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ABSTRACT

Prior work shows that Rowhammer attacks—which flip bits in

DRAM via frequent activations of the same row(s)—are viable. Ad-

versaries typically mount these attacks via instruction sequences

that are carefully-crafted to bypass CPU caches. However, we dis-

cover a novel form of hammering that we refer to as coherence-
induced hammering, caused by Intel’s implementations of cache

coherent non-uniform memory access (ccNUMA) protocols. We

show that this hammering occurs in commodity benchmarks on a

major cloud provider’s production hardware, the first hammering

found to be generated by non-malicious code. Given DRAM’s rising

susceptibility to bit flips, it is paramount to prevent coherence-

induced hammering to ensure reliability and security in the cloud.

Accordingly, we introduce MOESI-prime, a ccNUMA coherence

protocol that mitigates coherence-induced hammering while re-

taining Intel’s state-of-the-art scalability. MOESI-prime shows that

most DRAM reads and writes triggering such hammering are unnec-

essary. Thus, by encoding additional information in the coherence

protocol, MOESI-prime can omit these reads and writes, prevent-

ing coherence-induced hammering in non-malicious and malicious

workloads. Furthermore, by omitting unnecessary reads and writes,

MOESI-prime has negligible effect on average performance (within

±0.61% of MESI and MOESI) and average DRAM power (0.03%–

0.22% improvement) across evaluated ccNUMA configurations.

CCS CONCEPTS

• Security and privacy→ Security in hardware; Systems se-

curity; • Hardware → Hardware reliability.
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1 INTRODUCTION

The threat of Rowhammer [61] bit flips (i.e., DRAM disturbances)

is a widespread concern, especially in multi-tenant computing en-

vironments such as the cloud. Rowhammer arises from frequent

activations—to a first approximation, accesses—of the same DRAM

rows, which can disturb data in nearby rows due to electromagnetic

interference. These bit flips manifest at the system level as data

loss, machine failure, or system subversion.

Prior attacks and analyses [20, 22, 25, 30, 38, 39, 41, 48, 49, 51,

58, 61, 65, 70, 84, 88, 94, 95, 101, 108, 111–114, 119] confirm that

malicious adversaries can trigger sufficient activations to flip bits,

establishing Rowhammer as a security threat. At a high level, exist-

ing attacks require a carefully-crafted sequence of instructions to

bypass CPU caches and thereby frequently access DRAM. Thank-

fully, to our knowledge, these instruction sequences have not been
shown to occur in non-malicious (e.g., commodity) workloads with

sufficient frequency to risk bit flips.

However, we present coherence-induced hammering, a novel form
of Rowhammer that naturally occurs in commodity benchmarks on
cache coherent non-uniform memory access (ccNUMA) architec-

tures (e.g., multi-socket servers used by a major cloud provider). No-

tably, coherence-induced hammering instruction sequences occur

without workload manipulation. Thus, we offer the first evidence

of Rowhammer’s additional reliability threat.

Using DDR4 DRAM access traces, we show that Intel’s ccNUMA

coherence protocols frequently access DRAM in common data shar-

ing scenarios. In fact, the protocols activate individual rows at rates

previously-shown to induce bit flips. Amidst rising Rowhammer sus-

ceptibility in newer DRAM (i.e., fewer activations needed to flip

bits, more rows simultaneously reaching these activation rates, and

projections that the problem will continue to worsen [58, 88, 107]),

it is paramount to revisit ccNUMA protocol design before already-

vulnerable mitigations [25, 30, 41, 49, 94] are overwhelmed.

We discern that coherence-induced hammering in commodity

workloads arises from three phenomena, depending on the protocol.

The most basic phenomenon is that of downgrade writebacks [85],

a side effect of MESI protocols, where caches must write-back dirty

lines before sharing them. In ccNUMA systems—where data can be

shared among caches on different nodes—these downgrade write-

backs can repeatedly go to DRAM, resulting in hammering. Luck-

ily, downgrade writebacks can be trivially eliminated by adopting

widely-used MOESI protocols [85].

Unfortunately, we discover two additional sources of coherence-

induced hammering in Intel’s MESI-based ccNUMA protocols that

https://doi.org/10.1145/3470496.3527427
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are more difficult to address. First, both Intel’s broadcast and mem-

ory directory protocols issue speculative reads to DRAM as perfor-

mance optimizations. However, certain data sharing patterns (e.g.,

migratory [24, 110], as occurs for lock-protected “writer-writer”

data) induce repeated, mis-speculated DRAM reads of the same

cache lines, triggering row activations that hammer DRAM. Second,

Intel’s newer memory directory protocol [78] adds another source

of hammering. Specifically, inadvertently-redundant writes to the

in-DRAM directory—to ensure coherence correctness—frequently-

activate the same row(s) of DRAM. As we will show, these phenom-

ena cannot be prevented by a conventional MOESI protocol.
Accordingly, in this work, we introduce MOESI-prime: a cc-

NUMAprotocol thatmitigates coherence-induced hammering, while

retaining the use of Intel’s state-of-the-art memory directory for

scalability. MOESI-prime is based on the observation that mis-

speculated reads and redundant directory writes (the remaining

sources of coherence-induced hammering in a conventional MOESI

protocol) can be omitted without loss of correctness. For instance, a
speculative read can be omitted without loss of correctness if it will

go unused due to mis-speculation. Likewise, a memory directory

write can be omitted without loss of correctness if it is known to

be redundant.

We show that adding just two additional stable states (i.e., the

states a cache line can be in when a transaction is not already in

progress) to a baseline 5-state MOESI memory directory protocol

prevents hammering memory directory writes. Our key insight

is that coherence-induced hammering only arises in the presence

of dirty data. Thus, for “conventional” dirty states (M and O), we

additionally provide “prime” variants (M’ and O’). The prime states

behave almost identically to their conventional counterparts to

reduce the burden of ensuring protocol correctness (§5). The lone

difference is that the prime states allow caching agents to recognize

scenarios in which memory directory writes are guaranteed to be

redundant, enabling safe omission of these writes. Notably, MOESI-

prime’s 7 stable states fit in 3 bits per cache line, consuming the

same area as the 5 stable states of MOESI.

For hammering via mis-speculated reads, a simple change to the

existing directory cache’s management policy prevents offending

reads—and only these reads—from being issued.

We evaluate MOESI-prime in gem5 [9, 73], using a full-system

configuration that models a major cloud provider’s production

hardware. We demonstrate that MOESI-prime prevents identified

sources of coherence-induced hammering in both malicious and

non-malicious workloads. Additionally, we prove that baseline

MESI/MOESI protocols can be transformed into MOESI-prime pro-

tocols without loss of correctness. Finally, we show that MOESI-

prime’s prevention of unnecessary reads and writes has negligible

effect on average performance (within ±0.61% of MESI and MOESI

baselines) and average DRAM power (0.03%–0.22% improvement)

across PARSEC 3.0 [123] and SPLASH-2x [117] in 2-, 4-, and 8-node

ccNUMA configurations.

In summary, we make the following contributions:

• Using DDR4 memory access traces—collected from commodity

benchmarks on a major cloud provider’s production hardware—

we discover coherence-induced hammering, the first hammering

found to occur in non-malicious code.

• We identify hammering sources in Intel ccNUMA protocols.

• We design MOESI-prime, a ccNUMA protocol that prevents

coherence-induced hammering, while retaining the use of In-

tel’s state-of-the-art memory directory for scalability.

• We show that MOESI-prime is the first mitigation that simultane-

ously prevents coherence-induced hammering, improves average

DRAM power, and negligibly affects average performance—even

slightly increasing performance for many workloads.

Our implementation and evaluation infrastructure is open-source [72].

2 BACKGROUND

2.1 DRAM and Rowhammer

DRAM cells encode a single bit of information via high/low voltage,

and are organized in row-column banks (arrays). To access cells

within a row, a memory controller first issues an activate (ACT)
command, connecting the row to its bank’s row buffer. To read or

write at cache line-sized granularity, the controller then issues read

(RD) or write (WR) commands to column offsets within the buffer.

Rowhammer [61] is a circuit-level disturbance effect where fre-

quent ACTs of the same row(s) can flip bits in nearby rows. For

example, as only one row can occupy its bank’s row buffer at a time,

alternating RDs (or WRs) to aggressor rows within a bank require

repeated ACTs of each aggressor. However, because of electromag-

netic interference, nearby victim rows are susceptible to bit flips

until they are periodically refreshed.
To combat Rowhammer, modern servers rely on error correc-

tion (ECC [22]) and target row refresh (TRR [30], a DRAM-internal

defense that detects and refreshes select vulnerable rows ahead of

schedule). Unfortunately, these mitigations are not comprehen-

sive, as uncorrected bit flips can be induced despite ECC [22]

and TRR [25, 30, 49, 94]. Alternative mitigations yield a range

of security-performance trade-offs and are not known to be de-

ployed [4, 6, 7, 12, 14, 16, 29, 34, 36, 58–61, 63, 66, 69, 71, 77, 91, 105,

114, 115, 118, 121, 122].

