
Debugging the OmniTable Way

Andrew Quinn
UC Santa Cruz

Jason Flinn
Meta

Michael Cafarella
MIT

Baris Kasikci
University of Michigan

Abstract
Debugging is time-consuming, accounting for roughly 50%
of a developer’s time. To identify the cause of a failure, a
developer usually tracks the state of their program as it exe-
cutes on a failing input. Unfortunately, most debugging tools
make it difficult for a developer to specify the program state
that they wish to observe and computationally expensive to
observe execution state. Moreover, existing work to improve
our debugging tools often restrict the state that a developer
can track by either exposing incomplete execution state or
requiring manual instrumentation.

In this paper, we propose an OmniTable, an abstraction
that captures all execution state as a large queryable data
table. We build a query model around an OmniTable that
supports SQL to simplify debugging without restricting the
state that a developer can observe: we find that OmniTable
debugging queries are more succinct than equivalent logic
specified using existing tools. An OmniTable decouples de-
bugging logic from the original execution, which SteamDrill,
our prototype, uses to reduce the performance overhead of
debugging. The system employs lazy materialization: it uses
deterministic record/replay to store the execution associated
with each OmniTable and resolves queries by inspecting re-
play executions. It employs a novel multi-replay strategy that
partitions query resolution across multiple replays and a par-
allel resolution strategy that simultaneously observes state at
multiple points-in-time. We find that SteamDrill queries are
an order-of-magnitude faster than existing debugging tools.

1 Introduction

Developers spend the majority of their time debugging their
software [26]. Usually, a developer debugs by iteratively exe-
cuting their program and using debugging tools to observe its
state during the failing execution.

A developer can often identify the root cause of a simple
bug by making a few observations about their program’s exe-
cution state. However, to identify the root cause of a complex
bug, such as a atomicity violation or performance degradation,

the developer will need to make sophisticated observations.
Conceptually, we can model the logic for such sophisticated
observations as a debugging program, designed to make sense
of the failing program. For example, when debugging, a de-
veloper may observe all of the values to which a variable is
assigned during an execution. Their debugging program con-
sists of a set data structure to store the values, logic after each
assignment in the failing execution that adds the assigned
value to the set, and a print statement to print the set when the
execution terminates.

Unfortunately, many debugging tools, such as gdb, “printf”-
debugging, and binary instrumentation, support debugging
programs that have both high programming complexity and
high performance overhead. Such tools support procedural
debugging programs that observe state as a failing program
executes. Procedural debugging programs have considerable
programming complexity, especially for sophisticated tasks
that track execution state over time (§6.2). High complexity
can lead to bugs [15, 44] that prevent a developer from under-
standing the failing program. Additionally, such debugging
programs impose high performance overhead since sophis-
ticated debugging programs observe a lot of execution state
which existing tools extract within the same execution context
as the failing program. Consequently, procedural debugging
programs can slow execution by between a factor of 2–1000
(§6.3), which can preclude the use of sophisticated debugging
programs [11].

Alas, prior debugging work retains, or even exacerbates,
high programming complexity or high performance over-
head to improve the other. Some proposals lower the per-
formance overhead of debugging by employing parallelism
(e.g., Speck [30], SledgeHammer [35]) or low-level optimiza-
tions (e.g., optimistic hybrid analysis [9], efficient path profil-
ing [3]). At best, such techniques require redesigning debug-
ging programs, at worst, they require novel research contribu-
tions to accelerate even a single task (e.g., taint tracking [4]).

High-level debugging tools decrease programming com-
plexity by allowing a developer to observe and summarize
execution state using a high-level programming model (e.g.,

1



Fay [12], G2 [17], EndoScope [7]). However, such tools re-
tain high performance overhead since they perform a debug-
ging program’s observations while executing the original
failing program. To curtail the effect of high performance
overhead, high-level debugging tools restrict the execution
state that a developer can observe, either explicitly (e.g., by
minimizing the times when a debugging program can ob-
serve state [12, 14, 25]) or implicitly (e.g., by requiring ex-
tensive manual instrumentation to specify observable exe-
cution state [17, 24, 40]). Such systems are well suited for
tasks that only need to observe partial execution state, such
as distributed tracing [24] or identifying specific classes of
bugs [25], but are less suited for debugging complex issues.

This paper proposes the OmniTable query model, a new de-
bugging paradigm that reduces the programming complexity
and performance overhead of debugging without restricting
the execution state that a developer can observe. The new
OmniTable abstraction empowers the model. An OmniTable
reduces programming complexity by presenting all of an exe-
cution’s state as a large queryable data object. An OmniTable
reduces performance overhead by decoupling a debugging
program’s observations from the original programs’ execution
to enable automated optimizations of debugging programs.

The OmniTable query model enables debugging programs
that can observe any execution state with low programming
complexity by turning to relational logic. Concretely, an
OmniTable is a database table representation of an execu-
tion that contains all architectural state (i.e., the value of all
bytes of memory and all registers) before every instruction
executed by the program. From a developer’s perspective, an
OmniTable is extracted as a program executes and can later
be queried using an extended SQL language to observe the
execution’s state. The model bridges the gap between the
architectural state in an OmniTable and common debugging
abstractions (e.g., the functions executed, variables assigned,
etc.) by re-purposing existing database primitives (e.g., high-
level views) and creating new query operators (e.g., traversal
functions).

Unfortunately, naively materializing an OmniTable would
lead to considerable performance overhead, since it would
require performing a core-dump before every instruction.
Instead, our prototype, SteamDrill, employs lazy material-
ization. Lazy materialization defers the calculation of an
OmniTable’s state until a developer queries it. Rather than
extract an OmniTable in its entirety during execution, Steam-
Drill uses deterministic record and replay to store the exe-
cution associated with the OmniTable. Deterministic record
and replay enables SteamDrill to compress and store years
worth of OmniTables on a commodity hard drive [10]. When
a developer issues a query over an OmniTable, SteamDrill
generates instrumentation which it injects into a new replay
of the execution associated with the OmniTable to produce
the execution state needed for the query.

SteamDrill reduces performance overhead by decoupling

a debugging query’s execution from the original program
execution. SteamDrill uses a query planning approach that de-
composes a debugging query into independent stages. Steam-
Drill implements a novel multi-replay query resolution strat-
egy that executes each stage in a separate replay so that it
can use data that is computationally inexpensive to observe
(e.g., data about functions in an OmniTable) to reduce the
compute cost of observing data that is computationally ex-
pensive to observe (e.g., data about each instruction in an
OmniTable). In essence, multi-replay resolution uses the de-
coupling between an OmniTable query and the original exe-
cution to repeatedly observe OmniTable state at increasing
detail. SteamDrill also uses decoupling to observe execution
state from multiple points-in-time in parallel using thousands
of machines [35, 47].

We built a SteamDrill prototype on top of Spark [47] and
Arnold [10]. We evaluate the prototype using 5 detailed case
studies of bugs reported in popular open-source applications
(Memcached, redis, Apache, and SQLite). We identified 14
debugging programs that a developer would use to identify
the root cause of each bug, including ad-hoc programs (e.g.,
“How many control-flow instructions did my function issue?”)
and standard dynamic analyses (e.g., a memory leak detector).
We implemented the debugging programs using OmniTable
queries and gdb’s python bindings, which provide a high-
level language over gdb features. We found that OmniTable
queries require up to 11.67 times fewer lines (with a geomet-
ric mean of 3.74 times fewer lines), up to 5.73 times fewer
terms (with a geometric mean of 1.70 times fewer terms), and
up to 23.49 times less estimated development time (with a ge-
ometric mean of 2.75 times less estimated development time)
than gdb scripts. We evaluated the performance of SteamDrill
on 3 representative debugging queries and find that it is faster
than gdb by a factor of 99 based upon geometric mean.

We make the following contributions:
• The OmniTable query model, which decouples a de-

bugging program from a failing execution to reduce the
programming complexity and performance overhead of
debugging.

• SteamDrill, which optimizes OmniTable queries using
query planning, cluster-scale parallelization, and a novel
multi-replay query resolution approach.

• An evaluation of 5 case studies and 14 queries that
shows that OmniTable queries are more succinct and
SteamDrill has lower latency than state-of-the-art tools.

2 Motivation

In this section, we describe a motivational case study showing
how the OmniTable query model simplifies debugging. In
the case study, a developer uses an OmniTable to diagnose a
performance problem in redis [36]. In the study, a developer
deploys redis as an in-memory key-value LRU cache for a

2



Vars(ot)
Column Name: Type Description

time: Long Time of instruction
thread: Long Thread that executed instruction
eip: Long Program counter of instruction
name: String Variable name
value: Any Assigned value

Funcs(ot)
Column Name: Type Description

enterTime: Long Time of function entry
exitTime: Long Time of function exit (or null)
name: String Function name
thread: Long Thread that executed function
callStack: String Call stack of function
args: Map[String->Any] Argument values
rVal: Any Return value of function execution

Figure 1: The schema of the Funcs(ot) and Vars(ot) views.
Each line in each table describes a column in the view.

slow back-end service. Over time, the average end-to-end
latency of their deployment creeps upwards; the developer
notices that the increase correlates with the back-end service
processing a higher percentage of requests.

The bug is challenging to diagnose since the developer only
starts with a high-level symptom and is unaware of which
parts of the program are related to the error. To determine
the root cause of the bug, the developer summarizes an exe-
cution’s behavior over time. The OmniTable allows the de-
veloper to observe all of the execution state of the program
without requiring instrumentation; the query model’s sup-
port for SQL aggregations allows the developer to succinctly
summarize large amounts of execution state. Moreover, the
OmniTable enables repeated queries over the same buggy
execution, instead of requiring the bug be reproduced for each
query.

