1 Experimental Setup 
Hardware We evaluate OPTIMUS on Intel Skylake HARP 
[25]. The platform features a 2.8 GHz Xeon CPU and a 400 
MHz Arria 10 FPGA [32] located in the same package. The 
CPU and FPGA are connected via a single UPI [51] link as 
well as two PCIe 3.0 links. The server has 188 GB of DRAM. 

Software OPTIMUS runs CentOS 7.5 with Linux kernel ver-
sion 5.1.0-rc6 as the host OS, using QEMU version 3.0.1. 
Each guest also runs CentOS 7.5 and is allocated 10 GB of 
the server’s 188 GB of DRAM. 

Baseline We compare OPTIMUS’s performance with virtu-
alization via pass-through (i.e., direct assignment). To allow 
the FPGA to directly access the application’s virtual address 
space, we enable vIOMMU [83] (virtual IOMMU) support 
in QEMU. To our knowledge, there are no shared-memory 
FPGA hypervisors to which we can compare OPTIMUS. 

Confguration Unless mentioned specifcally, OPTIMUS uses 
2MB huge pages with IOTLB Confict Mitigation enabled. 
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Table 1. The benchmarks used to evaluate OPTIMUS, the num-
ber of lines of Verilog code used to implement benchmarks, 
and the frequencies at which benchmarks are executed. 

App Description LoC Freq. 
(MHz) 

AES AES128 Encryption Algorithm 1965 200 
MD5 MD5 Hashing Algorithm 1266 100 
SHA SHA512 Hashing Algorithm 2218 200 
FIR Finite Impulse Response Filter 1090 200 
GRN Gaussian Random Number Generator 1238 200 
RSD Reed Solomon Decoder 5324 200 
SW Smith Waterman Algorithm 1265 100 
GAU Gaussian Image Filter 2406 200 
GRS Grayscale Image Filter 2266 200 
SBL Sobel Image Filter 2451 200 
SSSP Single Source Shortest Path 3140 200 
BTC Bitcoin Miner 1009 100 
MB Random Memory Accesses 1020 400 
LL Linked List Walker 695 400 

Benchmarks Table 1 shows the fourteen benchmarks with 
which we evaluate OPTIMUS. Ten of these benchmarks are 
ported from HardCloud [17], an open-source framework that 
offoads OpenMP [20] computation tasks to the FPGA. Our 
HardCloud benchmarks are all compute-intensive; they in-
clude signal processing, cryptography, scientifc computing, 
and image processing applications. We port these benchmarks 
to our virtualization platform, and use their default confgura-
tion during synthesis. Besides, we also port an FPGA based 
graph processing application (single source shortest path or 
SSSP) [89], and a bitcoin miner [3] to our virtualization plat-
form. Unlike in §2.1, we only evaluate the shared-memory 
implementation of SSSP in this section, while confguring 
the benchmark to use a graph with 800K vertices and 12.8M 
edges. HardCloud benchmarks, SSSP, and Bitcoin are chosen 
to represent real-world applications. 

Since no open-source benchmarks for HARP place suff-
cient strain on OPTIMUS’s bandwidth and latency for a single 
acceleration job, and because no existing benchmarks con-
form to OPTIMUS’s preemption interface, we provide two 
benchmarks ourselves. Both of these benchmarks implement 
OPTIMUS’s preemption interface in order to evaluate OPTI-
MUS’s temporal multiplexing capabilities. 

MemBench (MB) concurrently issues random DMA read 
and write requests in order to saturate HARP’s bandwidth. 
The random reads and writes result in the worst-case effects of 
IOTLB misses, and thus minimize throughput benefts from 
memory locality. 

LinkedList (LL) sequentially fetches cache line sized nodes 
from a linked list distributed randomly in DRAM, connect-
ing the performance of LinkedList to worst-case DMA pat-
terns and thus creating a latency bottleneck. Because shared-
memory FPGAs are an emerging technology, there are cur-
rently few open-source benchmarks that leverage this model. 