2.2 ccNUMA Architectures

Cloud providers deploy large quantities of cores and DRAM per

server for cost effectiveness and ease of management. Accordingly,

modern servers are often architected as non-uniform memory ac-

cess (NUMA) for performance and scalability. A set of cores (e.g.,

a socket, cluster-on-die [44], or core complex/chiplet [102]) com-

prises a processing node, which is associated with a local (near)

memory pool that is faster to access than remote (far) memory. Each

physical address in the system maps to a local “home” node. Thus,

NUMA can provide lower latencies to workloads using local mem-

ory, and reduce memory traffic interference among independent

tasks on different nodes.

Today’s NUMA servers are typically cache coherent (ccNUMA)—

i.e., hardware enforces coherence across nodes. Specifically, each

line maps to one home agent (located at the line’s home node),

which enforces the line’s coherence.

Thus, ccNUMA systems offer a programmer-friendly coherent

memory model across nodes, and scheduling flexibility via more

cores and memory on one machine. While scheduling workloads

across nodes can hurt performance [11, 100], cloud providers and

customers benefit from the ability to (1) execute and easily manage

workloads needing more resources than there are on a node, and
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(2) run smaller workloads in “pigeonhole” scheduling cases (e.g.,

sufficient cores and memory are only available if split across nodes).

2.3 Coherence Protocols

Commodity coherence protocols enforce a single-writer, multiple-
reader invariant, where for a valid cached line, either (a) one core

has exclusive write permission, or (b) one or more cores have read-

only access. The invariant is typically enforced by write-invalidate
on servers, where a core invalidates all other line copies before

writing (to obtain exclusive access).

Coherence States. Coherence protocols are described in terms

of their stable states, the states a line may be in when a transac-

tion on the line is not in progress. During transactions, lines are

in transient (i.e., busy) states. Stable states typically encode line

validity, read/write permission, and dirty status (i.e., whether a line

must be written back). For instance, a basic MSI protocol offers 3

stable states:Modified (dirty+writable), Shared (clean+read-only),

and Invalid (invalid).

A MESI protocol—variants of which are used by modern Intel

servers [42]—adds the Exclusive state as an optimization, where E

encodes clean+writable. The extra E state avoids the need to obtain

write permission after fetching private data (i.e., data only cached

on a single core), reducing coherence traffic.

AMOESI protocol—used bymodernAMD servers [23]—also adds

the Owned state, where O encodes dirty+read-only. The potential

benefit of using MOESI over MESI is the elimination of downgrade

writeback traffic [85], incurred in MESI when a line in M is shared

for reading with another cache. While the performance and energy

difference between MOESI and MESI can be negligible [74], we dis-

cuss how MOESI’s elimination of downgrade writebacks is critical

in preventing a source of coherence-induced hammering in §3.2.

Directory/Broadcast. In addition to their stable states, coher-

ence protocols can be classified as directory or broadcast (i.e.,

directory-less). Upon a private cache miss in a directory proto-

col, the requesting core looks up a cache line in a shared directory

to determine the line’s location and coherence state; the directory

sends “directed snoops” to fetch a line from the appropriate cache

as necessary to maintain coherence.

In broadcast protocols, no directory exists, and the requesting

core instead broadcasts its request upon a miss to all other caches

to check for the line (i.e., “broadcasted snoops”). While broadcast

protocols yield simpler hardware, directory protocols scale better

due to reduced coherence traffic (i.e., snoops are often directed to

one cache, as opposed to broadcasted).

ccNUMA Considerations. The primary difference between

ccNUMA and single-node protocols is that ccNUMA maintains

coherence across multiple nodes. Upon an LLC miss, a broadcast
ccNUMA protocol must send snoops to all other nodes, in case

the line is dirty. A directory ccNUMA protocol can instead consult

a multi-node directory, whose state determines whether snoop(s)

must be issued (e.g., if the line is dirty). Given the premium placed

on inter-node (e.g., QPI/UPI [42, 83]) bandwidth, both Intel and

AMD have opted to reduce snoop traffic by defaulting to directory

ccNUMA protocols since at least 2017 [23, 47, 64, 78].

In a directory ccNUMA protocol, home agents can track the

local state of their lines via a single-node directory that Intel calls

Node 0
Core 0-A Core 0-B

Private Cache Private Cache
LLC+Local Directory (Snoop Filter)

Home Agent+Mem Dir Cache (HitME)

DRAM 0 Data + ECC + Mem Dir DRAM 1 Data + ECC + Mem Dir

UPI

Line + Metadata (Total 576 Bits, Not To Scale)
Mem Dir State (2 Bits) ECC (62 Bits) Data (512 Bits)

10 A (snoop-All)
01 S (remote-Shared)
00 I (remote-Invalid)

Node 1
Core 1-A Core 1-B

Private Cache Private Cache
LLC+Local Directory (Snoop Filter)

Home Agent+Mem Dir Cache (HitME)

Figure 1: A simplified Intel Skylake ccNUMA system. Each

line maps to a home agent that maintains coherence across

nodes using distributed state. Local state is stored in the

LLC+local directory (snoop filter). Remote state is stored in a

line’smemory directory bits. Select remote state is also stored

in an on-die directory cache (HitME [80]) to reduce snoop

latency.

the snoop filter [79, 120]. However, the agents need additional

mechanisms to track the remote state of lines. Thus, in the Intel

hardware investigated in this work, a ccNUMAdirectory is provided

in DRAM (“below” individual nodes), akin to how the snoop filter

is located “below” private caches.

As shown in Fig. 1, Intel repurposes 2/64 bits available in DDR4

DRAM for each line’s ECC as memory directory bits, such that the

bits are retrieved for “free” when the line is fetched. The bits can

encode three coherence states [80]: snoop-All means the line is

potentially dirty on a remote node, requiring a snoop for both read

and write requests; remote-Shared means the line is potentially

present (but clean) on remote node(s), only requiring the copies to

be invalidated upon write requests; remote-Invalid means the line

is not remotely-cached.

A line’s memory directory state may become stale (e.g., an A

line is not guaranteed to be dirty—or even present—on a remote

node) provided that coherence is maintained. For instance, a staleA

entry preserves correctness (albeit conservatively), simply incurring

unnecessary snoops before ultimately servicing the line from the

local node or DRAM.

While snoops can be omitted for lines in S and I, lines in A

require snoops, which incur high latency if a memory directory

read is needed. This latency is problematic when inter-node sharing

frequently incurs this penalty (e.g., migratory sharing, “repeated

writer-writer”, of lock-protected data [24, 110]).

To avoid this repeated penalty, each home agent uses an on-die

memory directory cache [80, 82] (henceforth referred to simply as

a directory cache) for a subset of its lines in A. A directory cache

hit implies the line must be snooped, obviating the need to read

directory state from DRAM. Directory cache entries contain a bit

for each node, indicating which node must be snooped, and are

allocated upon cache-to-cache transfers to a remote writer. Thus,

only entries for migratory (i.e., snoop-critical) lines occupy limited

on-die area.

3 COHERENCE-INDUCED HAMMERING

In this section, we describe how we discovered sources of coherence-
induced hammering in Intel’s ccNUMAprotocols. These phenomena

are the first examples known to cause commodity workloads to ex-

hibit dangerously-high row ACT rates. We consider a row’s ACT
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rate to be dangerous when it surpasses its maximum activate count
(MAC)—the industry-standard metric for Rowhammer susceptibil-

ity. The MAC is the maximum number of ACTs to a set of aggressor

rows within a refresh window (64 ms in DDR4 [50]) before any bits

may flip in victim row(s). Recent work [21, 58, 107] shows that

MACs are falling in newer DRAM, with current MACs as low as

20,000. The studies use an alternative metric called HammerCount

(HC); these HCs corresponds to half the MAC, given that they are

calculated using two aggressor rows to target each victim.

3.1 Introduction and Methodology

We initially observed hammering in commodity workloads while

conducting a study of DDR4 memory access patterns in internal

cloud workload benchmarks, used by a major cloud provider. Prior

to this study, only intentional Rowhammer attacks had been shown

to surpass a DRAM module’s MAC, meaning only carefully-crafted

(malicious) code was known to risk bit flips.

Our experimental hardware consists of (1) a dual-socket (i.e.,

ccNUMA) Intel Skylake server configuration deployed by the cloud

provider (2400 MHz, DDR4, 2Rx4 DIMMs with Chipkill [26] ECC),

and (2) a DDR4 bus analyzer. The bus analyzer records timestamped-

traces of DDR4 commands (e.g., ACT, RD, WR) and destination

DDR4 logical addresses (e.g., bank, row, column) sent from a mem-

ory controller to a DIMM. The analyzer records up to 512 million

commands, meaning different programs can be recorded for differ-

ent amounts of time due to varying amounts of DRAM traffic.

We run Ubuntu Linux 20.04 with KVM [62] as our host OS,

conducting experiments outside of production to protect customer

privacy. Commodity benchmarks are executed in guest VMs, also

running Ubuntu 20.04. Unless otherwise noted, all BIOS settings

are the cloud provider’s defaults.