In contrast, summarizing execution state over time is chal-
lenging with existing tools (§7). To use a procedural debug-
ging tool (e.g., gdb), the developer must identify numerous
instrumentation points, track execution state over time in com-
plex data-structures, and implement algorithms to group data
and calculate statistics. Other debugging tools simplify exe-
cution summarization, but provide incomplete interfaces in
that they do not expose the execution state (e.g., PTQL [25],
Fay [12]) or do not support the operators (e.g., Pivot Trac-
ing [24], Execution Mining [20]) required for this case study.
Finally, instrumentation-based tools (e.g., G2 [17], Pivot Trac-
ing [24]) require extensive manual instrumentation to perform
the necessary observations.

The developer uses 5 OmniTable queries to identify the
root cause of the performance degradation. Rather than query
an OmniTable directly, the developer uses derived views to
simplify their queries. A derived view labels execution state
according to an abstraction of execution behavior, such as the
functions, in-scope variables, or memory read by each instruc-
tion in an OmniTable. Below, we describe the derived views

time eip name value

100 0x1000 “used” 1000
100 0x1004 “entry” NULL
102 0x1004 “used” 1000

Figure 2: Example data from Vars(ot) .
enterTime exitTime name args rVal

100 200 “lookupKey” {“key”:“k1”} 100
100 200 “lookupKey” {“key”:“k2”} 100
100 200 “incrRefCount” {“key”:“k1”} NULL

Figure 3: Example data from Funcs(ot) (omitting the
callStack and thread columns). .

that the developer uses. Then, we describe the OmniTable
queries that the developer uses and compare them to debug-
ging programs expressed using existing debugging tools.

2.1 Views
The developer uses two derived views, Vars(ot) and
Funcs(ot), which can be calculated over an OmniTable: ot.
Figure 1 shows their schemas.

Vars(ot). The Vars view contains the value of all in-scope
variables at each instruction in an OmniTable. Each row iden-
tifies the value of a single in-scope variable at a single in-
struction, regardless of whether that instruction accesses the
variable. Figure 2 shows a few rows of the Vars(ot) view for
the OmniTable for the buggy execution of redis used during
this case study. A developer references the Vars view of an
OmniTable, ot, by specifying Vars(ot) in their query.

Funcs(ot). The Funcs(ot) view contains information
about the functions executed in an OmniTable—each row
contains state from either the entry to or exit from a func-
tion execution contained in the OmniTable, ot. For example,
Figure 3 contains a few rows of the Funcs(ot) view for the
OmniTable for the buggy execution of redis used during this
case study. The enterTime, callStack, and args columns
are extracted upon function entry; the exitTime and rVal
columns are extracted upon function exit (and are NULL for
functions that never return); and the name and thread are
extracted at both entry and exit and joined to match the entry
and exit of each function. The rVal and args columns use
the polymorphic type, Any, to encode different function sig-
natures. For example, a developer specifies args["i"] to get
the value of the argument i passed to a function.

The time, enterTime and exitTime columns from
Vars(ot) and Funcs(ot) expose an ordering of events con-
tained in the views and provide a primary key that uniquely
identifies each row in the views. Moreover, a developer can
use the the time, enterTime, and exitTime columns to cor-
related data across the Funcs(ot) and Vars(ot) views for
the OmniTable. For example, a developer can determine the
value of each in-scope variable at the entry to each function by
joining Funcs(ot) and Vars(ot) on enterTime = time;
the second query uses this feature (§2.2.2).

3



1 Select enterTime, count(distinct args["key"]) Over(
2 Order By enterTime
3 Rows Between 10000 Preceding and Current Row)
4 From Functs(ot)
5 Where f.name="lookupKey"

Listing 1: The developer’s first query.

2.2 Queries
Next, we describe how the developer diagnoses the cause
of the performance bug. First, they use deterministic record
and replay to capture the OmniTable for an execution of
redis during which the issue occurs. Then, they construct and
execute the following five OmniTable queries.

2.2.1 First Query

The developer’s first query (Listing 1) uses a windowed ag-
gregation to approximate the number of items that the de-
ployment caches in redis (i.e., the working set size) during
the performance degradation. The developer suspects that
the working set size increases over time, which would lead
to additional cache misses in redis. Each cache miss sends
a request to the back-end service, so this hypothesis would
explain the creeping latency of the deployment.

The developer begins by inspecting redis’s source code
to identify the function, lookupKey, that finds an item in
the cache. For each lookupKey execution, the developer cre-
ates a window containing the preceding 10,000 executions
of lookupKey and counts the number of distinct keys passed
to each function call in each window. The OmniTable query
model succinctly represents this logic using SQL aggregates.
SQL aggregates calculate a mathematical operation (e.g.,
count, sum) over a group of rows. An aggregate can op-
erate over a window of requests, in which each group is an
ordered list of rows that match an Over clause, as is the case
in this query. Alternatively, an aggregate can operate over a
group of rows that match a Group By clause, as is the case
in the developer’s third query (§2.2.3).

In detail, the query uses the Over operator to create sliding
windows, each of which contains 10,000 consecutive calls to
lookupKey, by ordering Funcs(ot) by enterTime (Lines 2–
3). The query filters non-lookupKey windows (Line 5). It
counts the number of distinct keys passed to each function
call in each window using the key argument (args["key"])
and the count and distinct operators.

Existing debugging tools either cannot support the query,
impose high programming complexity, or impose high perfor-
mance overhead. EndoScope [7] and Fay [12] could support
the developer’s query, but imposes a high overhead since they
tightly couple debugging logic’s execution with the origi-
nal program execution. Most high-level debugging tools do
not support windowed-aggregations and are either unable
to compute the query (e.g., Pivot Tracing [24], Execution
Mining [20]) or require a developer to write a custom oper-

1 from gdb import Breakpoint, parse_and_eval
2 from collections import deque, defaultdict
3 class bp(Breakpoint):
4 keys=deque()
5 indexed=defaultdict(int)
6 def stop(self):
7 keys.append(parse_and_eval("key"))
8 indexed[keys[-1]] += 1
9 if len(keys) > 10000:

10 indexed[keys[0]] -= 1
11 if indexed[keys[0]] == 0:
12 del indexed[keys[0]]
13 keys.popleft()
14 print (len(indexed))
15 return False
16 bp("lookupKey")

Listing 2: The developer’s first query written for gdb’s Python
bindings.

ator to compute the query (e.g., G2 [17] requires express-
ing the window clause in terms of a vertex-based graph-
traversal). Instrumentation-based debugging tools (e.g., Pivot
Tracing [24]) would require the developer manually instru-
ment the lookupKey function to produce the value of key.

An equivalent procedural debugging program is complex.
The debugging program must navigate the performance-
complexity tradeoff—creating a program with high overhead
is straightforward, but creating one with low overhead requires
complex logic to ensure consistency of two data structures.
A mistake can lead to a misdiagnosis of the bug—our first
version of the debugging program included such a mistake.

Listing 2 shows an implementation for gdb’s Python bind-
ings, which provide a Python interface for gdb features such
as breakpoints and backtraces. The developer creates a custom
Breakpoint class, bp (Lines 6–15); by creating a bp with the
argument "lookupKey" (Line16), the developer instructs the
gdb framework to call the developer-supplied stop function
at each call to lookupKey. The developer tracks the sliding
window of 10,000 requests by storing the value of the key
argument into keys, a queue, and removing the first element
if there are more than 10,000 elements in keys (Lines 7, 9,
and 13). The developer could recompute the unique values
in keys in stop, but that would add significant performance
overhead since lookupKey is executed frequently. Instead,
the developer uses a dictionary object, indexed, to track the
number of times each key value appears in the keys window
(Lines 5, 8, and 10–12). This logic is subtle and challenging
to get right—for example, we initially used a set to track
the unique elements in keys instead of using a dictionary to
track the number of times each element appears in keys. Our
buggy implementation erroneously removes elements from
indexed and produces misleading results.

4



1 Select v.time, v.value
2 From Vars(ot) as v Join Funcs(ot) as f
3 Where v.name = "used" And f.name = "lookupKey"
4 And f.enterTime = v.time

Listing 3: The developer’s second query.

1 Define DefinedMemory(ot) as:
2 Select m.rVal as pointer, m.exitTime as start,
3 m.callStack as allocSite, f.enterTime as end
4 m.arg["size"] as size
5 From Funcs(ot) as m Left NextJoin Functs(ot) as f
6 On m.exitTime, f.enterTime,
7 m.name="malloc" And m.exitTime<=f.enterTime
8 And f.name="free" And m.rVal=f.arg["ptr"]
9

10 Select start, allocSite, sum(size)
11 Over(Partition By allocSite Order By start)
12 From DefinedMemory(ot)
13 Where end=NULL

Listing 4: The definition of the DefinedMemory(ot) view
(Lines 1–8) and the developer’s third query (Lines 10–13).

2.2.2 Second Query

Surprisingly, the working set size of the cache is fairly con-
stant throughout the execution. Consequently, poor cache per-
formance may arise from poor eviction decisions for the work-
load or from a decrease in the number of items in the cache
over time. The developer’s second query determines the num-
ber of items in the cache over time by checking the number of
items in the cache before each execution of the lookupKey
function (Listing 3). redis stores the size of the cache in a
global variable, used; the query uses the Vars(ot) view to
access the value of the variable (Lines 2–3). It prevents the
query from producing extremely large amounts of data by us-
ing a Join to limit the rows to only those when the execution
enters lookupKey (Lines 2–4).

