
Debugging in the Brave New World of Reconfigurable Hardware
Jiacheng Ma

University of Michigan

Gefei Zuo

University of Michigan

Kevin Loughlin

University of Michigan

Haoyang Zhang

University of Michigan

Andrew Quinn

University of California, Santa Cruz

Baris Kasikci

University of Michigan

ABSTRACT
Software and hardware development cycles have traditionally been

quite distinct. Software allows post-deployment patches, which

leads to a rapid development cycle. In contrast, hardware bugs

that are found after fabrication are extremely costly to fix (and

sometimes even unfixable), so the traditional hardware develop-

ment cycle involves massive investment in extensive simulation

and formal verification. Reconfigurable hardware, such as a Field

Programmable Gate Array (FPGA), promises to propel hardware

development towards an agile software-like development approach,

since it enables a hardware developer to patch bugs that are de-

tected during on-chip testing or in production. Unfortunately, FPGA

programmers lack bug localization tools amenable to this rapid de-

velopment cycle, since past tools mainly find bugs via simulation

and verification. To develop hardware bug localization tools for a

rapid development cycle, a thorough understanding of the symp-

toms, root causes, and fixes of hardware bugs is needed.

In this paper, we first study bugs in existing FPGA designs and

produce a testbed of reliably-reproducible bugs. We classify the

bugs according to their intrinsic properties, symptoms, and root

causes. We demonstrate that many hardware bugs are comparable

to software bug counterparts, and would benefit from similar tech-

niques for bug diagnosis and repair. Based upon our findings, we

build a novel collection of hybrid static/dynamic program analysis

and monitoring tools for debugging FPGA designs, showing that

our tools enable a software-like development cycle by effectively

reducing developers’ manual efforts for bug localization.

CCS CONCEPTS
• Hardware → Reconfigurable logic and FPGAs; • Software
and its engineering→ Software testing and debugging.

KEYWORDS
FPGA, Reconfigurable Hardware, Bug Study, Debugging

ACM Reference Format:
Jiacheng Ma, Gefei Zuo, Kevin Loughlin, Haoyang Zhang, Andrew Quinn,

and Baris Kasikci. 2022. Debugging in the Brave New World of Reconfig-

urable Hardware. In Proceedings of the 27th ACM International Conference
on Architectural Support for Programming Languages and Operating Systems

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

ASPLOS ’22, February 28 – March 4, 2022, Lausanne, Switzerland
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-9205-1/22/02. . . $15.00

https://doi.org/10.1145/3503222.3507701

(ASPLOS ’22), February 28 – March 4, 2022, Lausanne, Switzerland. ACM,

New York, NY, USA, 16 pages. https://doi.org/10.1145/3503222.3507701

1 INTRODUCTION
Field Programmable Gate Arrays (FPGAs) are increasingly promi-

nent in modern heterogeneous computer systems. Specialized hard-

ware designs provide unprecedented efficiency in domains such as

machine learning [74, 83, 101, 102, 122, 127, 128], compression [92,

125], database operations [88, 96, 104], graph processing [36, 47,

112, 129], networking [41, 52, 111], and storage virtualization [78].

To realize the benefits of FPGAs, systems researchers have built op-

erating systems [53, 73, 77, 106], virtualization support [42, 46, 80,

85, 113, 120, 123, 124], just-in-time compilers [97], and high-level

synthesis tools [43, 44, 61, 116, 117]. The proliferation and bene-

fits of FPGAs have even prompted major cloud vendors to provide

FPGA instances on their platforms [31, 33].

Compared to traditional hardware development, FPGA develop-

ment has many similarities to software development. Since post-

fabrication bugs are extremely costly to fix, traditional hardware de-

velopment invests massive resources into simulation-based testing

and formal verification to eradicate bugs before silicon fabrication.

In contrast, reconfigurability allows a developer to patch hardware

bugs in an FPGA, even those caught during on-FPGA testing or

in production. As a result, FPGA developers are moving towards

an agile development approach that accelerates time to market by

relaxing cumbersome verification in favor of lightweight simula-

tion and on-FPGA testing. For example, Microsoft has adopted a

software-like methodology for FPGA development, in which they

perform relatively small amounts of verification compared to tradi-

tional hardware [52].