For brevity, we provide evidence of hammering in two differ-

ent cloud workloads (memcached [52] and terasort [87]), based on

internal benchmarks used by the cloud provider. We show that PAR-

SEC 3.0 [123] and SPLASH-2x [117] benchmarks exhibit similar

behavior in §6.

For memcached and terasort, we record at least 10 seconds of

execution per trace, given bus analyzer storage limits. We calculate

the maximum number of ACTs to a single row within any 64 ms re-

fresh window across all traces, and compare this number to modern

MACs to assess Rowhammer risk. We measure ACT rates because

they provide a relatively-stable metric to reason about Rowhammer

across a fleet of servers. In contrast, different DIMMs’ susceptibil-

ities to bit flips vary by DRAM vendor, generation, process node

variation, TRR implementation, and other factors.

To our surprise, both cloud workloads experience over 20,000

ACTs to a single row within 64 ms (nearly 40,000 for terasort), sur-
passing modern MACs and therefore risking bit flips. Furthermore,

these ACT rates are almost certainly under-estimates, given that we

can only record traffic to 1 DIMM out of the many DIMMs used by

a workload in a production machine.

3.2 Source #1: Downgrade Writebacks

To determine the root cause(s) of hammering in commodity work-

loads, we conducted further analysis of the DDR4 access traces. We

MESI
C0 C1 Shared Memory Copy
M I Stale (C0 has dirty copy)
S S Up-to-Date (written back)

MOESI
C0 C1 Shared Memory Copy
M I Stale (C0 has dirty copy)
O S Stale (C0 has dirty copy)

Event
C0 writes
C1 reads

Figure 2: Dirty sharing in MOESI (left) versus a downgrade

writeback in MESI (right). MESI’s lack of O (dirty+read-only)

means dirty linesmust be written back (cleaned) to be shared.

noticed that in the maximally-activated (hottest) rows, frequently-

accessed cache lines often experienced more DRAM writes than

reads. This observation was puzzling, as conventional wisdom in-

dicates commodity workloads should almost always yield more

DRAM reads than writes.

More specifically, (1) read-only (always clean) data traditionally

only requires reads (i.e., no subsequent writebacks), and (2) writes

to a word-sized segment (e.g., 8 bytes) in a 64-byte line require a

preceding line read to preserve the non-modified portion of the line

(unless it is known the entire line will be modified). If a clean line

only produces a read, and a dirty line generally produces a read

and a write, one would expect to observe more reads than writes.

However, there is a confounding factor in ccNUMA systems:

DRAM, not the LLC as in single-node systems, is the point of co-

herence (i.e., the first level of the memory hierarchy shared among

all cores). Thus, coherence traffic that traditionally goes to the

LLC in a single node system may now go to DRAM, altering the

“conventional” read-write ratio.

One known source of coherence writes are downgrade write-

backs [85], incurred in MESI-based protocols (i.e., Intel server pro-

tocols [37, 53]). At a high level, the writeback occurs when a dirty

line is shared with another cache, such as producer-consumer shar-

ing [19] (repeated writer-reader).

For instance, in Fig. 2, core 𝐶0 has a dirty copy of a line, and

core𝐶1 requests a read-only copy. Given the single-writer, multiple-
reader invariant (§2.3), lines valid in multiple cores’ caches must be

read-only, meaning 𝐶0 must transition from M (dirty+writable) to

a read-only state to share the line.

While a conventional MOESI protocol (left) allows the responder

𝐶0 to transitionM→O (whereO encodes dirty+read-only), MESI’s

sole read-only state is S (clean+read-only). Thus, MESI (right) in-

stead incurs a downgrade writeback, such that 𝐶0’s and 𝐶1’s copies

of the line become clean (S) to satisfy protocol requirements.

To test the theory of hammering via ccNUMA downgrade write-

backs, we pinned our workloads to a single node—so that down-

grade writebacks would go to the node’s LLC, not DRAM—and

recorded new traces. As shown in Fig. 3(a), the ACTs observed

for the cloud workloads (along with micro-benchmarks discussed

shortly) drastically dropped, from 21,917 to 6,349 (memcached) and
39,031 to 8,369 (terasort). Furthermore, we observedmore reads than
writes for cache lines within the hot rows, as conventionally ex-

pected. This provided strong evidence that downgrade writebacks

were causing frequent DRAM writes and preceding ACTs.

To confirm this evidence, we wrote a micro-benchmark (prod-
cons) designed to generate coherence-induced hammering via down-

grade writebacks. More specifically, the benchmark schedules two

threads: a producer and a consumer. The producer repeatedly writes

to two different cache lines at physical addresses 𝐴 and 𝐵 in an
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Figure 3: Activation (ACT) rates on a major cloud provider’s

production hardware for (a) commodity benchmarks and

(b) worst-case micro-benchmarks. In both cases, dirty shar-

ing across NUMA nodes yields ACTs in excess of current

Rowhammer thresholds (MACs).

alternating fashion, while the consumer repeatedly reads these

lines in an alternating fashion. When the consumer reads the pro-

ducer’sM copies, a downgrade writeback should occur per MESI

requirements.

Notably, we select physical addresses𝐴 and 𝐵 such that they map

to different rows within the same bank of DRAM. Thus, alternating

downgrade writebacks of the lines necessitate repeated ACTs due

to row buffer contention (§2.1). We again ran the experiment in

two configurations: (1) with the threads pinned to separate NUMA

nodes, where downgrade writebacks go to DRAM, and (2) with

both threads pinned to a single node, where downgrade writebacks

go to the node’s LLC.

Echoing the cloud workload data, Fig. 3(b) shows that the multi-

node execution of prod-cons produces “hammer-level” rates of ACTs

(over 250,000 ACTs in 64 ms to a single row, > 10× modern MACs),

while the single-node execution does not hammer (just 129 ACTs

in 64 ms). The multi-node experiment is therefore indicative of

“worst-case” behavior for ccNUMA downgrade writebacks.

After confirming clean sharing (i.e., read-only, and thus free of

downgrade writebacks) did not yield hammering in either config-

uration, we concluded that downgrade writebacks are a source of

coherence-induced hammering.

Thus, workloads exhibiting producer-consumer sharing can in-
advertently yield coherence-induced hammering on Intel ccNUMA
servers. Adversaries can also intentionally hammer by using this

common sharing pattern across NUMA nodes—without previously-

exploited primitives like cache line flushes, eviction sets, or DMAs.

3.3 Source #2: Memory Directory Writes

To determine if downgrade writebacks are the only source of coher-

ence-induced hammering on Intel ccNUMA servers, we wrote a

second micro-benchmark designed to (1) still generate dirty sharing

between cores, but (2) not incur downgrade writebacks. Intuitively,

if downgrade writebacks were the only hammering source, then

our benchmark would not hammer.

Our second micro-benchmark—migra—is similar to the previ-

ous, except both threads write to the line (i.e., migratory shar-

ing [24, 110], or “repeated writer-writer”). Because Intel’s MESI-

based protocol requires a downgrade writeback upon a Get-Shared

(read-only) request for a line inM, we avoid downgrade writebacks

by only sending Get-eXclusive (read-write) requests between the

cores (via stores).

More specifically, if core 𝑐1 has a line in M—and core 𝑐2 issues a

Get-X for the line—core 𝑐1 sends its copy to 𝑐2 and transitionsM

→ I. Thus, 𝑐2 receives the line inM (for its own writing) without

a writeback. Notably, the behavior of this sharing pattern is iden-

tical in conventional MESI and MOESI protocols (given the S/O

states are not used). Thus, our experiment offers insight both on

how the existing Intel protocol behaves and an otherwise-identical

MOESI protocol would behave. Our simulations comparing MESI

and MOESI implementations in §6 confirm this reasoning.

As with prod-cons, we run migra with the threads scheduled on

different nodes and on the same node. We refer to migra executed
atop the default memory directory ccNUMA protocol as migra
(dir), in order to differentiate from a separate execution discussed

shortly. Fig. 3(b) shows that the multi-node experiment still ham-
mers (165,233 ACTs). Furthermore, we find the contended cache

lines again experience more writes than reads in DRAM. In contrast,

and as expected, the single-node experiment does not hammer.

We discovered that others had also reported unusually-high

DRAM writes on Intel Skylake servers [46], and suspected memory

directory (§2.3) writes as the cause. In particular, remote requests

for a local cache line may require a DRAM write to track remote

copies via memory directory state [78, 79] (e.g., remote-Invalid →
snoop-All), incurring extra writes. Furthermore, because the on-die

directory cache for select A lines uses write-on-allocate [80] (akin

to write-through), even directory cache allocations immediately

incur DRAM writes.

We reran our migratory sharing micro-benchmark with the de-

fault memory directory protocol disabled in the BIOS—reverting to

a broadcast ccNUMA protocol to execute migra (broad)—to isolate

memory directory writes as the culprit. We found that the write-
based hammering was eliminated when executing migra (broad)
across NUMA nodes. We therefore conclude that memory directory

writes are another source of coherence-induced hammering in In-

tel’s and an otherwise-identical MOESI memory directory protocol

during dirty sharing.