Unlike the OmniTable query model, many debugging tools
do not expose the value of variables at arbitrary points-in-
time and cannot support the developer’s second query (e.g.,
Fay [12], PTQL [14]). Endoscope [7] could support the query,
but only exposes variable values when they are assigned and
requires the query identify the most recent preceding assign-
ment of used for each call to lookupKey. Instrumentation-
based tools (e.g., Pivot Tracing [24], G2 [17]) and procedural
tools (e.g., gdb) require instrumenting the lookupKey func-
tion to produce the value of used.

2.2.3 Third Query

The second query’s output shows that the number of items in
the cache decreases throughout the execution. Since the redis
configuration specifies a total memory size for the cache and
the deployment uses constant sized items, a declining number
of items in the cache implies that there is a memory leak.
Unfortunately, redis does not clean up memory on shutdown,
so existing leak detection tools (e.g., memcheck [29] and

1 Select dm.pointer, Count(*)
2 From Funcs(ot) as r Join DefinedMemory(ot) as dm
3 Where dm.allocSite=leakSite And dm.exit=NULL
4 And r.name="decrRefCount" Or r.name="incrRefCount"
5 And dm.pointer=r.arg["obj"]
6 Group By dm.pointer, r.name

Listing 5: The developer’s fourth query.

AddressSanitizer [39]) report nearly all memory allocations
as leaks.

The developer’s third query uses an alternative approach:
it tracks the number of leaked bytes by each allocation site
(defined as the call stack of the allocation) over time. Alloca-
tion sites that produce bug-inducing leaks will have a gradual
increase of leaked bytes throughout the execution. The devel-
oper’s query observes three separate types of execution events
with different happens-before relationships, which is greatly
simplified by the OmniTable query model.

The developer first creates a view, DefinedMemory(ot)
that contains the window of time during which each mem-
ory object is defined, i.e., allocated and not freed (List-
ing 4). The view joins each call to malloc with the subse-
quent call to free whose pointer argument, ptr, is equal to
the return value from malloc (Lines 5–8). Since a pointer
could be reallocated by malloc after being freed, the query
only matches calls to free that occur after the call to mal-
loc (m.exitTime<f.enterTime at Line 7). Additionally,
it only matches each malloc with the next matching call
to free, as ordered by exitTime and enterTime, respec-
tively, by using NextJoin, a new operator provided by the
OmniTable query model (Lines 5–6). The developer uses
Left NextJoin, which produces output from the left re-
lation even if there is no matching row in the right relation,
so that memory which is never freed (i.e., leaked) has a NULL
value for the end column.

The third query tracks the amount of data leaked by each al-
location site over time. For each leaking allocation (Lines 12–
13), the developer constructs a window containing all preced-
ing leaking allocations from the same allocation site by using
the Over operator (Line 11). They sum the number of bytes
leaked within each window (Line 10).

Like with the previous queries, existing debugging tools ei-
ther cannot support the third query, impose high programming
complexity, or impose high performance overhead.

2.2.4 Fourth Query

The output of the third query identifies a single leaking alloca-
tion site, leakSite. redis uses reference counters to manage
allocations from leakSite. Each counter tracks the number
of live references to each object; redis should garbage col-
lect the object when the count reaches 0. So, the developer
suspects a problem in the reference counting and writes a
query to count the updates to the reference counters of leak-

5



ing objects (Listing 5). They identify leaked objects that were
allocated at leakSite (Lines 2–3) and match each leaked
object with corresponding executions of decrRefCount and
incrRefCount, the functions that modify reference counts
(Lines 2, 4, and 5). The developer groups the rows by object
and function name (Line 6) and determines the number of
calls to increment and decrement the counter (Line 1).

Like the previous queries, existing debugging tools either
cannot support the developer’s fourth query, impose high pro-
gramming complexity, or impose high performance overhead.

2.2.5 Fifth Query

The fourth query’s output shows that the execution calls
incrRefCount and derRefCount the same number of times
on the leaked objects, indicating a problem in the implemen-
tation of incrRefCount or decrRefCount. The developer
chooses a few candidate objects and determines the call stack
of the calls to incrRefCount and decrRefCount for these
objects. The final query1 shows that the leaked object’s ref-
erence counts are decremented by a lazy deallocation thread
and by a logging thread and points to the root cause of the bug,
a race condition in decrRefCount. In the fix for the original
bug report, the developer redesigning the logging thread to
copy objects instead of sharing them.

3 The OmniTable Query Model

We outline the features of the OmniTable query model that
enable a developer to succinctly reason about the entire history
of execution state. The central abstraction is an OmniTable,
a database table containing all user-level architectural state
of an execution immediately before every instruction in the
execution. Concretely, an OmniTable contains a column for
every byte of architectural state and a row immediately before
each instruction. The model supports debugging queries over
an OmniTable expressed using SQL-style Select. . .From
. . .Where queries.

Alas, an OmniTable alone offers an inadequate debugging
interface, since a developer would need to reference execution
state in architectural terms. For example, a developer would
need to determine the exact memory location of each vari-
able whose value they wish to observe. So, the OmniTable
model adopts and extends database concepts to enable de-
bugging abstractions. It uses Generators, user-defined-table-
functions that allow queries to reference non-execution state
(e.g., debugging symbols). It adds new operators for debug-
ging, such as traversal functions and new Join variants. Fi-
nally, the model uses derived views to label an OmniTable’s
state according to familiar debugging abstractions such as
the functions executed in an OmniTable or the variables in
scope at each instruction in an OmniTable. A single row in

1Omitted for brevity, this query is a self-join of the Funcs(ot) view

a high-level view can expose execution state from multiple
points-in-time during the execution (e.g., Funcs(ot)). Below,
we elaborate on the model’s components.

3.1 Relations
The OmniTable query model supports two relational base ta-
bles, OmniTables and Generators. It supports columns with
primitive types (e.g., Long, String), Structs, Maps, Arrays, and
Any, a polymorphic type.

OmniTable. An OmniTable is a database table that in-
cludes all architectural execution state immediately before
each instruction in the execution; Figure 4 shows an example.
Before each instruction, the OmniTable contains the current
thread, the value of all registers and memory addresses, and
the top of the stack of the thread. To dereference an ad-
dress, addr, a query specifies Memory[addr]. Additionally,
each row includes a monotonically increasing logical time,
which provides a total ordering of events in the OmniTable
and uniquely identifies each row. In a multi-threaded pro-
gram, the time field is a total ordering that is consistent with
the partial ordering of the original execution. Together, the
thread and time columns enable a developer to reason about
concurrency.

Generators. Generators allow developers to bridge the
semantic gap between traditional programming abstractions
(e.g., functions, lines of code) and an OmniTable’s architec-
tural state by referencing non-execution state (e.g., debug-
ging symbols). For example, Defs identifies the functions
defined in a binary; the following produces all such defini-
tions for an executable, “a.out”: Select * From Defs("
a.out"). Generator input can depend on query data. For
example, Binaries is useful for bootstrapping queries; it
uses the deterministic record/replay log to identify the bina-
ries mapped into the address space of an OmniTable. The
following determines all functions defined in all binaries
that are loaded in ot, an OmniTable, which we use to define
the FuncDefs view: Select * From Defs(Select *
From Binaries(ot)). Developers create Generators by
writing a program that produces relational output; we have
built a Generator that determines all variables defined in in
all binaries mapped into an OmniTable, and one that creates
stored procedures that produce the memory read and written
by each instruction in an OmniTable.

3.2 Relational Operators
The model supports join, group by, order by, and
pivot. It also introduces three Join variants for debugging.

StackJoin. SQL is unable to model a function stack, which
would prevent the OmniTable query model from expressing
critical debugging abstractions, such as Funcs(ot), which is
used in all of the queries in the redis case study (§2). Prior
high-level debugging tools either remove support for such se-

6



Metadata Registers Memory
time thread stackTop . . . eip eax ebx . . . 0x0 0x1 . . . 0xffffffff
1 100 0x2000 . . . 0x1000 1 1 . . . 1 1 . . . 1
2 100 0x2000 . . . 0x1004 1 1 . . . 1 1 . . . 1

· · ·
1000 100 0x2000 . . . 0x1064 1 1 . . . 1 1 . . . 1

Figure 4: An OmniTable for a short execution.

1 Select *
2 From fenter(ot) as e StackJoin freturn(ot) as r
3 On e.time, r.time, e.thread=r.thread AND e.name=r.name

Listing 6: An Example StackJoin.

mantics (e.g., PTQL [14]) or require manual instrumentation
(e.g., G2 [17]). Instead, the OmniTable model creates a new
operator, StackJoin.

As an example, suppose that fenter(ot) is a view that
contains a row for each function entry in ot, an OmniTable,
with columns name, thread, and time for the name of the
function, thread that entered the function, and time of entry;
and that freturn(ot) is a view conataining a row for each
function return in ot, an OmniTable, with columns name,
thread, and time for the name of the function, thread that
returned from the function, and time that the function returns.
Listing 6 shows a StackJoin that matches each function en-
try with its function return. StackJoin partitions fenter(
ot) and freturn(ot) into groups that match on thread and
name. For each group, the operator orders the rows fenter(
ot) by time and orders the rows from freturn(ot) by time.
Repeatedly, the operator pushes all rows from fenter(ot)
onto a stack until it finds a row that occurs after the next row
in freturn(ot); it then produces a row by joining the last
row added to the stack and the next row in freturn(ot).