However, LinkedList represents the fundamental limitations 
for irregular parallel applications (i.e., with a lot of pointer 
chasing), and prior work [77] has demonstrated that linked 
lists are suffcient to study the overhead of latency-bound 
workloads on shared-memory FPGA platforms. 

The latency sensitivity of LinkedList requires special treat-
ment due to the intricacies of the HARP platform. All Hard-
Cloud benchmarks allow the HARP shell to automatically 
select the interconnect channel (PCIe or UPI) used for each IO 
packet; for throughput-bound workloads, this confguration 
generally yields optimal performance [24]. However, for a 
highly latency-sensitive benchmark such as LinkedList, auto-
matic channel selection yields unstable performance. HARP’s 
channel selector is optimized for throughput rather than la-
tency. Thus, although UPI has lower latency for reads [24], 
the channel selector places some reads on PCIe, leading to 
wide performance variation for latency-sensitive benchmarks. 
As such, we measure the performance of LinkedList under 
two confgurations: PCIe-only and UPI-only. 

Table 1 shows the frequency at which each benchmark is 
run. Ideally, each benchmark would be run at the highest fre-
quency that the FPGA board supports (400 MHz). However, 
a number of the benchmarks are too complex for HARP’s 
current synthesizer to be able to ensure that their circuits can 
correctly operate at this maximum frequency; the synthesizer 
cannot place the FPGA logic elements suffciently close in 
order to propagate signals quickly enough. We therefore syn-
thesize each benchmark at the highest frequency achievable 
with OPTIMUS’s maximum number of physical accelerators 
(eight). As synthesis algorithms improve, we anticipate being 
able to run the benchmarks at higher frequencies. 

6.2 FPGA Resource Utilization 
In this section, we evaluate the impact of OPTIMUS on FPGA 
resource utilization as reported by Intel’s FPGA toolchain. 
We measure the percent of on-FPGA resources consumed 
by the hardware monitor (indicating virtualization overhead), 
and we explore the extent to which spatial multiplexing can 
improve FPGA resource utilization. 

Table 2 displays the percentage of Adaptive Logic Modules 
(ALMs) and Block RAM (BRAM) that each major FPGA 
component utilizes on (1) a single accelerator pass-through 
baseline versus (2) eight accelerators under OPTIMUS. The 
FPGA shell is an inherent component in both OPTIMUS and 
the pass-through baseline, and consumes 23.44% of ALMs 
and 6.57% of BRAM. The hardware monitor is only present 
in OPTIMUS, but utilizes just 6.16% of the ALMs and 0.48% 
of the BRAM, indicating low virtualization overhead in terms 
of resource utilization. 

Without the spatial multiplexing of OPTIMUS, benchmarks 
in the pass-through accelerator confguration utilize no more 
than 5% of available FPGA resources. OPTIMUS’s spatial 
multiplexing increases aggregate accelerator resource utiliza-
tion roughly linearly. With eight accelerators, OPTIMUS’s 
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Table 2. Breakdown of FPGA resource utilization by com-
ponent (ALM and BRAM). Each component’s utilization is 
reported as a percentage of the total amount of each resource 
type available on the FPGA. The pass-through (PT) base-
line features a single instance of the accelerator benchmark, 
while OPTIMUS features eight instances in order to compare 
resource utilization in the presence of spatial multiplexing. 

FPGA Component ALM Usage (%) BRAM Usage (%) 
OPTIMUS PT OPTIMUS PT 

Shell 23.44 23.44 6.57 6.57 
Hardware Monitor 6.16 0.00 0.48 0.00 

AES 27.80 3.62 23.01 2.82 
MD5 34.27 4.35 23.01 2.82 
SHA 18.16 2.16 22.46 2.82 
FIR 15.77 1.92 22.46 2.82 

GRN 12.53 1.76 7.98 1.02 
RSD 17.93 2.21 22.87 2.87 

App SW 10.34 1.42 11.67 1.47 
GRS 9.92 1.32 18.15 2.28 
GAU 25.28 3.41 21.24 2.60 
SBL 18.49 2.39 20.30 2.55 
SSSP 15.73 1.96 22.47 2.82 
BTC 8.99 1.32 4.16 0.48 
MB 4.84 0.83 0.00 0.00 
LL -0.24 0.15 0.00 0.00 

Figure 4. Performance overhead of different benchmarks 
compared to pass-through. 
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slight overhead beyond 8x stems from increased circuit com-
plexity as the number of accelerators increases. Specifcally, 
the synthesizer must consume extra resources in order to route 
signals to different locations on the FPGA chip under timing 
requirements. 