Unfortunately, relaxed verification leads to more bugs in FPGA

designs, with most FPGA projects experiencing bugs that escape

testing and end up in production [54]. Alas, while there are many

hardware tools that help developers find bugs using simulation-

based testing and verification [30, 63, 79, 81, 105, 110, 114, 115, 126],

very few hardware debugging tools help a developer localize the root
cause of a bug. Existing fault localization tools only apply to specific
protocols and algorithms [28, 86]. Other tools, such as checkpoint-

ing [16, 37, 38, 75, 103] and tracing [55–57, 62, 80, 97, 119], can

be used to localize the cause of a hardware failure, but require

substantial manual effort to do so. Finally, existing software fault

localization techniques, such as data-race detectors [99] and unde-

fined memory use detectors [98], cannot be immediately applied

to hardware programming models. Consequently, debugging an

FPGA design today is a highly manual process that either involves

inspecting a massive waveform (i.e., a trace of the state of the circuit

over time) or iterative rounds of synthesis in which a developer

selects and analyzes key data signals. Unsurprisingly, a majority

https://doi.org/10.1145/3503222.3507701
https://doi.org/10.1145/3503222.3507701

ASPLOS ’22, February 28 – March 4, 2022, Lausanne, Switzerland Jiacheng Ma, Gefei Zuo, Kevin Loughlin, Haoyang Zhang, AndrewQuinn, and Baris Kasikci

of FPGA developers in a recent study indicate a need for better

debugging tools [23].

Reaping the full benefits of rapid FPGA development will re-

quire constructing FPGA debugging tools that help localize the root

cause of a hardware fault—similar to the rich set of tools available

to software developers. Towards this goal, we first study bugs in

open-source FPGA designs. We then introduce a novel root-cause-

based classification of the bugs we study inspired by a prior bug

taxonomy [82] and document the intrinsic properties and symp-

toms of these bugs. We augment our study with a testbed in which

each hardware bug is reliably reproducible. We demonstrate that

each class of hardware bugs mirrors a counterpart class of software

bugs and would benefit from similar techniques for bug diagnosis

and repair.

Guided by the intrinsic properties and symptoms of bugs in

FPGA designs, we build a collection of hybrid static/dynamic pro-

gram analysis and monitoring tools to help developers of recon-

figurable hardware systems follow a software-like development

and debugging process. Because hardware bugs may be detected

during simulation or when executing on an FPGA, our tools are

designed to operate in either scenario. Thus, we consider the effects

of our debugging logic on real circuit synthesis and behavior, as

opposed to only accounting for a simulator environment where

resource and timing constraints are far less stringent. At a high

level, our tools allow selectively recording and analyzing targeted

execution information using limited on-FPGA storage, and consist

of the following:

1- SignalCat unifies hardware debugging during simulation and

when deployed on an FPGA by providing a single interface for

tracing state in a hardware design. The tool converts “printf”-like
statements embedded in a hardware description into logic that

records the arguments of these statements in a hardware deploy-

ment or during simulation. After an execution, SignalCat recon-

structs a log containing the output of the printf statements.

2- FSM Monitor helps a developer identify and track finite state

machines (FSMs), which are a widespread component in a hardware

design. It uses SignalCat to support both simulation and on-FPGA

scenarios.

3- Dependency Monitor enables a developer to trace the prove-

nance of the value of a variable in their hardware design. The tool

identifies the dependency chain of each developer-specified vari-

able (i.e., the registers upon which the variable depends), and tracks

all updates made to these variables during a simulation or on-FPGA

execution using SignalCat.

4- Statistics Monitor helps a developer identify anomalous behav-

ior by recording statistics about various execution events, such as

the number of times that an interrupt is triggered or the number of

packets that arrive in a communication channel. Developers specify

an event of interest; Statistics Monitor instruments the hardware

design with new logic that uses SignalCat to track statistics during

simulation or on-FPGA scenarios.