OrderedJoins. When debugging, developers often reason
about the next, or previous, event that satisfies some condition.
For example, in the DefinedMemory(ot) view, the developer
matched each call to malloc with the next call to free on the
same pointer (§2.2.3). SQL requires inconvenient subqueries
for this reasoning, so, the OmniTable query model adds two
new ordered join operators. The NextJoin operator deter-
mines the next matching row across two relations and can be
used to determine the next function executed by a thread or
the next access to a shared variable: NextJoin on ord1,
ord2, equals joins each row in the left relation, ordered

by ord1, with the next row from the right relation, ordered
by ord2, where equals is true. The PrevJoin operator does
the opposite.

3.3 Column Operators
The OmniTable query model supports many column oper-
ators, including arithmetic and conditional operators, field
expressions (a.b), subscript expressions (a[b]), traversal

functions, stored procedures, and standard aggregations (e.g.,
Count, Max, Min, etc.) over groups and windows. The
model also supports pointer dereferences by converting them
into expressions over the Memory column (e.g., a->b be-
comes Memory[a].b). We elaborate on traversal functions
and stored procedures.

Traversal Functions. SQL makes it difficult to traverse
the elements in a data structure since it does not support un-
bounded traversals. So, the OmniTable query model builds
new primitives for these operations. Given a pointer-typed
column and a field within the pointed-to type, the traverse
(column, field) expression produces a row of output for
each element in the transitive closure of the structure by start-
ing at column and following field pointers until the value is
NULL. For example, traverse(node, "next") traverses the
next pointer of all elements in a structure, starting at node.

Stored Procedures. Debugging logic often varies by ex-
ecution context (e.g., the memory location of function argu-
ments varies by function). Stored procedures [43] store rela-
tional logic in a table and allow a query to decide query logic
during query resolution. Developers call stored procedures in
their OmniTable queries with function syntax; for example,
a developer could specify Var_Loc(esp) to use Var_Loc, a
stored procedure that calculates the memory location of a
variable given the value of the stack pointer.

3.4 Derived Views
The OmniTable query model allows developers to con-
struct derived views for labeling execution state. The De-
fine operator in Listing 4 shows how a developer constructs
DefinedMemory(ot). Our implementation provides three
high-level views, Funcs(ot) (§2.1), Vars(ot) (§2.1), and
Insts(ot), a view that encodes information about each in-
struction in an OmniTable.

4 Design

In this section, we describe the design of SteamDrill, our
system that supports the OmniTable query model. From a
developer’s perspective, SteamDrill computes queries over
OmniTables that are extracted during execution and stored
in a database. However, materializing an entire OmniTable
is infeasible due to high storage and compute costs: an
OmniTable’s size is equal to the addressable memory size

7



SteamRoller
1. Parsing (§4.1)

2. Planning (§4.2)
Logical Planning (§4.2.1)

Physical Planning (§4.2.2)

3. Execution (§4.3)

OmniTable
Query

Query
Result

Figure 5: SteamDrill steps for query resolution. Blue steps
re-use or customize existing approaches, and white steps are
new designs.

1 Select eip, read, write
2 From Insts(ot) as i Left Join DefinedMemory(ot) as dm
3 On (i.read=dm.pointer Or i.write=dm.pointer)
4 And i.time>=dm.start And i.time<dm.end
5 Where dm.start=NULL

Listing 7: A simplified undefined use query.

times the number of executed instructions and reaches
petabytes, or even exabytes, for mere seconds of execution.

SteamDrill introduces lazy materialization as a solution.
Rather than materializing an OmniTable during execution,
SteamDrill uses deterministic record and replay [10] to cap-
ture a log of non-deterministic inputs to the execution. The
system uses the log to generate OmniTable state on-demand
by instrumenting and re-executing the original execution as
necessary to resolve debugging queries. Delaying OmniTable
materialization allows SteamDrill to filter OmniTable data
before extracting state instead of afterwards.

In the rest of this section we describe how SteamDrill
resolves debugging queries. Listing 7 presents a simplified
use-after-free query as a running example. The query uses the
Insts(ot) view to identify the memory read and written by
each instruction in an OmniTable. It joins Insts(ot) with
the DefinedMemory(ot) view from the third redis query, to
match each memory access with the region of time during
which its pointer was defined (Listing 4). The query uses
a Left Join and identifies rows where start is NULL to
identify the instructions that operate on undefined memory.

SteamDrill’s design mirrors that of typical database man-
agement systems [2] (Figure 5). First, SteamDrill uses con-
ventional SQL parsing to decompose a query into a tree of
relational operators (internal nodes) over data tables (leaves)
(§4.1). The tree contains a separate leaf node for each
OmniTable referenced in the query. The relational operators
that consume data from each OmniTable in the tree identify
the execution state that the query needs from that OmniTable.
During execution, SteamDrill uses these operators to limit the
materialization of each OmniTable in the query by generating
instrumentation that it injects into replay executions (§4.3).

The order of OmniTable materialization has a large im-
pact on the amount of materialized data and the latency of

σ

Π

Join

Join

OT ID

Join

StackJoin

Join

OT FD

Join

OT FD

StackJoin

Join

OT FD

Join

OT FD

Insts(ot) as i

fentry(ot) fexit(ot)

Funcs(ot) as m

fentry(ot) fexit(ot)

Funcs(ot) as f

DefinedMemory(ot) as dm

Figure 6: The relational tree for Listing 7. OmniTables
are red ovals labeled with OT. Generators are blue ovals;
InstructionDefs are ID nodes and FuncDefs are FD nodes.
Relational operators are white rectangles; where, join, and
select clauses are σ, Join, and Π nodes. The logic for each
derived view is encapsulated in a dotted rectangle.

query resolution. Delaying the materialization of an other-
wise computationally expensive-to-materialize OmniTable
often allows SteamDrill to filter the computationally expen-
sive materialization using data from a less computationally
expensive-to-materialize OmniTable. For example, to reduce
the latency of the use-after-free query, the system first mate-
rializes the OmniTable state needed for the DefinedMemory
view and uses the materialized data to filter the materialization
of the Insts(ot) view.

Accordingly, SteamDrill uses multi-replay resolution—it
splits OmniTable materialization across multiple replay exe-
cutions. It uses query planning to determine the OmniTable
materialization order and assigns OmniTable materializa-
tion to replay executions(§4.2). SteamDrill implements
OmniTable-specific optimization strategies to decide the join
order and join algorithm for each join in the tree (§4.2.1)
which it uses to assign each operator to a stage. The system
uses a single replay execution to materializes all OmniTables
in the same stage. This approach minimizes the number of
replay executions (since each replay execution adds addi-
tional overhead) and enables SteamDrill to limit OmniTable
materialization.

4.1 Parsing
First, SteamDrill converts the query into a tree of relational
operators over data tables using a standard SQL parser [2];
the tree encodes the logic required to resolve the query in
terms of easy-to-optimize relational operations. The tree en-
codes each relational operator in the query as an internal node
(i.e., a projection (Π), selection (σ), or join operator) and each
OmniTable and each Generator in the query as a separate

8



leaf node. SteamDrill recursively decomposes each view into
the relational logic that generates them until the tree is com-
prised entirely of relational logic and base tables (§3.1). A
directed edge from node n1 to node n2 in the tree identifies
that the operator n2 consumes the output of n1.

Figure 6 is the relational tree produced by SteamDrill
for Listing 7. SteamDrill contains the internal logic of
the Insts(ot) and DefinedMemory(ot) views (shown
as dotted rectangles). The tree contains the logic of the
Insts(ot) view: a Join between an OmniTable and
InstructionDefs, a Generator containing metadata about
the instructions defined in binaries used by an OmniTable.

The tree includes the internal logic of DefinedMemory(ot)
and, recursively, all of the derived views compris-
ing DefinedMemory(ot). The tree contains the
DefinedMemory(ot) logic (Listing 4): a Join be-
tween two Funcs(ot) views, one for executions of malloc
(Funcs(ot) as m) and one for executions of free (Funcs(ot)
as f). The tree contains the logic of each Funcs(ot)
view (§3.2 and Listing 6): a StackJoin that combines
fentry(ot) and fexit(ot), relations over the entry and
exit to each function in the OmniTable. Finally, the tree
contains the logic for each fentry(ot) and fexit(ot):
a Join between an OmniTable and FuncDefs. Note, the
tree includes the fentry(ot) of malloc and fexit(ot) of
free even though the query does not use their output; during
planning, SteamDrill determines that the query does not use
the views and prunes them.

4.2 Planning

SteamDrill performs two tasks during planning. During log-
ical planning, the system optimizes the relational tree using
standard optimizations (e.g., predicate push-down) and deter-
mines the join order and join algorithm for each join in the tree
using OmniTable-specific strategies (§4.2.1). The most cru-
cial task in logical planning is determining the join order and
algorithms for the query, since the join order and algorithms
imply the partial order in which SteamDrill will materialize
the OmniTable nodes contained in the query. SteamDrill sup-
ports two join algorithms: merge joins, which operate over
two fully realized relations, and block-nested-loop joins (loop
joins), which first calculate the left relation and use the left
relation’s output to limit right relation materialization.

During physical planning, SteamDrill produces a staged
execution plan, which uses the join order and algorithms as-
signed during logical planning to assign each operator in the
tree to a stage. In particular, physical planning assigns the
children of merge joins to the same stage (so SteamDrill ma-
terializes them using the same replay) and assigns the right
child of a loop join to the stage after the loop join’s left child
(so SteamDrill materializes them using different replays).

Π3

Loop Join3

Merge Join2

Merge Join1

Π1

Loop Join1

σ1

FD1

OT1

Π2

Loop Join2

σ2

FD2

OT2

σ3

ID1

OT3

Figure 7: The relational tree for Figure 6 after logical planning.