MemBench and LinkedList are suffciently simple that 
the synthesizer is able to optimize the FPGA confguration, 
yielding a sublinear relationship. MemBench only uses 6x 
the number of ALMs as the pass-through baseline. As for 
LinkedList, overall resource usage actually decreases, and is 
thus listed as using a negative portion of resources in Table 2. 

6.3 Performance Overhead 
To measure the virtualization overhead introduced by OP-
TIMUS, we compare the performance of an accelerator vir-
tualized via pass-through (i.e., direct assignment) with an 
accelerator virtualized via OPTIMUS, as shown in Fig. 4. 

Latency Fig. 4a shows the latency overhead for LinkedList— 
a microbenchmark which represents the worst-case for latency-
bound applications—when running in PCIe-only mode and 
UPI-only mode. The 24% latency overhead of LinkedList 
stems from a decision to favor scalability over latency in the 
arrangement of our hardware multiplexers. In order to pass 
timing requirements when scaling to eight accelerators, we 
require a three-level binary tree (as opposed to a single mul-
tiplexer with eight child accelerators). Unfortunately, each 
added layer of the tree adds approximately 33 ns of latency; 
therefore, our design induces approximately 100 ns of latency 

on the path through the multiplexer tree in order to provide 
scalability. 

Throughput Fig. 4b displays the throughput overhead for 
the remaining benchmarks. For MemBench (a microbench-
mark which represents the worst-case for bandwidth-intensive 
applications), the relative throughput overhead is 9.9%. Mem-
Bench is specifcally designed to stress the interconnection 
as much as possible, and therefore issues memory requests 
at every possible FPGA cycle. However, given the routing 
complexity of the multiplexer tree, the accelerator can only 
transmit a memory request packet every two cycles. Thus, 
the multiplexer tree is again the primary source of overhead. 
Despite this worst-case scenario, our HardCloud benchmark 
results indicate that the throughput overhead of OPTIMUS is 
less than 5% for realistic applications. 

6.4 Scalability of Spatial Multiplexing 
In this section, we assess OPTIMUS’s ability to scale with 
respect to the number of acceleration jobs executing concur-
rently on the FPGA. For each benchmark, we place eight 
instances of the accelerator on the FPGA (i.e., the maximum 
number of physical accelerators that can be synthesized on 
our platform). We measure the performance of each bench-
mark as the number of concurrent acceleration jobs increases. 

Latency Because LinkedList is highly sensitive to memory 
access latency, we measure the benchmark’s execution time 
as the number of acceleration jobs increases to determine the 
effects of scaling on latency. As shown in Fig. 5a, increas-
ing the number of acceleration jobs has negligible effect on 
aggregate latency if the working set does not exceed IOTLB 
capacity. The slight (< 6%) increase from 1 job to 8 jobs is 
due to IO queuing delays. 

When the working set barely exceeds IOTLB capacity (2G), 
latency only suffers a slight increase, since address translation 
is not overwhelmed. However, once the working set reaches 
4G, the queuing delay is exacerbated by frequent address 
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translation, resulting in a rapid increase in average latency as 
the number of jobs grows. 

Figure 5. Average memory access latency of LinkedList with different working set sizes and number of virtual machines. 
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Figure 6. Aggregate throughput of MemBench with different working set sizes and number of virtual machines. 
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Throughput Since a single instance of MemBench saturates 
the platform’s bandwidth, MemBench indicates the worst-
case measurement of throughput scalability. Fig. 6a shows 
the aggregate throughput of MemBench as the number of 
acceleration jobs and aggregate working set size are increased. 
As demonstrated, increasing the number of acceleration jobs 
does not diminish the aggregate throughput. Thus, OPTIMUS 
scales well in terms of memory access throughput. 