3.4 Source #3: Speculative Reads

While we no longer observed write-based hammering, we instead

observed read-based hammering caused by the same lines in migra
(broad)—421,360 ACTs in Fig. 3(b). In fact, we consistently noticed

repeated reads of the contended lines in migra (dir) as well, albeit
two orders-of-magnitude fewer thanmigra (broad). This hammering

was again eliminated when pinning the workload to a single node,

indicating a third source of coherence-induced hammering.

Suspecting hardware prefetching as the source of hammering

reads, we disabled all prefetchers listed in the BIOS, but still ob-

served repeated reads of the lines. Thankfully, prior work [46, 78]

notes an additional source of DRAM reads in broadcast protocols:

speculative reads by the home agent.
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Namely, upon an LLC miss, broadcast protocols tend to do two

operations in parallel as a performance optimization: (1) broadcast

snoops to other nodes, and (2) speculatively read from DRAM—

jump-starting the read that becomes necessary if the snoops fail.

Therefore, because migratory sharing among NUMA nodes induces

frequent LLC misses for the shared line(s), we believe the corre-

sponding mis-speculated (unused) DRAM reads form a source of

coherence-induced hammering.

In particular, during migratory sharing, the line is often (and

during our stores-only micro-benchmark, essentially always) in

M on one of the nodes, meaning no valid copies exist on other

nodes. Thus, if node 𝑛1 holds the line in M, and a core on node 𝑛2
requests a copy, the request incurs an LLC miss. Subsequently, the

home agent issues, in parallel, (1) snoops to the other nodes, one of

which will return 𝑛1’s dirty copy of the line, and (2) a speculative

DRAM read, which will go unused due to the successful snoop

response from 𝑛1. As the sharing pattern repeats, so too do the

mis-speculated (unused) DRAM reads, yielding coherence-induced

hammering.

To explain the reduced—but nonetheless repeated—number of

readswhen using the default directory protocol, recall that directory

cache hits obviate the need for DRAM reads of migratory lines, since

they indicate the line must be snooped (§2.3). Thus, we infer that the

remaining reads appear to indicate directory cache misses. Because
our micro-benchmark only migrates two lines between the nodes,

we find it unlikely that the misses arise from set conflicts in the

directory cache (i.e., conflict misses).

Instead, we believe a phenomenon similar to a documented [23]

behavior in AMD’s MOESI directory protocol is occurring. In partic-

ular, when a remote request arrives at the home agent, AMD issues

speculative DRAM reads in parallel to local LLC lookups to reduce

latency. While Intel’s directory cache can prevent these speculative

DRAM reads, their patent [80] indicates entries are de-allocated

when the local node requests a copy of the line (since, under MESI,

the remote will no longer be dirty after responding to the request,

obviating the performance benefit of a directory cache entry).

Thus, if a remote request for the line arrives at the home agent

after de-allocation, a directory cache miss occurs. At this time, we

believe a DRAM read and (local) snoop occur in parallel, just as

in AMD’s MOESI directory protocol and Intel’s MESI broadcast

protocol. This explains the remaining hammering DRAM line reads

in our directory traces. Therefore, we conclude that coherence-

induced speculative DRAM reads can occur in commodity broadcast

and directory ccNUMA protocols, irrespective of the use of MESI

or MOESI.

3.5 Why This Hammering is Problematic

Commodity workloads producing ACT rates known to induce

bit flips [21, 58] is a significant cause for concern among cloud

providers for several reasons. First, recent studies of data center re-

liability (e.g., Facebook [28] and Google [43]) have found increasing

rates of silent data corruption. Given data corruption is a symptom

of Rowhammer—and the community is yet unable to attribute pro-

duction occurrences to Rowhammer—cloud providers must treat

Rowhammer as a potential cause and take appropriate precau-

tions. In particular, silent corruption yields arbitrary behavior, while

detected-but-uncorrected corruption yields machine check excep-

tions (i.e., denial-of-service). Even corrected data corruption, used

as a proxy for hardware reaching end-of-life, can unnecessarily

increase costs.

Second, irrespective of whether today’s data corruption arises

from Rowhammer, cloud providers also need to protect data in

tomorrow’s DRAM. Unfortunately, future DRAM is expected to be

more susceptible to Rowhammer [58]. Specifically, given the vari-

ous benefits of denser DRAM (e.g., performance), manufacturers are

projected to increase density—increasing Rowhammer susceptibil-

ity in turn. This projection is supported by prior work [21, 58, 107],

which shows that newer, denser DRAM (1) requires fewer ACTs

per row to flip bits, and (2) can experience more rows simultane-

ously surpassing these decreased MACs. Notably, state-of-the-art

Rowhammer attacks [30, 41, 49, 88, 94, 114] already exploit as few

as 3 rows simultaneously surpassing MACs in order to overwhelm

existing mitigations (TRR, §2.1) and flip bits.

Our traces therefore offer the first evidence that ccNUMA sys-

tems depend on (vulnerable) mitigations to prevent bit flips triggered
by commodity workloads. Furthermore, while TRR can prevent bit

flips that would be caused by the small number of simultaneous

aggressors observed within a single benchmark (e.g., 1-2), cloud

providers must account for numerous individual applications simul-

taneously hammering and thereby bypassing TRR, an increasingly-

likely phenomenon given declining MACs.

Third, while state-of-the-art alternative mitigations [7, 77, 91,

105, 121] can provide comprehensive protection against bit flips,

their performance and area overhead rises with increasing suscepti-

bility. While it may be acceptable to slow a malicious Rowhammer

attack workload, our finding of coherence-induced hammering

in commodity workloads demonstrates that non-malicious appli-
cations could additionally experience slowdowns proportional to

Rowhammer susceptibility. Thus, prior work [58, 71] concludes that

software vendors such as cloud providers have a vested interest in

exploring and mitigating the phenomena leading to high activation

rates before widespread problems arise.

4 DESIGN OF MOESI-PRIME

In light of modern ccNUMA protocols’ susceptibility to coherence-

induced hammering, we present a novel protocol—MOESI-prime—

that prevents identified sources of coherence-induced hammering in

both commodity and malicious workloads. Notably, MOESI-prime

achieves such protection while retaining use of Intel’s state-of-the-

art memory directory design for scalability.

MOESI-prime is designed as simple, well-defined modifications

to a baseline memory directory protocol. We build atop the MOESI

states, given MESI’s susceptibility to hammering downgrade write-

backs (§3.2). We describe MOESI-prime’s novel mechanisms to

prevent both hammering directory writes (§4.1) as well as hammer-

ing speculative reads (§4.2), and discuss a safe protocol performance

optimization (§4.3).

4.1 Preventing Hammering Directory Writes

As discerned in §3.3, hammering directory writes occur during

repeated dirty sharing across nodes (i.e., sharing with at least one
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Events Loc Rem Mem Dir Mem Wr
A1  MESI: Migratory (Rd-Wr)

- I M A -
Loc-rd S S S Yes
Loc-wr M I S (stale) No
Rem-rd S S S Yes
Rem-wr I M A Yes

A2  MESI: Migratory (Wr-Only)
- I M A -

Loc-wr M I A (stale) No
Rem-wr I M A Yes

A3  MESI: Prod-Cons (Rem Prod)
- I M A -

Loc-rd S S S Yes
Rem-wr I M A Yes

A4  MESI: Prod-Cons (Loc Prod)
- M I I -

Rem-rd S S S Yes
Loc-wr M I S (stale) No

Events Loc Rem Mem Dir Mem Wr
B1  MOESI: Migratory (Rd-Wr)

- I M A -
Loc-rd O S A (stale) No
Loc-wr M I A (stale) No
Rem-rd O S A (stale) No
Rem-wr I M A Yes

Events Loc Rem Mem Dir Mem Wr
C1  MOESI-prime: Migratory (Rd-Wr)

- I M’ A -
Loc-rd O’ S A No
Loc-wr M’ I A (stale) No
Rem-rd O’ S A (stale) No
Rem-wr I M’ A No

B2  MOESI: Migratory (Wr-Only)
- I M A -

Loc-wr M I A (stale) No
Rem-wr I M A Yes

C2  MOESI-prime: Migratory (Wr-Only)
- I M’ A -

Loc-wr M’ I A (stale) No
Rem-wr I M’ A No

B4  MOESI: Prod-Cons (Loc Prod)
- M I I -

Rem-rd O S I (stale) No
Loc-wr M I I No

C4  MOESI-prime: Prod-Cons (Loc Prod)
- M I I -

Rem-rd O S I (stale) No
Loc-wr M I I No

B3  MOESI: Prod-Cons (Rem Prod)
- I M A -

Loc-rd O S A (stale) No
Rem-wr I M A Yes

C3  MOESI-prime: Prod-Cons (Rem Prod)
- I M’ A -

Loc-rd O’ S A (stale) No
Rem-wr I M’ A No

Figure 4: Dirty, inter-node sharing in MESI (A1–A4), MOESI (B1–B4), and MOESI-prime (C1–C4) memory directory protocols.