4.2.1 Logical Planning

Traditional techniques for deciding join order and algorithms
perform poorly on OmniTable queries for three reasons: First,
similar subtrees in a relational tree have vastly different com-
putational costs to materialize (e.g., the join subtree in the
Funcs(ot) subtree is similar but much less computationally
expensive than the join subtree in the Insts(ot) subtree).
Second, the materialization cost of an OmniTable often de-
pends on unpredictable properties of the underlying execution
(e.g., it is difficult to predict the execution frequency of a
particular function). Third, the enormous compute cost of
materializing an OmniTable invalidates conventional rules.

Consequently, SteamDrill turns to a rule-based planner [1]
that enables developers to encode semantic information that
would be difficult or impossible for SteamDrill to deduce on
its own. Each rule specifies regular-expression-like rules that
pattern match subtrees of the relational tree and produce mod-
ified operators [1]. The join order and algorithm rules produce
a left-deep join structure in which OmniTable nodes are iso-
lated on the right-hand side of a join node (Figure 7), since
these structures allow SteamDrill to perform as much filtering
as possible when extracting data from an OmniTable. When
queries join relations with different expected materialization
compute costs, the rules place the less expensive relations on
the left side, the more expensive relation on the right side and
employ a loop join. When joining relations with the same
expected materialization compute costs (e.g., two instances of
Funcs(ot)), the rules use a merge join. Heuristically, Steam-
Drill expects that Funcs(ot) relations are less computation-
ally expensive to materialize than Vars(ot) relations, which
are less computationally expensive than Insts(ot) relations,
which are less computationally expensive than OmniTables.
Rules also encode traditional database optimizations.

Executing the relational tree in Figure 6 without logical
planning would have high latency; SteamDrill would materi-
alize the OmniTable five separate times! In contrast, Steam-
Drill’s logical plan (Figure 7) uses multi-replay resolution to

9



observe only the exit from malloc, entry to free, and load/s-
tore instructions. Moreover, the plan reduces latency by only
producing data for load/stores to undefined memory as they
are observed, rather than producing data for all loads/stores
and performing a join to determine undefined uses afterwards.

First, SteamDrill uses traditional database optimizations
(e.g., operator push-down) to push operators towards leaf
nodes to (1) produce FuncDefs data for only malloc and
free (σ1 and σ2), (2) produce InstructionDefs data only
for loads and stores (σ3) and (3) eliminate the fentry(ot) for
malloc and fexit(ot) for free. The system uses loop joins for
Loop Join1 and Loop Join2, which materialize σ1 and σ2 be-
fore OT1 and OT1 to limit OmniTable state to the exit of
malloc and entry to free in OT1 and OT2, respectively. The
system joins them using a Merge Join (Merge Join1) to limit
the number of replay executions that it uses. OT3, created for
the Insts(ot) view, is computationally expensive to mate-
rialize, so SteamDrill defers its materialization. SteamDrill
uses a Merge Join (Merge Join2) to join σ3 and Merge Join1,
which requires a Cartesian product and violates the tradi-
tional rule that such approaches be avoided. Materializing
Merge Join2 and using a loop join (Loop Join3) to join it with
OT3 allows SteamDrill to identify only the loads/stores to un-
defined memory (i.e., loads/stores that read/write an address
at a time when it is not contained in DefinedMemory(ot)) as
they are performed by the execution rather than in an expen-
sive join afterwards. In some queries, using a loop join like
Loop Join3 enables SteamDrill to elide inspection of some
instructions altogether (e.g., Listing 8).

4.2.2 Physical Planning

Next, SteamDrill converts the optimized relational tree into
a staged execution plan by assigning each operator from the
tree into a stage. Each stage corresponds to a new replay
execution (§4.3). SteamDrill assigns operators to stages that
follow the partial order of OmniTable materialization that
is implied by the join order and algorithm, but uses as few
stages as possible, since each stage will require the additional
latency and overhead of a replay execution.

SteamDrill performs a depth-first traversal of the tree start-
ing at the root node and maintains an integer id for the
current stage, starting at 1. The system assigns leaf nodes
(OmniTable, Generators) to the current stage and unary
nodes (i.e., all non-join operators) to their child’s stage. The
system assigns merge join operators to the largest stage among
the join’s children. For loop join operators, SteamDrill first
assigns stages to operators in the left (inexpensive) child, adds
one to the current stage, assigns the loop join to the new stage
and traverses the right (expensive) child.

Figure 8 shows the staged execution plan for Listing 7.
SteamDrill assigns FD1, σ1, FD2, σ2, ID1, and σ3 to the first
stage. It assigns OT1 and OT2 to the second stage since
Loop Join1 and Loop Join2 indicate that OT1 and OT2 should

Π3 (3)

Loop Join3 (3)

Merge Join2 (2)

Merge Join1 (2)

Π1 (2)

Loop Join1 (2)

σ1 (1)

FD1 (1)

OT1 (2)

Π2 (2)

Loop Join2 (2)

σ2 (1)

FD2 (1)

OT2 (2)

σ3 (1)

ID1 (1)

OT3 (3)

Figure 8: The staged execution plan for Figure 7. The stage
of each node is shown in parentheses in the node.

be materialized after σ1 and σ2, respectively. SteamDrill also
assigns Π1, Π2, Merge Join1, and Merge Join2 to the second
stage since they inherit the largest stage of their children. The
system assigns Loop Join3, OT3, and Π3 to the third stage to
follow the order required for Loop Join3.

4.3 Execution

Finally, SteamDrill executes the staged execution plan. For
each stage, the system generates instrumentation to material-
ize the state needed from each OmniTable, materializes each
OmniTable, and calculates each operator in the stage.

4.3.1 Instrumentation Generation

SteamDrill generates instrumentation that it will inject into
a replay execution for the OmniTables in a stage by deter-
mining instrumentation operators for each OmniTable node
in the stage. For each OmniTable node, the system gathers
all stateless operators (e.g., projections (Π) and selections(σ))
that only consume data from (1) the OmniTable node, (2)
nodes resolved in previous stages, or (3) other nodes satisfy-
ing (1) and (2). For example, the instrumentation operators
for OT1 in Figure 8 includes Π1 and Loop Join1. Selecting
stateless operations ensures that the resulting instrumentation
will be parallelizable during materialization.

Then, SteamDrill creates a cursor object for each
OmniTable node that combines all of the node’s instrumen-
tation operations. Cursor objects contain a filter and an
output clause; logically, a cursor inspects the execution
instruction-by-instruction, producing the output whenever
the filter is true. SteamDrill generates the filter clause of
the cursor for each OmniTable in the stage by combining
all selection (σ) and loop join instrumentation operators and
generates the output clause using the output of the top-most
projection (Π) instrumentation operator.

10



4.3.2 Materialization

Next, SteamDrill materializes OmniTable nodes by executing
the cursor objects on top of a replay of the execution asso-
ciated with the tables. It uses epoch parallelism [34, 35] to
parallelize cursor evaluation. Epoch parallelism partitions a
replay execution into time slices, called epochs. It assigns
each epoch to a separate core in a compute cluster and uses
checkpoints, generated during recording, so that each core
executes each cursor over only its assigned epoch.

However, naive cursor evaluation (i.e., instrumenting every
instruction) imposes a many orders of magnitude slowdown.
So, SteamDrill analyzes the filter clause of each cursor to
identify instructions at which the system can elide cursor
evaluation to optimize performance. For example, SteamDrill
identifies that the cursors in the second stage of Figure 8
only need to be evaluated at malloc and free and removes
all other cursor evaluations. Our prototype identifies these
optimizations by finding comparisons to the program counter.

Additionally, SteamDrill calculates operators in the stage
that were not assigned as instrumentation operators for any
OmniTable node (e.g., Merge Join1 and Merge Join2 in Fig-
ure 8). SteamDrill uses existing algorithms to calculate merge
join and aggregation operators [1, 16]. Additionally, it exe-
cutes the program associated with each Generator in the
stage to calculate Generator operators.

5 Implementation

We implement our SteamDrill prototype on top of Spark [1]
and Arnold [10]; below, we describe its key components.

Spark SQL. Our prototype introduces new relational oper-
ators and base tables for OmniTables and Generators. We
added support for block-nested-loop joins, stored procedures,
and polymorphic columns (§3) by serializing data to and from
a JSON format. We added catalyst rules for our OmniTable-
specific join order and algorithm preferences (§4.2.1). Each
rule required 25 lines of code, so we expect that developers
will be able to easily add custom rules as needed for their
debugging workflows.

Instrumentation. Efficient cursor instrumentation plays a
vital role in our prototype’s performance. Debugging tools of-
ten use dynamic instrumentation frameworks (e.g., PIN [23]),
which are a scalability bottleneck when SteamDrill paral-
lelizes the replay execution across many cores [34]. Our pro-
totype performs static binary instrumentation. It disassembles
the application binaries and rewrites the basic blocks con-
tained in the application to call cursors, as required for the
breakpoints determined from each cursor. The system single-
steps execution for cursors that do not produce breakpoints.

Time Column. The time column is a critical element of the
OmniTable query model, but, deriving the column by count-
ing all instructions or basic blocks would be too expensive.
We observe that instructions progress from low to high, ex-

cept in the case of a backwards control-flow (e.g., branch,
call, or return instructions that jump to a program location at a
lower address). Thus, our prototype uses the number of back-
wards control-flow operations as a the first element of the time
column and breaks ties using the instruction pointer. Serendip-
itously, Intel provides deterministic performance counters for
conditional branch and call instructions2, which allow our
prototype to compute the number of backwards control-flow
operations by counting the number of unconditional back-
wards branches during execution and adding the value of
these performance counters.