The drop-off in throughput beyond 1 GB is not due to OP-
TIMUS, but rather due to the limitations of the current HARP 
IOMMU. Since we believe that the IOTLB only contains 512 
entries when the page size is 2 MB, the IOTLB is limited 
to only caching the mappings of 1 GB virtual address space. 
Thus, when the aggregate working set size exceeds 1 GB, 
throughput degrades as a result of IOTLB misses. 

In HARP, the IOMMU is not integrated into the CPU in 
order to minimize CPU modifcations needed to support the 
experimental platform. As a result, upon each IOTLB miss, 
the IOMMU must go through the system interconnection to 

fetch the required IO page table from the CPU. We argue that 
in future generations of shared-memory FPGA platforms, the 
manufacturer should increase the number of IOTLB entries 
and integrate the IOMMU into the CPU in order to mitigate 
the frequency and severity of IOTLB misses. Additionally, 
supplementing a CPU-integrated IOMMU with hard-wired 
support for SR-IOV could potentially allow SR-IOV to scale 
on shared-memory platforms. Further modifying the IOMMU 
to support SR-IOV on UPI links could even allow SR-IOV to 
virtualize encapsulated PCIe and UPI transactions. 

Fig. 7 shows the aggregate throughput (normalized to a 
single acceleration job) of our real-world applications as the 
number of acceleration jobs is increased. Unlike MemBench, 
none of these applications fully utilize the bandwidth for a 
single acceleration job. As a result, the aggregate throughput 
increases as the number of acceleration jobs increases. Except 
for Gaussian, Grayscale, Sobel, and Bitcoin, whose working 
set sizes are relatively small, the total working set sizes of 
other applications vary from 2GB to 32GB, which means 
the capacity of IOTLB is exceeded. However, since all these 
applications are well-designed to have good memory locality, 
performance is not impacted due to IOTLB thrashing. 
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Figure 7. The aggregate throughput of different real-world 
applications, normalized to the throughput of a single VM. 
GAU, GRS, SBL, and SSSP fail to scale because the intercon-
nection bandwidth becomes saturated, creating a performance 
bottleneck beyond four accelerators. 
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Figure 8. Normalized aggregate throughput in the presence 
of preemptive temporal multiplexing. All virtual accelerators 
are scheduled on a single physical accelerator. 
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6.5 Beneft of Using Huge Pages 
To measure the performance beneft of “huge” (2M) pages, we 
compare the throughput and latency when using 2M versus 
4K pages. Fig. 5 and Fig. 6 compare the results of 2M versus 
4K paging in terms of latency and throughput, respectively. 

OPTIMUS suffers from a performance drop when the ag-
gregate working set exceeds the IOTLB capacity (512 pages); 
a 2M TLB entry can serve 512 times more memory than 
a 4K entry. Using 2M pages can thus postpone the perfor-
mance drop from a 4M aggregate working set to 2G, which is 
benefcial for applications with a large working set. 

As shown in Fig. 6b, we discovered an unusually-high 
read throughput when (a) there is only one accelerator, and 
(b) the working set does not exceed 2M. We noticed a sim-
ilar phenomenon with 2M pages, which is not pictured due 
to spacing constraints. While we cannot defnitively deter-
mine the source of this behavior, we believe the phenomena 
arise due to a speculative optimization in the IOTLB pipeline, 
which assumes that subsequent memory accesses will access 
the same 2 MB region as previous accesses. 

6.6 Scalability of Temporal Multiplexing 
In this section, we evaluate how OPTIMUS scales with respect 
to the oversubscription factor (i.e., the number of virtual accel-
erators per physical accelerator). Since only MemBench and 
LinkedList conform to OPTIMUS’s preemption interface, we 
are limited to directly evaluate these benchmarks. However, 
preemption overhead is correlated to the amount of execution 
state that must be saved. Therefore, because we know the total 
set of resources consumed by each accelerator confguration, 
we can use this percentage as an upper bound on the amount 
of state that must be saved, thus establishing an upper bound 
on context-switching overhead. 