Hammering writes (red) are incurred during arrow-denoted cycles. MOESI and MOESI-prime prevent MESI’s downgrade

writebacks via the O state. MOESI-prime also prevents MOESI’s redundant writes via new M’ (M + mem dir in A) and O’ (O +

mem dir in A) states. MOESI and MOESI-prime use the “greedy local ownership” optimization introduced in §4.3.

writer). Thus, MOESI-prime’s goal is to obviate the need for di-

rectory writes during repeated dirty sharing. We compare this

approach to a writeback directory cache—which would at-best re-

duce the frequency of these (as we will show, unnecessary) writes—

in §7.2.

Given a local node and one or more remote nodes, we consider

dirty sharing between a local and remote node, as well as between

two remotes and among more than two nodes.

4.1.1 Local-Remote Sharing. There are two basic forms of repeated

dirty sharing: migratory [24, 110] (writer-writer) and producer-

consumer [19] (writer-reader). Each pattern can be divided into

two subcategories. For migratory, there is (1) read-write (where

the writers read the line before writing) and (2) write-only. For

producer-consumer in ccNUMA, there is the case of a (3) remote
producer versus a (4) local producer.

Thus, Fig. 4 shows how MESI (A1–A4), MOESI (B1–B4), and

MOESI-prime (C1–C4) memory directory protocols behave during

these scenarios. MESI hammers during all forms of dirty sharing,

primarily due to downgrade writebacks that are trivially-eliminated

by MOESI and MOESI-prime. We therefore mainly focus on the

difference between MOESI and MOESI-prime in the remainder of

this subsection.

In the unique case of producer-consumer with a local producer,

remote node(s) (the consumers) never write to the line. Under

MOESI (B4) and MOESI-prime (C4), once the line transitions to

M upon the local node’s first write, it remains dirty on the local

node (M or, if shared, O) until written back.

Crucially, when remote consumer(s) read the line, the memory

directory can remain unchanged (potentially stale) until the local

copy is written back. This is because the home agent must check
the local node for a dirty copy upon a remote request, since the

memory directory only tracks remote coherence state. If a dirty copy
is locally-present, the home agent will forward this copy in lieu of

the stale memory copy/directory state. Thus, producer-consumer

sharing with a local producer already does not require repeated di-

rectory writes, avoiding directory write-based hammering without

changes to a baseline MOESI protocol.

However, in the migratory sharing subcategories and producer-

consumer (remote producer), MOESI can hammer (B1–B3). In par-

ticular, when a remote nodewrites to a locally-owned line, the home

agent has no way of knowing if the memory directory is already in

snoop-All (albeit possibly stale). Thus, the home agent must con-

servatively (i.e., potentially redundantly) write A to the memory

directory. As the remote writer repeatedly acquires exclusive access

under such sharing, the directory writes repeat, hammering DRAM.

MOESI-prime exploits the insight that these “dirty sharing”writes

can be avoided if the home agent knows the memory directory is

already in A. Thus, MOESI-prime provides an additional “prime”

state for each MOESI dirty state (M and O) to encode this informa-

tion (C1–C3).M’/O’ indicate a line is in conventionalM/O, and the

memory directory is in A.

Intuitively, the prime (M’ and O’) states’ prevention of repeated

directory writes can be likened to how MOESI’s O state prevents

downgrade writebacks. In MOESI-prime, when a remote writer first

writes to a line, the line enters M’ (given it is dirty+writable on the

remote node and A in the memory directory). From this point until

the prime line’s eventual writeback, MOESI-prime enforces two

invariants: (1) the line remains prime, and (2) the memory directory

is not updated.
Accordingly, the home agent knows any line in M’ (or, if shared,

O’) is in A in the memory directory. Thus, when a remote node

writes to a prime line, the home agent can omit the redundant

directory write, preventing hammering.

4.1.2 Remote-Remote and > 2-Node Sharing. Fig. 4 does not depict
dirty sharing between two remote nodes (only between a local and

a remote), because this sharing is already free of hammering direc-

tory writes under MOESI (and hence, MOESI-prime). Specifically,

when a remote 𝑟1 requests a dirty line from another remote 𝑟2, the
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home agent knows that the memory directory must (1) already

be in A, and (2) remain in A until the dirty copy is written back,

guaranteeing a directory write is not needed. For MESI, hammering

downgrade writebacks occur regardless of which nodes share an

initially-dirty line.

Additionally, Fig. 4 only shows sharing between 2 nodes. While

> 2 nodes can clearly share a line, the memory directory enters

A (and remains in A) so long as any remote holds a dirty copy. If

the local node becomes the owner of the dirty copy, the directory

entry can be left in A (stale), as the local dirty copy will be snooped

and override the stale copy in DRAM. Thus, additional sharers do

not affect MOESI-prime’s ability to prevent hammering directory

writes.

4.2 Preventing Hammering Speculative Reads

MOESI-prime’s key insights for preventing speculative hammering

reads are that (1) these reads arise under the same “dirty sharing”

scenarios as redundant directory writes (§3.4), and (2) requests

that hit in the directory cache do not result in DRAM reads. Thus,

MOESI-prime’s goal is to ensure that requests for contended lines

almost always hit in the directory cache, whether issued by local

or remote nodes.

Unlike hammering directory writes, MOESI-prime does not use
additional state to prevent hammering reads. Instead, MOESI-prime

makes a minor modification to the directory cache behavior de-

scribed by Intel’s patent [80]. Rather than de-allocating/not allocat-

ing a directory cache entry when a line migrates to a local writer,

MOESI-prime retains/provisions an entry, now pointing to the lo-

cal node. Thus, subsequent requests will hit in the directory cache,

avoiding speculative DRAM reads.

While this policy yields additional contention for directory cache

entries, the only lines affected are those that are either (1) cache-to-

cache transferred to a remote writer (such that a directory cache

entry is allocated), and then transferred to a local owner, or (2) in-

validated on remote node(s) by a local writer. As we will show in §6,

MOESI-prime has negligible effect on performance versus MESI

and MOESI baselines, despite this modest increase in contention.

We note that even with MOESI-prime’s policy, repeatedly gen-

erating set conflicts in the directory cache remains a possible way

to maliciously hammer, since the conflict-induced misses could

result in hammering reads. However, unlike coherence-induced

hammering, we find no evidence of conflict-induced hammering
in commodity workloads. Furthermore, conflict-induced hammer-

ing can be mitigated via existing mechanisms to prevent frequent

set conflicts [13, 93, 96, 97, 104, 116], which are complementary to

MOESI-prime’s protection against coherence-induced hammering.

4.3 Optimization: Greedy Local Ownership

Prior work [3, 81] shows that MOESI-based protocols can imple-

ment different ownership policies without loss of correctness when

sharing dirty lines. The ownership policy designates whether the

requesting cache or responding cache ends a transaction as the line

owner. For instance, in the conventional MOESI protocol depicted

in Fig. 2 (§2.3), the responder (C0) retains ownership (M→O) while

the requestor (C1) enters S. Conversely, in AMD’s “Always-Migrate”

ownership policy [68], the responder C0 relinquishes ownership

(M→ S), and the requestor C1 acquires ownership (enters O).

We provide the additional insight that MOESI-based protocols

can optimize the ownership policy for improved ccNUMA perfor-

mance. Consider that (1) an inter-node request goes to the home

agent, (2) the home agent forwards the request to the owner, and

(3) the owner responds to the requestor. If the owner is local (i.e.,
on the home agent’s node), a NUMA hop (interconnect traversal)

can be avoided in step (2). Thus, there is benefit in making the local

node the owner when possible.

MOESI-prime (and our MOESI baseline) accordingly incorporate

a greedy local ownership policy to reduce interconnect traffic and

latency, as used in Fig. 4. This policy ensures that if a dirty line

is shared for reading between a local and remote node (i.e., upon

a Get-Shared request) the local node ends the transaction as the

owner (O/O’), while the remote becomes a sharer (S). Subsequent

requests for the line are thus forwarded to this local owner, reducing

NUMA latency and contention.

4.4 Key Takeaway

MOESI-prime prevents each of the identified sources of coherence-

induced hammering: downgrade writebacks via O/O’, directory

writes via new M’ and O’ states, and speculative reads via changes

to Intel’s directory cache management policy. In §6, we show that

these protections prevent coherence-induced hammering across a

broad range of non-malicious and malicious workloads.

5 PROTOCOL CORRECTNESS

In this section, we demonstrate that MOESI-prime’s two key proto-

col extensions—the prime (M’ and O’) states and directory cache

modifications—preserve coherence. We do so by showing that the

addition of MOESI-prime’s extensions to an initially-correct base-

line memory directory protocol does not allow programs to produce

previously-forbidden results.

We assume an Intel-like MESI baseline can be extended with

the widely-used O state to form an otherwise-identical MOESI

protocol. We thus reason about MOESI-prime in the context of a

MOESI baseline. We also assume that the MOESI baseline correctly

implements greedy local ownership (§4.3), noting that prior work [3,

68, 81] demonstrates the validity of denoting either the requestor

or responder as the owner.

We additionally note that MOESI-prime’s detailed set of coher-

ence states and transitions (along with those of the baseline proto-

cols) are provided in our open-source implementation [72].