6 Evaluation

In this section, we evaluate the OmniTable query model and
SteamDrill by answering the following questions: “Does the
OmniTable query model improve upon existing debugging
interfaces?”, “Does SteamDrill accelerate debugging ques-
tions?”, and “How do SteamDrill design decisions impact
query performance?”.

We perform 5 detailed case studies of how a developer
could use an OmniTable and SteamDrill to solve real-world
bugs from open-source servers (§6.1) from which we derive
14 debugging questions. We implement the debugging ques-
tions using OmniTable queries and gdb’s python bindings,
which provide a python interface for traditional gdb features
(e.g., breakpoints and backtraces). We compare the complex-
ity of the 14 OmniTable queries and gdb scripts using metrics
from the software engineering community (§6.2). We deploy
SteamDrill on a CloudLab [37] cluster of 8 r320 machines (8-
core Xeon E5-2450 2.1 GHz processor, 16 GB Ram, 10 Gbps
NIC) to evaluate the performance for 3 representatives from
the original 14 debugging questions (§6.3). We calculate the
latency results below as the average over 10 trials and include
95% confidence intervals.

6.1 Case Studies
We performed 5 detailed case studies by identifying the de-
bugging questions that a developer would ask when solving
real-world bugs. We choose notoriously difficult bugs includ-
ing livelock, intermittent performance problems, and atom-
icity violations (on average, the bugs in our study took 159
days from being opened to the commit that fixed the bug).
We choose case studies from popular open-source applica-
tions: redis, Memcached, Apache, and Sqlite. The redis 4323
case study is described in §2; below, we describe case studies
for debugging a livelock [28] and atomicity violation [27] in
Memcached. We omit a description of a performance degra-
dation in Apache [6] and a segmentation fault in Sqlite [41].

The case studies illustrate the benefits of the OmniTable
query model along two key dimensions: first, the all-inclusive

2Note that most performance counters are not deterministic

11



1 Select f.Name, Count(*)
2 From Insts(ot) as i PrevJoin Funcs(ot) as f
3 On i.time, f.entryTime, i.thread=f.thread
4 Where f.exitTime=NULL

Listing 8: The First query for Memcached 271.

1 Select eip, True, False
2 From Vars(ot)
3 Where name="status"
4 Pivot Count() in (True, False)

Listing 9: The second query for Memcached 127.

state exposed by the table offers a powerful window into an
execution’s behavior. Second, SQL aggregations provide a
powerful tool for summarizing and comparing program state.
These features are particularly powerful when used in tandem.
For example, in Memcached 271, the developer identifies the
function that contains a livelock by counting the number of
instructions executed by the functions left on the call stack
at the end of the execution. This logic cannot be expressed
in existing high-level debugging tools and is very complex
when expressed using procedural tools such as gdb.

Memcached 271. In this case study, a developer ob-
serves livelock in the Memcached key-value store [28]. Live-
lock is notoriously difficult to diagnose since a developer
needs to identify the cause of a missing property: forward
progress [33].

In contrast, the OmniTable model allows the developer to
succinctly track millions of execution events and use aggrega-
tions to identify anomalous execution state. Their first query,
shown in Listing 8, identifies which function contains the live-
lock by counting the number of instructions executed during
each function on each thread’s call stack at program termina-
tion. The query matches each executed instruction with the
most recent function called on the same thread to determine
which function contained the instruction (Lines 2 and 3). It
counts how many instructions were executed (Line 1) by each
function that did not return (Line 4).

The output identifies a single function with a high number
of branches. The function traverses a linked-list, which the
developer suspects is corrupted. The developer’s second query
counts how many times each function that updates the linked
list is called with every possible function argument value and
shows a single anomalous call to free a linked-list item in
which the item is still resident in the linked-list. Memcached
reference counts linked-list items, so the developer’s third and
final query tracks all reference count updates and identifies
an overflow that leads to the erroneous free of the item.

Memcached 127. This case study involves an atomicity
violation in Memcached. An integer stored in the cache has
the wrong value after all updates, which is challenging to
debug since the developer does not know which program state
to track or when to track it. Atomicity violation tools [32] use
heuristics and may misidentify the root cause of the bug.

Query Lines Nodes Halstead (s)
gdb OT gdb OT gdb OT

Apache 60956 Q1 20 6 94 54 518 263
Apache 60956 Q2 30 9 113 122 989 1350
Memcached 127 Q1 7 4 48 39 147 82
Memcached 127 Q2 11 4 74 26 518 38
Memcached 271 Q1 35 3 149 26 1471 62
Memcached 271 Q2 12 4 69 23 397 34
memcached 271 Q3 10 3 45 26 140 39
redis 4323 Q1 17 3 74 23 529 45
redis 4323 Q2 7 3 24 31 35 65
redis 4323 Q3 22 3 113 83 930 757
redis 4323 Q4 33 5 147 112 1620 1033
redis 4323 Q5 7 3 19 19 17 19
sqlite 787fa71 Q1 22 10 110 77 911 520
sqlite 787fa71 Q2 41 8 151 96 1489 684

Average 20 5 88 54 694 357

Table 1: Lines, Nodes, and Halstead Complexity for debug-
ging questions expressed using OmniTable queries (OT) and
gdb python scripts (gdb).

The OmniTable model, particularly SQL aggregations, pro-
vide a powerful tool for comparing the state of their program
at many points-in-time to identify anomalous program state.
The developer first isolates the module that contains the error.
In particular, they determine if the bug arises when initially
parsing requests or when processing them by using a count
aggregate to count the number of times the function at the
boundary between parsing and processing is called with each
possible set of arguments. The query shows that the problem
arises when processing requests.

The processing code maintains a boolean variable, valid,
that tracks the validity of a global pointer used by the code.
The developer’s second query, shown in Listing 9, identifies
how often valid is set to true and false during each of
the instruction within the processing logic. It uses a Pivot
operator to produce a row for each instruction and show the
number of times valid is set to true and false across all
executions of the instruction. The second query identifies a
few instructions at which status has an anomalous state. The
anomalous instructions do not modify the status, so the devel-
oper concludes that another thread must modify the status and
identifies a mistake in the processing logic’s use of a mutex.

6.2 Complexity
We implemented the 14 debugging queries from our 5 case
studies using OmniTable queries and implemented equiva-
lent logic using gdb python scripts. Qualitatively, we observe
that OmniTable queries are less complex due SQL aggrega-
tions, the all-inclusive nature of an OmniTable, and the struc-
tured approach provided by high-level views: OmniTable
queries usually involve an aggregation after joining a few
high level views, whereas imperative debugging scripts reg-
ularly use multi-dimensional data-structures to track state,
nested control-flow to implement aggregations, and complex

12



Memcached
127 Q1

Memcached
 127 Q2

Memcached
271 Q1

102

103

104

105

La
te

nc
y 

(s
)

GDB
SteamRoller 1
SteamRoller 64

Figure 9: SteamDrill query latency on a single core and on
64 cores compared to gdb script latency (which is sequential).
Y-axis is log-scale.

regular expressions to identify instrumentation points. We
measure complexity of each OmniTable query and gdb script
using three software engineering metrics: the number of lines
of code, the number of terms in the abstract syntax tree (AST),
and the Halstead complexity, which estimates the amount of
time it would take to correctly produce the query or script
using properties of the AST [18]. We included the defini-
tion of user-defined views (e.g., DefinedMemory(ot)) into
the OmniTable queries that use them, so our results are an
upper-bound on OmniTable query complexity.

Table 1 shows the results, indicating that OmniTable
queries are less complex than gdb scripts. By geometric mean,
OmniTable queries require 3.74 times fewer lines, 1.70 times
fewer nodes, and 2.75 times less estimated time to develop
than gdb scripts. There are only three queries that are more
complex when expressed using the OmniTable model, the sec-
ond and fifth redis 4323 queries, and the second Apache 60956
query. The two redis queries are small for both representations.
The second Apache query suffers from the lack of kernel state
in an OmniTable. The query identifies all blocking file de-
scriptors, which requires substantial logic to track all function
calls in the OmniTable model, but can be calculated in gdb us-
ing fcntl. Extending the OmniTable to include kernel state
would reduce the complexity.

6.3 Query Latency

We evaluate the latency of OmniTable queries and gdb scripts
for 3 representative queries from our case studies. We choose
queries that use all of the high level views in our proto-
type (i.e., Funcs(ot), Vars(ot), and Insts(ot)) and offer
a wide range of performance on current tools, from ~22 min-
utes to ~2 days. Figure 9 shows the latency of each debugging

100 101

Number of Cores

100

101

Sp
ee

du
p

Memcached 127 Q1
Memcached 127 Q2
Memcached 271 Q1
Ideal

Figure 10: SteamDrill scalability. Shows number of cores on
the x-axis vs. speedup on the y-axis; both axes are log-scale.

question evaluated using gdb, SteamDrill with a single core,
and SteamDrill with 64 cores, with latency plotted on a log-
scale. We executed Memcached 271 Q1 for 48 hours before
killing the program and report its latency as 48 hours.

SteamDrill is significantly faster than gdb. SteamDrill
query latency is between 2 and 290 times (with a geomet-
ric mean of 17) faster than gdb latency when using a single
core, and between 6.9 and 1809 (with a geometric mean of
99) times faster than gdb latency when using 64 cores.

6.4 Optimizations

Next, we evaluate the impact of three optimizations on Steam-
Drill’s latency: parallelization, multi-replay resolution, and
performance-counters.