Fig. 8 presents the aggregate throughput of running a vary-
ing number of virtual accelerators on a physical accelerator, 
normalized against a single job on an accelerator. Theoreti-
cally, OPTIMUS does not have a hard limitation on the scal-
ability of temporal multiplexing. Our evaluation stops at 16 

because we are able to show that the context-switching over-
head does not increase as the number of jobs increases. 

As indicated by the drop-in throughput between 1 and 2 
jobs, the overhead of preemption for LinkedList is approx-
imately 0.5%. For MemBench, this number is 0.7%. The 
overhead remains constant beyond 2 jobs because preemption 
occurs at a fxed interval in the presence of temporal multi-
plexing, regardless of the number of jobs being multiplexed. 

We estimate the worst-case overhead of temporal multi-
plexing for real-world applications by simulation. Since MD5 
occupies the most on-FPGA resources of any real-world ap-
plication, we use this benchmark to establish an upper bound. 
Our estimation yields 9% temporal multiplexing overhead in 
the worst case (i.e., assuming all resources occupied by MD5 
must be saved on a context switch). 

We stress that the amount of state that must be saved is 
application-dependent. If the amount of state is large, the 
length of each time slice can be increased to reduce the num-
ber of context switches, thereby mitigating the penalty. 

6.7 Fairness of Spatial Multiplexing 
In this section, we measure the fairness of the hardware sched-
uler in terms of its ability to guarantee at least 1/N of the total 
real-time bandwidth to each of N physical accelerators, as-
suming those accelerators are actively transmitting data. We 
assess the bandwidth fairness in both homogeneous confgura-
tions (where the FPGA is confgured with multiple instances 
of the same accelerator) and heterogeneous confgurations 
(where the FPGA is confgured with various accelerators). 

Homogeneous Confgurations For each benchmark, we con-
fgure the FPGA with eight homogeneous accelerators and 
measure the per-accelerator throughput. Table 3 presents the 
normalized throughput range (i.e., the difference between the 
maximum and minimum accelerator throughput divided by 
the average throughput) for each benchmark. The maximum 
normalized throughput range is approximately 1%, demon-
strating that the difference in throughput between any two 
accelerators is at most 1%. In other words, given eight ho-
mogeneous accelerators, each accelerator achieves roughly 
1/8 of the aggregate throughput. Thus, the hardware monitor 
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fairly multiplexes the FPGA among physical accelerators in 
homogeneous FPGA confgurations. 

Table 3. Normalized throughput range among eight homogeneous physical accelerators. 

Accelerators AES MD5 SHA FIR GRN RSD SW GAU GRS SBL SSSP BTC MB LL 
Normalized Throughput Range (10−4) 21.9 11.9 4.40 30.1 108 1.77 3.79 63.1 1.60 147 595 0.468 1.83 3.25 

Heterogeneous Confgurations 

Table 4. MemBench’s throughput when co-located with a second active accelerator, normalized against a standalone instance. 

Co-located Accelerator AES MD5 SHA FIR GRN RSD SW GAU GRS SBL SSSP BTC MB LL 
Normalized Throughput 0.86x 0.50x 0.77x 0.75x 1.00x 0.78x 0.78x 0.80x 0.80x 0.79x 0.75x 1.00x 0.50x 1.00x 

MemBench is designed to 
saturate HARP’s bandwidth for a single job. Therefore, we 
use it as a baseline for full throughput, and measure the rela-
tive decrease in MemBench’s throughput in the presence of a 
second active accelerator benchmark. 

Table 4 shows the normalized throughput reported by the 
MemBench accelerator for each confguration. In the presence 
of a second active accelerator, MemBench is guaranteed to 
receive at least half of the original bandwidth. 

Upon frst glance, MemBench receiving more than half 
of the total bandwidth may appear to be unfair. However, 
most accelerators do not transmit data as often as MemBench. 
For instance, in the cases where data is rarely transmitted by 
the other accelerator (e.g., LinkedList), MemBench receives 
a near-complete share of the bandwidth. When the second 
accelerator is also bandwidth-hungry (e.g., MD5 and a second 
instance of MemBench), the bandwidth is evenly split. 