5.1 Correctness of M’ and O’ States

For this proof, we model ccNUMA systems as transition systems [5]

with states 𝑆 and a transition relation 𝑇 . Each state in 𝑆 represents

a state of the entire system at one point in physical time, including

all coherence states and the values of every cache line and address

in main memory read from or written to by program instructions.

A state 𝑠1 can transition to a state 𝑠2 (i.e., (𝑠1, 𝑠2) ∈ 𝑇 ) if a valid

coherence state transition for a cache or directory in state 𝑠1 can

lead to state 𝑠2, or if the writing of a value to a cache line or directory

entry can change 𝑠1 to 𝑠2. We define a trace (i.e., an execution) of

a transition system (𝑆,𝑇 ) as a sequence 𝑠0𝑠1𝑠2𝑠3 ...𝑠𝑛 where 𝑠0 ∈ 𝑆
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represents the state of the system upon startup and ∀ 1 ≤ 𝑖 ≤ 𝑛, 𝑠𝑖 ∈
𝑆 ∧ (𝑠𝑖−1, 𝑠𝑖 ) ∈ 𝑇 .

Let 𝐷 and 𝐷 ′
be transition systems where 𝐷 represents the

baseline MOESI system and 𝐷 ′
represents this baseline with the

addition of theM’ and O’ states. To prove the correctness of adding

the prime states, we first prove the following lemma.

Lemma 1. Consider any cache line 𝑙 . Let 𝑠1 be a state that exists
in 𝐷 and 𝐷 ′, meaning no cache has a copy of 𝑙 inM’ or O’. Assume
that 𝑠1 in 𝐷 ′ can transition to a state 𝑠 ′

2
in 𝐷 ′ which has a line for 𝑙 in

M’ or O’. For the case of 𝐷 , 𝑠1 can transition to 𝑠2, which is identical
to 𝑠 ′

2
except that M’ and O’ are replaced by M and O. In addition,

define a completed Put as a Put request (i.e., writeback) for 𝑙 that is
processed by the directory without another core acquiring ownership
of 𝑙 during the transaction (e.g., by a Get-X reaching the directory
before the Put). Then, the following conditions hold:

(1) 𝑠2 and 𝑠 ′
2
will have memory directory states of A.

(2) In the subsequent execution of 𝐷 , the memory directory state
for 𝑙 will remain A until a completed Put occurs.

(3) In the subsequent execution of 𝐷 ′, once a completed Put occurs,
no core can then transition toM’ orO’ for 𝑙 until a core becomes
a remote owner of 𝑙 .

Proof. Condition (1): Starting from state 𝑠1 in 𝐷 ′
, a line for 𝑙

has no way to enter O’ without entering M’ first. From state 𝑠1,

a line for 𝑙 may enter M’ in 𝑠 ′
2
in one of two ways, both through

the actions of a remote core 𝑅. First, 𝑅 may issue a Get-X request

for 𝑙 . This results in 𝑅 receiving the line in M’ and the memory

directory entry for 𝑙 being updated to A. The second possibility is

if 𝑅 was in E for line 𝑙 in 𝑠1, and then silently wrote to the line 𝑙

and transitioned toM’. In this case, the memory directory would

have been set to A when 𝑅 entered E, and would have remained

in A through the transition to M’. This is because changing the

memory directory state would require another core to request the

line, which would result in 𝑅 losing its write permissions and thus

being unable to transition toM’. The two scenarios in 𝐷 equivalent

to these cases can be obtained by replacing M’ with M. In both

cases, the memory directory is set to A in 𝑠2. Since the memory

directory is in A in 𝑠2 and 𝑠
′
2
, condition (1) is fulfilled.

Condition (2): Once the memory directory state in 𝐷 is A, by the

transition rules of the protocol, the only way for the directory state

to change to something other than A is for the owning core to exe-

cute a Put request (either Put-X or Put-O forM and O respectively).

If this is a completed Put, the directory state will change to I (for

a Put-X) or S (for a Put-O). Note that if a concurrent request that

results in ownership is processed by the directory before the Put

(i.e., the Put is not a completed Put), ownership will be transferred

to the requestor and the requestor will transition to M or O as

appropriate. While the previous owner’s Put will be acknowledged,

the memory directory state will remain in A due to there still being

an owner in the system. Thus, condition (2) is satisfied in all cases.

Condition (3): Consider the execution of 𝐷 ′
from 𝑠 ′

2
onwards.

Once a core transitions toM’ for 𝑙 in 𝑠 ′
2
, an instance of M’ or O’ for

𝑙 will remain in the system as long as there is an owner, i.e., until a

completed Put occurs. Consider the first such completed Put. By the

rules of the protocol, this completed Put must have been issued by

the owning core, denoted by𝐶 . By virtue of being the owner,𝐶 must

be inM’ or O’ when issuing the Put, and thus no other cores can be

in M’ or O’ at this point. Furthermore, since 𝐶’s Put is a completed

Put, no other core will gain ownership before 𝐶’s Put is processed

by the directory. The completed Put will relinquish 𝐶’s ownership

(i.e., 𝐶 will no longer be in M’ or O’). Thus, no instances of M’ and

O’ remain in the system for line 𝑙 . Any subsequent instances of M’

and O’ in the execution must arise from a core becoming a remote

owner of 𝑙 through one of the two possibilities discussed in the

proof of condition (1). Thus, condition (3) is satisfied.■
Using Lemma 1, we can prove Theorem 1 below, showing that

M’ and O’ do not introduce new program outcomes.

Theorem 1. For every trace 𝑑 ′ that can be generated by𝐷 ′, there
exists a trace 𝑑 that can be generated by 𝐷 such that the values of
every cache line and address in main memory in the final states of 𝑑
and 𝑑 ′ are identical.

To prove Theorem 1, we create trace 𝑑 by substituting all in-

stances of M’ by M and O’ by O in the trace 𝑑 ′. M and O are

semantically equivalent toM’ and O’ respectively, apart from the

writes to the memory directory that M and O add. Thus, as long

as the extra memory directory writes added by this substitution

do not change the memory directory state, trace 𝑑 will be a valid

trace for the baseline MOESI system 𝐷 (since 𝑑 does not contain

any instances of M’ or O’).

Any such extra memory directory writes in 𝑑 will occur over

the events in 𝑑 corresponding to those in 𝑑 ′ between when a core

enteredM’ for a given line and when the next completed Put for

that line occurred. (The completed Put of a line removes all existing

instances of M’ and O’ for that line from the system by condition

(3) of Lemma 1). By conditions (1) and (2) of Lemma 1, the memory

directory state is guaranteed to be A over these ranges for any

such lines in 𝑑 . Thus, any extra memory directory writes in 𝑑 are

guaranteed not to change their corresponding memory directory

states from A to another state. As a result, all the coherence tran-

sitions in trace 𝑑 remain valid transitions. Trace 𝑑 is thus a valid

trace in the baseline MOESI system. Since we do not change the

values of cache lines or main memory when creating trace 𝑑 from

𝑑 ′, the final states of 𝑑 and 𝑑 ′ have identical values for every cache

line and main memory address that they model. 𝑑 thus satisfies the

requirements of Theorem 1.■

5.2 Correctness of Directory Cache

Modifications

MOESI-prime’s directory cache modifications eliminate select spec-

ulative DRAM reads, based on the understanding that the results of

the eliminated readswill always be discarded due tomis-speculation.

In the baseline protocol, a hit in the directory cache implies that

the line is dirty on a remote node. Thus, DRAM need not be read on

a directory cache hit, as a snoop of the remote owner will succeed

and return the data (§3.4).

While the baseline does not provision a directory cache en-

try if the home node becomes the owner (as described in Intel’s

patent [80]), MOESI-prime’s modification ensures that a directory

cache entry also exists in this scenario, pointing to the local node.
Thus, the invariant that a directory cache hit means that a snoop

will succeed is maintained under MOESI-prime.

Specifically, in the new case where the directory cache entry

corresponds to local node ownership, it is the local node that will
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Parameter Value

TimingSimpleCPU x86-64, 2.6 GHZ, 8 cores (no SMT), cycle-accurate instr fetches +

loads/stores, else 1 cycle/instr; non-pipelined

I-/D-Cache 32 KB, 8-way set associative (SA), 4 cycle RT latency

LLC 2.375 MB/core, 32-way SA, 42 cycle RT, non-inclusive

Directory Cache 16 KB/core, 1B entry, 32-way SA, parallel access w/ LLC

DRAM 16 GB DDR4, 2400 MHz, 2Rx4 (32 banks/node), FR-FCFS [103] scheduling,

RoCoRaBaCh [40] address mapping, adaptive page policy, mean 37.5 ns

read RT to home agent

NUMA 2, 4, 8 nodes; cores+mem split/node; 32 ns RT interconnect

OS/Kernel Config Ubuntu 20.04/Linux 5.4.0-88-generic (except as noted)

Table 1: gem5 simulation configuration.

service a snoop, once againmaking it unnecessary to read DRAM. In

addition, since the local node is a dirty owner, an eviction requires

a writeback, ensuring the directory cache’s knowledge will remain

current. If ownership is transferred back to a remote node, the

directory cache entry will be updated to point to the remote node,

and speculative DRAM reads will be prevented according to the

baseline policy.