Scalability. We evaluate the query latency of SteamDrill
queries when using 1–64 cores; Figure 10 shows the speedup
on a log-log scale. SteamDrill queries are 10.5 times faster us-
ing 64 cores than when run sequentially. Importantly, whereas
prior parallelization efforts require the developer to substan-
tially redesign their debugging code [30, 34, 35, 38, 46], the
parallelized and sequential OmniTable queries are identical.
The current scalability bottlenecks are caused by high initial-
ization and serialization cost in Spark and the high cost of
compiling cursors.

Multi-Replay Resolution. We evaluate the impact of
multi-replay query resolution on the Memcached 271 Q2
query. We calculate the query latency when using two rounds
of replay (the approach chosen by the SteamDrill planner) and
when using a single round of replay on 64 cores. SteamDrill
is 3.6 times faster when using multi-replay resolution.

Performance Counters. We evaluate the impact of using
performance counters to accelerate the calculation of the time
column in an OmniTable. We executed the 3 queries with and

13



Tool Model Observations Aggregates
Execution Mining [20] Stream All No
Fay [12] Stream Partial Partial
Pivot Tracing [24] Relational Log-Based Partial
G2 [17] Graph Log-Based Manual
PQL [25] Stream Partial No
PTQL [14] Relational Partial No
EndoScope [7] Stream Partial Yes
EBBA [5] Stream Log-Based No
TQuel [40] Relational Log-Based Partial

OmniTable Relational Everything Yes

Table 2: Feature comparison of high-level debugging tools .

without using performance counters (when disabled, Steam-
Drill instruments all jump, call, and return instructions) on
64 cores. The performance counter optimization accelerates
query latency by a factor of 1.6.

7 Related Work

The OmniTable query model is the first debugging model that
exposes all application state as a single entity and enables
succinct observations via a high-level declarative language.
Below we describe work related to high-level languages for
debugging, using deterministic replay for debugging, and ap-
plying optimizations to accelerate debugging.

Existing systems support high-level debugging languages
to reduce programming complexity; Table 2 illustrates the lim-
itations of prior work compared to the OmniTable model. Ex-
ecution Mining [20], PQL [25], EBBA [5] and EndoScope [7]
expose a time-stream model of execution, which complicates
debugging since it is difficult to summarize data over time
(e.g., these tools cannot express the Funcs(ot) view since it
contains execution data from multiple points-in-time). Other
systems limit visibility of execution state: Fay [12], PQL [25],
EBBA [5], EndoScope [7], and PTQL [14] expose partial
program state consisting of only the function calls or global
variables values in an execution. Pivot Tracing [24], G2 [17],
EBBA [5], and TQuel [40] require manual instrumentation to
enable observations, which essentially amounts to supporting
queries over software logs. Finally, many tools provide no,
or very few, aggregates [14, 20, 25]; G2 [17] supports aggre-
gates but requires that they be expressed in terms of a graph
processing language.

Many OmniTable queries compare correct execution be-
havior to incorrect execution behavior, similar to statistical
debugging approaches [22]. There are two key differences (1)
statistical bug isolation requires observing many correct and
incorrect executions to come to a statistical verdict, whereas
developers can often get a “sense” for correctness using an
OmniTable query with fewer examples and (2) statistical de-
bugging approaches hard code the values that they compare
(e.g., function argument values), whereas developers can cus-
tomize OmniTable queries to use program constructs best

suited to their applications.
Many systems have noted that deterministic replay can be

a great help when debugging software problems [8, 13, 19,
31, 42, 45]. Such systems enable a debugging program to
explore an execution’s time-sequence in reverse, but retain a
procedural interface.

Recently, JetStream [34] and Sledgehammer [35] use de-
terministic replay as a vehicle for parallelizing debugging,
which our prototype uses to accelerate OmniTable queries.
However, these tools support procedural debugging models,
similar to gdb, and consequently suffer from the programming
complexity.

Existing tools do not decouple debugging logic’s execution
from the original execution to optimize query latency. PARTI-
CLE [14], Fay [12], Pivot Tracing [24] and PMSS [21] reduce
the debugging performance overhead using traditional SQL
optimizations (e.g., predicate push-down). However, these
tools add instrumentation to the program and re-execute it
to recreate the bug, which tightly couples the execution of
debugging and the original execution and increases perfor-
mance overhead. Additionally, by inspecting new executions,
these systems are cannot perform all SteamDrill performance
optimizations, particularly multi-replay query resolution.

8 Conclusion

In this paper, we propose the OmniTable query model, a new
debugging paradigm that reduces the programming complex-
ity and performance overhead of debugging without restrict-
ing the execution state that a developer can observe. We show
that the query model simplifies debugging questions com-
pared to existing state-of-the-art tools by performing case
studies of bugs reported in popular open-source software. Un-
fortunately, an OmniTable, the key abstraction in the model,
cannot be stored or calculated due to its extreme size. So, our
prototype, SteamDrill, implements lazy materialization: it de-
lays an OmniTable’s calculation until a developer queries the
table. It uses deterministic record and replay to store the ex-
ecution associated with each OmniTable and then generates
instrumentation and traces a new replay execution to resolve
each developer query on-demand. The system uses declarative
optimizations, debugging optimizations, and a novel multi-
replay strategy to accelerate debugging queries by an order
of magnitude compared to state-of-the-art tools.

9 Acknowledgements

We would like to thank our shepherd, Ding Yuan, and the
anonymous reviewers for their insightful comments. The work
was supported by the National Science Foundation under
grant DGE-1256260.

14



References

[1] Michael Armbrust, Reynold S. Xin, Cheng Lian, Yin
Huai, Davies Liu, Joseph K. Bradley, Xiangrui Meng,
Tomer Kaftan, Michael J. Franklin, Ali Ghodsi, and
Matei Zaharia. Spark sql: Relational data processing
in spark. In Proceedings of the 2015 ACM SIGMOD
International Conference on Management of Data, SIG-
MOD ’15, page 1383–1394, New York, NY, USA, 2015.
Association for Computing Machinery.

[2] Morton M. Astrahan, Mike W. Blasgen, Donald D.
Chamberlin, Kapali P. Eswaran, Jim N Gray, Patricia P.
Griffiths, W Frank King, Raymond A. Lorie, Paul R.
McJones, James W. Mehl, et al. System r: relational
approach to database management. ACM Transactions
on Database Systems (TODS), 1(2):97–137, 1976.

[3] Thomas Ball and James R Larus. Efficient path profil-
ing. In Proceedings of the 29thACM/IEE international
symposium on Microarchitecture, pages 46–57. IEEE
Computer Society, 1996.

[4] Subarno Banerjee, David Devecsery, Peter M Chen, and
Satish Narayanasamy. Iodine: fast dynamic taint track-
ing using rollback-free optimistic hybrid analysis. In
2019 IEEE Symposium on Security and Privacy (SP),
pages 490–504. IEEE, 2019.

[5] Peter C. Bates. Debugging heterogeneous distributed
systems using event-based models of behavior. ACM
Transactions on Computer Systems, 13(1):1–31, Febru-
ary 1995.

[6] Bug 60956. https://bz.apache.org/bugzilla/
show_bug.cgi?id=60956.

[7] Alvin Cheung and Samuel Madden. Performance profil-
ing with endoscope, an acquisitional software monitor-
ing framework. Proc. VLDB Endow., 1(1):42–53, aug
2008.

[8] Weidong Cui, Xinyang Ge, Baris Kasikci, Ben Niu, Upa-
manyu Sharma, Ruoyu Wang, and Insu Yun. Rept: Re-
verse debugging of failures in deployed software. In
Proceedings of the 13th Symposium on Operating Sys-
tems Design and Implementation, OSDI’18, pages 17–
32, 2018.

[9] David Devecsery, Peter M Chen, Jason Flinn, and Satish
Narayanasamy. Optimistic hybrid analysis: Accelerat-
ing dynamic analysis through predicated static analysis.
In Proceedings of the Twenty-Third International Con-
ference on Architectural Support for Programming Lan-
guages and Operating Systems, pages 348–362, 2018.

[10] David Devecsery, Michael Chow, Xianzheng Dou, Ja-
son Flinn, and Peter M. Chen. Eidetic systems. In Pro-
ceedings of the 11th Symposium on Operating Systems
Design and Implementation, Broomfield, CO, October
2014.

[11] Marc Eisenstadt. My hairiest bug war stories. Commun.
ACM, 40(4):30–37, apr 1997.

[12] Ulfar Erlingsson, Marcus Peinado, Simon Peter, and
Mihai Budiu. Fay: Extensible distributed tracing from
kernels to clusters. In Proceedings of the 23rd ACM
Symposium on Operating Systems Principles, pages 311–
326, October 2011.

[13] Dennis Geels, Gautam Altekar, Petros Maniatis, Timo-
thy Roscoe, and Ion Stoica. Friday: Global comprehen-
sion for distributed replay. In Proceedings of the 4th
USENIX Symposium on Networked Systems Design and
Implementation, NSDI’07, pages 21–21, 2007.

[14] Simon F. Goldsmith, Robert O’Callahan, and Alex
Aiken. Relational queries over program traces. In Pro-
ceedings of the 20th Annual ACM SIGPLAN Conference
on Object-oriented Programming, Systems, Languages,
and Applications, OOPSLA ’05, pages 385–402, New
York, NY, USA, 2005. ACM.

[15] Google sanitizers issues. https://github.com/
google/sanitizers/issues?q=is%3Aissue+is%
3Aopen+ASAN.

[16] Jim Gray, Surajit Chaudhuri, Adam Bosworth, Andrew
Layman, Don Reichart, Murali Venkatrao, Frank Pellow,
and Hamid Pirahesh. Data cube: A relational aggrega-
tion operator generalizing group-by, cross-tab, and sub-
totals. Data mining and knowledge discovery, 1(1):29–
53, 1997.