6.8 Fairness of Temporal Multiplexing 
Enforcing fairness in the context of a software scheduler 
means being able to enforce the cloud provider’s custom 
time-sharing policy. OPTIMUS implements an unweighted 
round-robin scheduler (i.e., equal time slices), a weighted 
scheduling policy (i.e., weighted time slices), and a priority 
scheduler (i.e., the job with the greatest priority runs at each 
time slice). We verify that the software scheduler successfully 
enforces each policy by measuring the execution time of each 
virtual accelerator across varying oversubscription factors, 
time slice lengths, and job weights/priorities. On average, the 
actual execution times are within 0.32% of the expected times, 
with the greatest difference being 1.42%. Thus, OPTIMUS 
successfully enforces each of its software scheduling policies. 

7 Discussion 

AM

7.1 OPTIMUS vs. AMORPHOS 
ORPHOS [37] targets OS management of FPGAs. Like 

OPTIMUS, AMORPHOS enables both spatial and temporal 
multiplexing of FPGAs. AMORPHOS overcomes the static 
limitations of partial reconfguration (i.e., forcing accelera-
tor designs to ft into a fxed-size FPGA partition) through 
an abstraction called morphlets. Specifcally, AMORPHOS 

virtualizes an FPGA as a set of morphable tasks, which can 
alter their resource requirements at runtime to dynamically 
accommodate a greater or lesser number of accelerators on 
the same FPGA. OPTIMUS does not support dynamic scala-
bility on a single FPGA. However, since OPTIMUS supports 
acceleration preemption, OPTIMUS’s virtual accelerators can 
theoretically be migrated in the event that a cloud provider 
wishes to alter an FPGA confguration. 

The fundamental difference between AMORPHOS and OP-
TIMUS is that they target different FPGA platforms (host-
centric vs shared-memory, respectively). The differences be-
tween these platforms are substantial (e.g., different soft-
ware/hardware programming interfaces, memory latencies/-
capacities, hardware topologies, and so forth). 

Most importantly, these platforms necessitate signifcantly 
different forms of memory management. Because AMOR-
PHOS targets host-centric platforms—where accelerators can-
not issue their own DMAs—it focuses on virtualizing each 
accelerator’s view of on-FPGA DRAM. Thus, AMORPHOS’s 
memory protection logic only needs to manage on-FPGA 
DRAM, and can do so with segment-based translations. 

On the other hand, OPTIMUS targets platforms in which 
the FPGA uses the system DRAM. Thus, OPTIMUS must 
integrate accelerator memory protection with the host’s page-
level memory management, while maintaining consistent 
views of each address space for the CPU and FPGA. Nonethe-
less, given that platforms such as Intel PAC [27] give FP-
GAs access to both system and on-FPGA DRAM, our ap-
proaches to memory virtualization are complementary to 
those of AMORPHOS. 

7.2 Key Takeaways 
We believe our work highlights two key areas for improve-
ment in systems and architectural support for heterogeneous 
computing. First, there is a need for new OS abstractions. 
Currently, each FPGA vendor uses a different programming 
interface. Thus, standard OS abstractions (e.g., to send mes-
sages to the CPU and access different memories) would im-
mensely increase program portability. FPGA manufacturers 
can hasten the arrival of such OS abstractions by providing a 
standardized hardware interface. 

Second, a hard-wired multiplexer tree is needed to provide 
more effcient and scalable packet routing. Like AMORPHOS, 
OPTIMUS also confrms that a fat multiplexer becomes a 
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bottleneck for scalability. Furthermore, OPTIMUS shows that 
even a programmer-synthesized multiplexer tree can be a 
bottleneck at higher frequencies. These bottlenecks arise due 
to the diffculty of placing multiplexer resources suffciently 
close to pass timing constraints, but could be mitigated via a 
hard-wired multiplexer tree. 

8 Related Work 
Accelerator Libraries Amazon F1 [6] and Microsoft Brain-
wave [14, 50] offer accelerator libraries to their customers. 
The customer chooses from among these accelerators, ulti-
mately running their acceleration job on an FPGA that has 
been confgured accordingly. OPTIMUS is targeted for this use 
case, and allows the cloud provider to spatially and temporally 
multiplex their FPGAs among customers. 