6 EVALUATION

We evaluate MOESI-prime in gem5 v21.1.0.2 [9, 73]. We extend

an existing directory coherence protocol in the Ruby subsystem

to model Intel’s memory directory and directory cache. We use a

full-system mode configuration with simulation parameters, such

as total cache per core and clock speed, that model a major cloud

provider’s production hardware. For tractable simulation times,

we use simple in-order cores atop detailed cache, coherence, and

DRAM models. This configuration follows prior work [35], which

demonstrates that out-of-order versus in-order execution does not

significantly affect the memory system characterization of com-

modity workloads, given the detailed memory system model.

We run the Ubuntu 20.04 operating system with its default ker-

nel configuration, aside from patches to (1) remove unsupported

drivers, and (2) infer the gem5 hardware’s NUMA configuration

from a boot parameter, since gem5 does not implement BIOS mech-

anisms that normally report this information to the OS. Our system

configuration is listed in Table 1.

We compare MOESI-prime to MOESI and MESI memory direc-

tory protocols, with the respective protocol enforced for inter-node

coherence. For a fair performance comparison, both applicable

protocols (i.e., MOESI-prime and MOESI) use our greedy local own-

ership optimization (§4.3). We evaluate 2-node (production-like),

4-node, and 8-node configurations. Cumulative amounts of cache,

DRAM, and cores are held constant, split evenly among nodes.

We run 8-thread (1 per core) benchmarks from the PARSEC

3.0 [123] and SPLASH-2x [117] suites, simulating the region-of-

interest for each benchmark with the simmedium input size. We

omit 3/26 benchmarks due to runtime errors on real hardware

(fmm [106]) and use of unsupported x86-64 instructions in gem5

(volrend and x264 [32, 33, 73]). We are unable to additionally sim-

ulate memcached and terasort (§3.1) due to lack of functional IP

networking in gem5 for our configuration. For malicious workloads,

we use producer-consumer (prod-cons, §3.2) and migratory sharing

(migra, §3.3) micro-benchmarks that trigger coherence-induced

hammering in the baseline protocols.

6.1 Highest Activation Rate

To assess the effectiveness of MOESI-prime’s mitigations, we ana-

lyze the maximum number of ACTs to a single row within any 64

ms refresh window during benchmark execution.

6.1.1 Non-Malicious Workloads. Fig. 5 depicts the highest ACT

rates for each PARSEC 3.0 and SPLASH-2x benchmark, as well as

the arithmetic mean per configuration.

We find that MOESI-prime’s mitigations for coherence-induced

hammering reduce highest ACT rates on average by 77.38% (2-

node), 75.30% (4-node), and 71.06% (8-node) compared to MESI. In

contrast, MOESI only prevents downgrade writebacks, and achieves

at best a 34.71% decrease (8-node), with just a 5.58% decrease in the

2-node configuration.

Under MOESI-prime, each benchmark’s maximally-activated

row receives an average of 20.62%, 26.81%, and 28.29% (2-, 4-, 8-

nodes) coherence-induced ACTs—i.e., ACTs due to memory direc-

tory reads/writes (and downgrade writebacks in the case of MESI).

In contrast, the maximally-activated rows under MOESI experience

an average of 94.53%, 88.01%, and 85.78% coherence-induced ACTs,

demonstrating that MOESI-prime eliminates coherence traffic as

the dominant source of ACTs. While MESI’s numbers are skewed by

downgrade writebacks (which can yield subsequent demand reads),

we find that coherence-induced ACTs are still the dominant source

for the maximally-activated rows (85.29%, 74.85%, and 53.31%).

We additionally find that MOESI-prime’s second maximally-

activated row in the same bank during each benchmark’s “worst-

case” 64 ms window sees ACT rates decline by 29.99%, 29.07%, and

44.41% (2-, 4-, 8-nodes) on average compared to the maximally-

activated row. The baselines’ larger average decreases (MOESI:

64.50%, 56.04%, 69.07%; MESI: 67.86%, 55.84%, 75.45%) indicate that

it is common for a single row to experience significantly more

coherence-induced hammering than the rest within a bank.

MOESI-prime’s increase in highest ACT rates for 4- and 8-node

configurations is expected, and still results in significant reductions

over the MESI and MOESI baselines. These configurations (1) rep-

resent increasingly-strained scheduling scenarios (e.g., all sharing

is inter-node in the 8-node configuration), (2) artificially-reduce

directory cache size per node to keep the total amount constant,

and (3) require the directory cache to cover a greater portion of

remote memory (e.g., 7/8 of memory is remote for 8 nodes, com-

pared to 1/2 for 2 nodes). Nonetheless, the remaining possibility of

high maximum ACT counts (e.g., fft with 8 nodes, with 48.41% of

these ACTs still coherence-induced directory reads/writes) shows

(a) room for further improvement (e.g., via atomic directory read-

modify-writes to yield 1 ACT instead of 2), and (b) the benefit of

scheduling workloads across as few NUMA nodes as possible.

We conclude that MOESI-prime’s mitigations for coherence-

induced hammering are extremely effective at reducing highest

ACT rates in non-malicious workloads.

6.1.2 Malicious Workloads. We find that both MESI and MOESI

allow highest activation rates to surpass 500,000 to the shared cache

lines’ rows within 64 ms during prod-cons and migra. Conversely,
MOESI-prime keeps highest ACT rates below 200 per 64 ms, a

>2,500× improvement, and the hottest rows are not those of the
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Figure 5: Highest ACT rates for PARSEC 3.0 [123] and SPLASH-2x [117] benchmarks across MESI, MOESI, and MOESI-prime.

shared cache lines (meaning MOESI-prime prevents hammering of

the contended rows).

6.2 Performance

We depict MOESI-prime’s and MOESI’s per-benchmark execution

speedup across 2-, 4-, and 8-node configurations in Table 2 (§6.2),

normalized to respective MESI baselines. We find that MOESI-

prime’s mitigations for coherence-induced hammering yield negli-

gible performance impact compared to MESI and MOESI (−0.51%–
+0.61%, depending on the configuration and baseline protocol).

MOESI-prime can improve performance in many workloads

thanks to its elimination of unnecessary DRAM reads and writes.

In particular, this elimination yields reduced contention for DRAM

bandwidth and line-fill/writeback buffers.

Nonetheless, select workloads can experience slightly decreased

performance under MOESI-prime for multiple reasons. First, an

unnecessary speculative read or redundant write in the baselines—

eliminated by MOESI-prime—may activate a row that will be used

by a subsequent read, decreasing the subsequent read’s latency via

a row buffer hit. Second, a speculative read may prevent a switch to

write scheduling in a DRAM controller, avoiding a bus-turnaround

latency for subsequent reads. Third, MOESI-prime’s increased usage

of the directory cache to prevent hammering speculative reads can

evict entries that would otherwise speed up remote snoops.

Finally, we note that the performance of benchmarks such as

dedup and ferret is particularly-sensitive to thread scheduling [8].

Given scheduling is altered both by different NUMA configurations

and protocol timings, such sensitivity can lead to higher perfor-

mance variability.

6.3 DRAM Power

We assess MOESI-prime’s effects on DRAM power consumption

using gem5’s support for DRAMPower [17], comparing to 2-, 4-,

and 8-node MOESI and MESI protocols in Table 2 (§6.3). We find

that MOESI-prime’s prevention of unnecessary DRAM reads and

writes slightly improves average power consumption (0.03%–0.22%,

depending on the ccNUMA configuration and baseline protocol).

6.4 Scalability

We measure each protocol’s scalability by comparing its perfor-

mance in all 4- and 8-node configurations to its 2-node baseline

in Table 2 (§6.4). Each protocol exhibits negligible (within ±1%) dif-
ferences in scalability across evaluated configurations. We conclude

that MOESI-prime offers similar scalability to MESI and MOESI.