[17] Zhenyu Guo, Haoxiang Lin, Mao Yang, Dong Zhou,
Fan Long, Chaoqiang Deng, Changshu Liu, and Lidong
Zhou. G2: A graph processing system for diagnosing
distributed systems. In Proceedings of the 2011 USENIX
Annual Technical Conference, 2011.

[18] Maurice H. Halstead. Elements of Software Science
(Operating and Programming Systems Series). Elsevier
Science Inc., USA, 1977.

[19] Samuel T. King, George W. Dunlap, and Peter M. Chen.
Debugging operating systems with time-traveling virtual
machines. In Proceedings of the 2005 USENIX Annual
Technical Conference, pages 1–15, April 2005.

[20] Geoffrey Lefebvre, Brendan Cully, Christopher Head,
Mark Spear, Norm Hutchinson, Mike Feeley, and An-
drew Warfield. Execution Mining. In Proceedings of

15

https://bz.apache.org/bugzilla/show_bug.cgi?id=60956
https://bz.apache.org/bugzilla/show_bug.cgi?id=60956
https://github.com/google/sanitizers/issues?q=is%3Aissue+is%3Aopen+ASAN
https://github.com/google/sanitizers/issues?q=is%3Aissue+is%3Aopen+ASAN
https://github.com/google/sanitizers/issues?q=is%3Aissue+is%3Aopen+ASAN


the 2012 ACM SIGPLAN/SIGOPS International Confer-
ence on Virtual Execution Environments (VEE), March
2012.

[21] Yingsha Liao and Donald Cohen. A specificational
approach to high level program monitoring and mea-
suring. IEEE Transactions on Software Engineering,
18(11):969–978, 1992.

[22] Ben Liblit, Mayur Naik, Alice X. Zheng, Alex Aiken,
and Michael I. Jordan. Scalable statistical bug isolation.
In Proceedings of the ACM SIGPLAN 2005 Conference
on Programming Language Design and Implementa-
tion, PLDI ’05, page 15–26, New York, NY, USA, 2005.
Association for Computing Machinery.

[23] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish
Patil, Artur Klauser, Geoff Lowney, Steven Wallace, Vi-
jay Janapa Reddi, and Kim Hazelwood. Pin: Building
customized program analysis tools with dynamic instru-
mentation. In Proceedings of the ACM SIGPLAN 2005
Conference on Programming Language Design and Im-
plementation, pages 190–200, Chicago, IL, June 2005.

[24] Jonathan Mace, Ryan Roelke, and Rodrigo Fonseca.
Pivot tracing: Dynamic causal monitoring for distributed
systems. In Proceedings of the 25th ACM Symposium
on Operating Systems Principles, 2015.

[25] Michael Martin, Benjamin Livshits, and Monica S Lam.
Finding application errors and security flaws using pql:
a program query language. ACM SIGPLAN Notices,
40(10):365–383, 2005.

[26] Steve McConnell. Code complete. Pearson Education,
2004.

[27] memcached - issue #127. https://code.google.
com/archive/p/memcached/issues/127.

[28] Memcached gets a dead loop in func assoc_find.
https://github.com/memcached/memcached/
issues/271.

[29] Nicholas Nethercote and Julian Seward. Valgrind: A
framework for heavyweight dynamic binary instrumen-
tation. In Proceedings of the ACM SIGPLAN 2007
Conference on Programming Language Design and Im-
plementation, San Diego, CA, June 2007.

[30] Edmund B. Nightingale, Daniel Peek, Peter M. Chen,
and Jason Flinn. Parallelizing security checks on com-
modity hardware. In Proceedings of the 13th Inter-
national Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, pages
308–318, Seattle, WA, March 2008.

[31] Robert O’Callahan, Chris Jones, Nathan Froyd, Kyle
Huey, Albert Noll, and Nimrod Partush. Engineering
record and replay for deployability. In Proceedings of
the 2017 USENIX Annual Technical Conference, Santa
Clara, CA, July 2017.

[32] Soyeon Park, Shan Lu, and Yuanyuan Zhou. CTrig-
ger: exposing atomicity violation bugs from their hid-
ing places. In Proceedings of the 14th International
Conference on Architectural Support for Programming
Languages and Operating Systems, pages 25–36, 2009.

[33] Rahul Patil and Boby George. Tools and tech-
niques to identify concurrency issues. hhttps:
//docs.microsoft.com/en-us/archive/msdn-
magazine/2008/june/tools-and-techniques-to-
identify-concurrency-issue.

[34] Andrew Quinn, David Devecsery, Peter M. Chen, and
Jason Flinn. JetStream: Cluster-scale parallelization of
information flow queries. In Proceedings of the 12th
Symposium on Operating Systems Design and Imple-
mentation, Savannah, GA, November 2016.

[35] Andrew Quinn, Jason Flinn, and Michael Cafarella.
Sledgehammer: Cluster-fueled debugging. In Proceed-
ings of the 13th Symposium on Operating Systems De-
sign and Implementation, pages 545–560, 2018.

[36] Redis 4.x lazyfree: memory leak may happen when free
slowlog entry #4323. https://github.com/redis/
redis/issues/4323.

[37] Robert Ricci, Eric Eide, and The CloudLab Team. Intro-
ducing CloudLab: Scientific infrastructure for advancing
cloud architectures and applications. USENIX ;login:,
39(6), December 2014.

[38] Olatunji Ruwase, Phillip B. Gibbons, Todd C. Mowry,
Vijaya Ramachandran, Shimin Chen, Michael Kozuch,
and Michael Ryan. Parallelizing dynamic information
flow tracking. In Symposium on Parallelism in Algo-
rithms and Architectures (SPAA), June 2008.

[39] Konstantin Serebryany and Timur Iskhodzhanov.
ThreadSanitizer: Data race detection in practice. In
Proceedings of the Workshop on Binary Instrumentation
and Applications, December 2009.

[40] Richard Snodgrass. Monitoring in a software develop-
ment environment: A relational approach. In Proceed-
ings of the First ACM SIGSOFT/SIGPLAN Software
Engineering Symposium on Practical Software Develop-
ment Environments, SDE 1, pages 124–131, New York,
NY, USA, 1984. ACM.

[41] Assertion fault when multi-use subquery implemented
by co-routine. https://www.sqlite.org/src/
tktview/787fa71.

16

https://code.google.com/archive/p/memcached/issues/127
https://code.google.com/archive/p/memcached/issues/127
https://github.com/memcached/memcached/issues/271
https://github.com/memcached/memcached/issues/271
hhttps://docs.microsoft.com/en-us/archive/msdn-magazine/2008/june/tools-and-techniques-to-identify-concurrency-issue
hhttps://docs.microsoft.com/en-us/archive/msdn-magazine/2008/june/tools-and-techniques-to-identify-concurrency-issue
hhttps://docs.microsoft.com/en-us/archive/msdn-magazine/2008/june/tools-and-techniques-to-identify-concurrency-issue
hhttps://docs.microsoft.com/en-us/archive/msdn-magazine/2008/june/tools-and-techniques-to-identify-concurrency-issue
https://github.com/redis/redis/issues/4323
https://github.com/redis/redis/issues/4323
https://www.sqlite.org/src/tktview/787fa71
https://www.sqlite.org/src/tktview/787fa71


[42] Sudarshan Srinivasan, Christopher Andrews, Srikanth
Kandula, and Yuanyuan Zhou. Flashback: A light-
weight extension for rollback and deterministic replay
for software debugging. In Proceedings of the 2004
USENIX Annual Technical Conference, pages 29–44,
Boston, MA, June 2004.

[43] Michael Stonebraker and Lawrence A Rowe. The design
of postgres. ACM Sigmod Record, 15(2):340–355, 1986.

[44] Kde bugtracking system. https://bugs.kde.org/
buglist.cgi?component=memcheck&product=
valgrind&resolution=---.

[45] Kaushik Veeraraghavan, Peter M. Chen, Jason Flinn,
and Satish Narayanasamy. Detecting and surviving data
races using complementary schedules. In Proceedings
of the 23rd ACM Symposium on Operating Systems Prin-
ciples, Cascais, Portugal, October 2011.

[46] Benjamin Wester, David Devescery, Peter M. Chen Ja-
son Flinn, and Satish Narayanasamy. Parallelizing data
race detection. In Proceedings of the 18th International
Conference on Architectural Support for Programming
Languages and Operating Systems, Houston, TX, March
2013.

[47] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das,
Ankur Dave, Justin Ma, Murphy McCauly, Michael J.
Franklin, Scott Shenker, and Ion Stoica. Resilient dis-
tributed datasets: A fault-tolerant abstraction for in-
memory cluster computing. In Proceedings of the 9th
USENIX Symposium on Networked Systems Design and
Implementation, pages 15–28, San Jose, CA, April 2012.
USENIX Association.

17

https://bugs.kde.org/buglist.cgi?component=memcheck&product=valgrind&resolution=---
https://bugs.kde.org/buglist.cgi?component=memcheck&product=valgrind&resolution=---
https://bugs.kde.org/buglist.cgi?component=memcheck&product=valgrind&resolution=---

	Introduction
	Motivation
	Views 
	Queries
	First Query
	Second Query 
	Third Query 
	Fourth Query
	Fifth Query


	The OmniTable Query Model
	Relations
	Relational Operators
	Column Operators
	Derived Views 

	Design 
	Parsing
	Planning
	Logical Planning
	Physical Planning

	Execution
	Instrumentation Generation
	Materialization


	Implementation
	Evaluation
	Case Studies
	Complexity
	Query Latency
	Optimizations

	Related Work
	Conclusion
	Acknowledgements