Sharing On-FPGA Memory Asiatici et al. propose a hy-
pervisor featuring a high-level framework to facilitate FPGA 
application development [8]. The hypervisor provides a frame-
work to share on-FPGA memory among multiple accelerators. 
CoRAM [19] and CoRAM++ [75] similarly allow software 
to read and write on-FPGA BRAMs. Unlike OPTIMUS, none 
of these designs grant the CPU and FPGA a unifed view of 
memory. 

Sharing System Memory FPGAs can share system memory 
with the CPU on platforms such as Intel PAC [27] (PCIe-only), 
Intel HARP [25] (PCIe and UPI), and Enzian [9] (forthcom-
ing). GPUs from Intel [30, 70] and NVIDIA [1, 47, 58, 88] 
can transparently share memory regions with the CPU, using 
both software-only and hardware-assisted techniques. OPTI-
MUS’s page table slicing is inspired by such GPU page table 
partitioning techniques (as well as those of Virtual WiFi [78]) 
in a hardware-software co-design that is independent of ac-
celerator design and behavior. 

Overlays FPGA overlays [13, 34, 35, 42] provide an abstrac-
tion of FPGA hardware such that confgurations can be made 
architecture-agnostic. Unfortunately, the abstractions of over-
lays sacrifce throughput and resource utilization compared 
to confgurations built for specifc FPGA architectures. Given 
that the burden of developing accelerators is not placed on the 
customer in OPTIMUS, we believe that cloud providers and 
customers would prefer the effciency of native builds over 
the ease of cross-platform porting. 

Virtualizing FPGA Pools Xilinx SDAccel [82], Tarafdar et 
al. [67], and Microsoft Catapult [16, 56] target the virtual-
ization of FPGA pools, allowing jobs to be scheduled on 
available accelerators within the pool. Unlike these systems, 
OPTIMUS targets the virtualization of individual FPGAs. 

Virtualizing Individual FPGAs Prior work explores spatial 
multiplexing [15, 18, 53, 55, 72, 74] and temporal multiplex-
ing [18, 53, 55, 73, 84] of FPGAs. While most of these works 

focus on host-centric FPGAs, OPTIMUS focuses on shared-
memory FPGAs. An exception is AvA [84], which uses API 
remoting to virtualize accelerators. Unlike OPTIMUS, AvA 
targets a higher level of abstraction (e.g., OpenCL), and virtu-
alizes the userspace library instead of low-level hardware. 

FPGA OSes BORPH [64, 65] supplements software pro-
cesses with hardware processes, which communicate with 
other processes via standard UNIX interfaces. ReconOS [48] 
and Hthreads [54] extend the domain of multi-threaded pro-
gramming to an FPGA, and provide support for inter-thread 
communication and synchronization. LEAP [22] offers reli-
able and latency-insensitive communication channels between 
different hardware modules. AMORPHOS [37] provides sup-
port for sharing different on-FPGA resources. Unlike these 
works, OPTIMUS is a hypervisor that focuses on virtualizing 
shared-memory FPGAs as a set of accelerators. 

SR-IOV for FPGAs Intel [26] and Xilinx [80] both offer 
IP to support hardware-assisted FPGA virtualization of PCIe 
transactions via SR-IOV [43]. However, state-of-the-art shared-
memory FPGA platforms that use SR-IOV do not support 
more than one VF [25, 27]. OPTIMUS supports up to eight 
physical accelerators, which can each support both UPI and 
PCIe transactions as well as an arbitrary number of virtual 
accelerators. 

Partial Reconfguration A number of FPGA virtualization 
solutions [15, 18, 37, 74] target partial reconfguration ca-
pabilities of FPGAs, where an individual accelerator can be 
reconfgured without needing to reconfgure the entire FPGA. 
Because Intel HARP currently only provides a single recon-
fgurable region on the FPGA, OPTIMUS does not support 
partial reconfguration; doing so would overwrite the hard-
ware monitor. 