7 DISCUSSION

7.1 Broader Applicability

Coherence-induced hammering occurs during commodity work-

load execution on broadcast and memory directory Intel ccNUMA

protocols, with AMD documentation [23] indicating similar coher-

ence-induced speculative DRAM reads. Thus, such hammering ap-

plies to numerous commodity protocols. As Intel, AMD, and ARM

deploy chiplet architectures for increased scalability and yield [1,

10, 45, 86], the chiplets in even a single socket will form a ccNUMA

system, requiring careful design to avoid coherence-induced ham-

mering. Additionally, given heterogeneous coherence [2, 92, 109]

can be architected similar to ccNUMA (e.g., with accelerators as

remote nodes), MOESI-prime’s mitigations could extend beyond

the realm of traditional ccNUMA.
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§6.2: MESI-Normalized Execution Speedup %

2-node 4-node 8-node

Bench MOESI Prime MOESI Prime MOESI Prime

blacksc. +0.01 -0.04 +0.00 +0.00 +0.01 +0.01

bodytra. -0.73 +0.03 +0.00 -0.12 +0.03 -0.01

canneal -3.97 -3.97 +0.09 +0.08 +0.03 +0.03

dedup +8.32 +6.06 +10.77 -1.44 -1.13 -0.40

facesim -0.86 +0.07 +0.02 -0.17 -0.02 -0.08

ferret +6.36 +1.18 -0.85 +3.45 -3.50 -2.24

fluidan. +0.20 +0.20 -0.27 -0.01 +0.58 +0.53

freqmine +0.12 +0.11 +0.12 -0.05 -0.12 +0.04

raytrace -0.55 -0.30 -0.36 -0.28 -0.08 +0.35

streamc. +0.43 +0.02 +0.78 +0.76 -0.34 -0.22

swapti. +0.00 -0.00 +0.00 +0.01 -0.59 -0.59

vips -0.02 -0.08 +0.15 +0.09 +0.35 -0.04

barnes +0.46 +2.63 +0.31 +0.63 -0.16 +0.18

cholesky +1.70 +1.72 +0.41 +0.26 -1.48 -1.32

fft -0.03 +0.14 +0.42 +0.19 +0.50 +0.47

lu_cb +1.06 +1.37 -0.07 +2.02 +0.15 +0.15

lu_ncb +1.20 +1.51 +0.67 -1.24 +0.21 +0.64

ocean_c. +0.81 +0.07 +1.86 +1.79 +0.19 -4.51

ocean_n. +0.22 -0.43 +1.74 -0.60 -0.02 -0.52

radiosi. +0.59 +0.59 +0.12 -0.46 -0.35 -1.12

radix +0.04 +0.19 +7.08 +7.92 +1.00 +1.21

water_n. +0.01 +0.02 +0.35 +0.37 -0.15 -0.05

water_s. -1.27 +0.00 +0.88 +0.85 +0.92 +0.88

AVG +0.61 +0.48 +1.05 +0.61 -0.17 -0.29

§6.3: Power Saved §6.4: 2n-Normalized Speedup

MOESI Prime Nodes MESI MOESI Prime

+0.00% +0.22% 2 - - -

+0.06% +0.12% 4 -0.52% -0.04% -0.31%

+0.02% +0.06% 8 +0.18% -0.60% -0.55%

Table 2: Protocols’ MESI-normalized execution speedups

(§6.2), average DRAM power savings (§6.3), and 2-node- (2n-)

normalized execution speedup (scalability, §6.4). Higher is

better in each subtable. “Prime” is MOESI-prime.

7.2 Limitations of a Writeback Directory Cache

Recall that the directory cache uses a write-on-allocate policy (§3.3),

where snoop-All (potentially dirty on a remote) is written to the

memory directory upon allocation. Given suchwrites are a source of

coherence-induced hammering, a writeback directory cache might

appear to be an easy solution.

However, while MOESI-prime’s M’ and O’ states prevent re-
dundant directory writes, a writeback directory cache can at-best

delay/reduce them. Capacity evictions of entries for (would-be)

M’/O’ lines would still result in unnecessary writes—consuming

DRAM cycles, bandwidth, and power—and could still be abused by

a malicious adversary to hammer.

Furthermore, the write-on-allocate policy ensures that directory

cache entries can be silently evicted (or even detectably-corrupted)

without loss of correctness, as the backing memory directory entry

is guaranteed to be in (conservatively-correct) A and can thus

be used instead. On the other hand, a writeback directory cache

eliminates this guarantee, requiring additional on-die area for error

correction (and writeback) logic.

As evidence that a writeback directory cache alone is insuffi-

cient to prevent coherence-induced hammering, “writeback”MOESI

yields significantly higher (worse) maximumACT rates than “write-

on-allocate” MOESI-prime across the PARSEC 3.0 and SPLASH-2x

workloads. On average, “writeback” MOESI increases maximum

ACT rates by 159.56%, 104.71%, and 75.01% (2-, 4-, and 8-nodes).

For the maximally-activated workload in each configuration, the

increases are 140.47%, 100.39%, and 55.00%, respectively.

Nonetheless, because MOESI-prime only prevents redundant
(unnecessary) directory writes, a writeback directory cache’s defer-

ral of initial (necessary) directory writes can complement MOESI-

prime’s ability to reduce worst-case ACT rates. On average, com-

bining MOESI-prime with a writeback directory cache decreases

(improves) maximum ACT rates by 3.69%, 0.57%, and 5.15% (2-, 4-,

and 8-nodes). For the maximally-activated workload in each config-

uration, the decreases are 2.50%, 14.48%, and 15.25%, respectively.

7.3 Considerations for Other Hammering

MOESI-prime mitigates the reliability and security threat of coher-

ence-induced hammering, but other forms of hammering remain.

To our knowledge, all other existing hammering patterns [22, 25,

30, 38, 39, 41, 48, 49, 51, 58, 61, 65, 70, 84, 88, 94, 95, 101, 108, 111,

113, 114, 119] use some combination of repeated flush instructions,

set conflicts, or DMAs in order to bypass system caches and thereby

repeatedly access DRAM. While these forms of hammering need to

be mitigated, they are of a different nature than coherence-induced

hammering. In particular, these other patterns are not known to

arise in commodity workloads, currently only posing a security

(not a reliability) threat. More importantly, MOESI-prime’s miti-

gations for coherence-induced hammering are complementary to

mitigations for other current and future hammering patterns.

As a case in point, Cojocar et al. [20] exploit a hammering phe-

nomenon related to the speculative reads found in ccNUMA pro-

tocols (§3.4). In particular, they hammer using memory directory

reads caused by repeated flushes of the same invalid cache line(s).

Upon receiving a flush for an invalid cache line, the home agent

may read the memory directory state to check for remote copies

(which must also be flushed). Thus, by repeating this pattern, one

can hammer on applicable ccNUMA platforms.

This “repeated flush” technique could be considered a malicious

combination of flush-based and coherence-induced hammering.

The pattern is only known to occur in malicious code, and would be

mitigated by flush-specific Rowhammer defenses (e.g., virtualizing

or throttling clflush behavior). In contrast, the coherence-induced

hammering introduced in this paper (1) occurs in commodity work-

loads and (2) does not require clflush capabilities.

8 RELATEDWORK

Rowhammer. Rowhammer bit flips were disclosed in 2014 on

DDR3DRAM [61] and followed by attacks across a variety of DRAM

technologies, such as DDR4, LPDDR4/5, and HBM. Prior work [54–

56] has also explored the related phenomenon of data-dependent
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DRAM failures. While existing attacks require carefully-crafted

instruction sequences, coherence-induced hammering is the first

hammering shown to occur in commodity workloads.

DDR4 and newer DRAM includes target row refresh (TRR) as a

mitigation. However, attacks have bypassed TRR to flip bits [30, 41,

49, 88, 94, 114]. Recent work [21, 58, 107] shows that newer DRAM is

increasingly susceptible to Rowhammer, and that proposed mitiga-

tions [57, 66, 122] will incur increasing performance overhead with

rising susceptibility (i.e., decreasing MACs, §3). Follow-up state-

of-the-art mitigations [7, 77, 91, 105, 121] are consistent with this

finding. In contrast, while MOESI-prime only prevents coherence-

induced hammering, it has negligible impact on performance, and

decreases the frequency at which these MAC-dependent defenses

would be engaged for commodity workloads.

ccNUMA Systems. Scale-Out ccNUMA [31] reduces remote

DRAM latencies by replicating remote data in local DRAM. Other

performance optimizations include a cache-line aware interface for

performance tuning ccNUMA systems [99], feedback-driven page

placement [75, 76], NUMA-optimized locks [15, 27], faster barri-

ers [18], and speculative lock elision [98]. As coherence/consistency

must always be maintained, these optimizations could benefit from

MOESI-prime’s prevention of coherence-induced hammering in

high-performance systems.

ccNUMA Coherence Protocols. State-of-the-art ccNUMA pro-

tocols are inspired by the DASH architecture’s directory proto-

col [67]. AMD [68] and Improved-MOESI [3] propose an “always

migrate” ownership policy similar to MOESI-prime’s “greedy local”

policy, except MOESI-prime does not migrate ownership from the

local node when possible. Other work proposes mechanisms (e.g.,

coherence states) to optimize producer-consumer [19] and migra-

tory [24, 110] sharing. MOESI-prime complements these techniques,

preventing such sharing from hammering DRAM.

Protocol Generation. ProtoGen [89] and HieraGen [90] auto-

matically generate correct-by-design protocols from stable state

specifications. To our knowledge, no support yet exists to automat-

ically generate memory directory ccNUMA protocols.

9 CONCLUSION

In this work, we have provided novel evidence of coherence-induced
hammering in commodity workloads, the first hammering found to

occur in non-malicious code. Given rising susceptibility to Rowham-

mer, we have designed MOESI-prime, a ccNUMA protocol that pre-

vents identified sources of such hammering, retains Intel’s state-of-

the-art scalability, improves average DRAM power, and negligibly-

affects average performance—even improving the performance of

many workloads. As Rowhammer susceptibility continues to rise,

solutions that avoid unnecessary row activations such as MOESI-

prime will ensure continued reliability and security in the cloud.
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