9 Conclusion 
In this paper, we presented OPTIMUS, the frst scalable hy-
pervisor for shared-memory FPGA platforms. OPTIMUS pro-
vides both spatial and preemptive temporal multiplexing of 
FPGAs, such that individual accelerators on an FPGA can 
be fairly overprovisioned to guests. OPTIMUS offers effcient 
virtual DMA isolation via page table slicing. Our experiments 
show that OPTIMUS can support eight physical accelerators 
on a single FPGA, and improves the aggregate throughput of 
twelve realistic benchmark workloads by 1.98x-7x. 
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A Artifact Appendix 
A.1 Abstract 
Here, we include links to our source code, and offer tutorials 
for installing the various components of OPTIMUS. 

A.2 Artifact check-list (meta-information) 
• Program: OPTIMUS hypervisor, hardware monitor, guest 

driver, guest core library, guest MPF library, and all bench-
marks (including MemBench, LinkedList, Bitcoin, SSSP, and 
HardCloud applications). 

• Compilation: GCC 4.8, Quartus Prime Pro 17.0.0. 
• Run-time environment: CentOS 7.5 with Linux kernel ver-

sion 5.1.0-rc6. When compiling the kernel, the confguration 
option FPGA_DFL must be disabled. QEMU 3.0.1. 

• Hardware: Intel HARP platform (with Skylake CPUs, Arria 
10 FPGAs, and Blue Bitstream version SR-6.4.0). Intel VT-d 
must be enabled in BIOS. 

• Publicly available?: Yes 

A.3 Description 
A.3.1 How delivered: 
All of the source code for OPTIMUS is open source, and can 
be obtained via GitHub1 or Zenodo2. 

1https://github.com/efeslab/optimus-hypervisor 
2https://doi.org/10.5281/zenodo.3605682 

A.3.2 Hardware dependencies: 
OPTIMUS requires an Intel HARP platform with Skylake 
CPUs, Arria 10 FPGAs, and Blue Bitstream SR-6.4.0. Intel 
VT-d (IOMMU support) must be enabled in the BIOS. 

A.3.3 Software dependencies: 
OPTIMUS requires GCC 4.8 to compile kernel modules and 
libraries and Quartus Prime Pro 17.0.0 for FPGA synthe-
sis. Our experiment runs on CentOS 7.5 with Linux kernel 
5.1.0-rc6 and QEMU 3.0.1. When compiling the kernel, the 
confguration option FPGA_DFL must be disabled. 

A.4 Installation 
Four components should be installed on the machine where 
OPTIMUS is deployed: (a) the OPTIMUS hypervisor, which is 
the key component of OPTIMUS and is used to provide FPGA 
virtualization support; (b) the host tools, which are used to 
confgure and control the physical FPGA; (c) the guest driver, 
which is installed in guests and supports virtual accelerators; 
(d) the guest libraries, which help guest software use virtual 
accelerators. 

The hardware monitor should be installed as a hardware 
library on the machine where FPGA bitstreams are synthe-
sized. The hardware monitor is used to multiplex the FPGA 
interface and provide virtualization support. 

The source code of these components can be found in our 
GitHub or DOI repository, we also provide a step-by-step tu-
torial (in our GitHub1 or Zenodo2 repositories) to help people 
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who have a compatible HARP platform to build OPTIMUS 
from scratch. 

A.5 Experiment workfow 
There are four steps to run FPGA-accelerated applications 
in guest virtual machines: (a) synthesize a bitstream for a 
select group of accelerators, (b) install different components 
of OPTIMUS mentioned in A.4, (c) confgure the FPGA with 
the bitstream synthesized in (a), and (d) boot guests and run 
different applications. 

We provide the source code of our benchmarks as well 
as confguration fles (which are used during synthesis) in 
our repository to help synthesize OPTIMUS compatible bit-
streams. 

A.6 Methodology 
Submission, reviewing and badging methodology: 
• http://cTuning.org/ae/submission-20190109.html 
• http://cTuning.org/ae/reviewing-20190109.html 
• https://www.acm.org/publications/policies/artifact-re 
view-badging 
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