5- LossCheck helps a developer localize the root cause of data loss
(e.g., an unintended packet drop). A developer who suspects data

loss in their design uses LossCheck to check for—and potentially

identify the source of—data loss between a specified source (e.g.,

an input to a hardware module) and sink (e.g., an output). The tool

instruments the hardware design with new logic that monitors

all data propagation paths between the source and sink by using

SignalCat.

We show how a developer can use the aforementioned tools—

either individually or in various combinations—to debug the bugs

in our study. In particular, we show that our tools help diagnose

the cause of each bug in our study by automatically generating and

executing dozens to thousands of lines of analysis code, which the

developer would otherwise need to write. Additionally, we evaluate

the resource overhead of our debugging tools and demonstrate

that they are feasible for production use. Among the 20 bugs we

evaluated, 18 cases maintain the design’s original target frequency

after debugging instrumentation; all cases incur at most linear

resource overheads with increased recording buffer sizes.

Overall, we make the following contributions:

• We provide the first study of bugs in open-source FPGA

designs, a root-caused-based bug classification, and a de-

scription of typical bug symptoms to guide developers in

their debugging efforts.

• We design a collection of hybrid static/dynamic analyses

that developers can use in simulation and real hardware

deployments to debug FPGA designs.

• We develop an open-source testbed [1] that includes repro-

ducible hardware bugs and our tools to facilitate future FPGA

debugging research.

In the rest of this paper, we first provide background on FPGAs

and FPGA programming (§2). We then present the results of our bug

study (§3), followed by the design of the collection of our static and

dynamic analyses for debugging FPGA designs (§4). We provide

implementation details of our analyses (§5), present evaluation

results (§6), discuss related work (§7), and finally conclude (§8).

2 BACKGROUND
In this section, we discuss the FPGA development concepts that

are necessary for understanding the bugs and debugging tools

presented in this paper.

2.1 Languages for Hardware Programming
Developers program FPGAs by implementing a digital circuit in a

hardware description language (HDL), such as Verilog [109], Sys-

temVerilog [29], or VHDL [40]. HDLs enable developers to describe

the behavior of a circuit in a cycle-by-cycle manner. For instance,

the simple statement 𝑐 <= 𝑎 + 𝑏 subscribes to a broad program-

ming paradigm: right hand expressions (𝑎 + 𝑏) are computed and

propagate to left hand operands (𝑐) via an appropriate assignment

operator (<=) at each clock cycle.

Emerging high level synthesis (HLS) tools enable hardware devel-

opment using software programming languages, but impose signifi-

cant performance and resource penalties compared to HDLs. For ex-

ample, state-of-the-art HLS-implemented image processing is 6.6×
slower and uses 5× more resources than an HDL-implementation

[87]. As such, HDLs continue to dominate hardware development.

2.2 FPGA Debugging Stages
FPGA debugging contains two stages: simulation and on-FPGA

testing. Simulation avoids lengthy hardware synthesis and is thus

Debugging in the Brave New World of Reconfigurable Hardware ASPLOS ’22, February 28 – March 4, 2022, Lausanne, Switzerland

IDLE

WORKFINISH

request_valid

work_done

Figure 1: An example FSM with states represented by nodes,
and transition conditions represented by edges. This FSM
has three states: IDLE, WORK, and FINISH. A state transforms
to another state when a certain condition is satisfied.

1 reg [1:0] state;
2 always @(posedge clk) begin
3 case(state)
4 IDLE: if (request_valid) state <= WORK;
5 WORK: if (work_done) state <= FINISH;
6 FINISH: state <= IDLE;
7 endcase
8 end

Listing 1: Verilog code implementing of the state transition
of the FSM in Figure 1.

faster to iterate, but executes orders of magnitudes slower than on-

FPGA testing [97]. In practice, developers simulate FPGA designs

and iteratively fix any bugs they find before employing on-FPGA

methods to test their design against more complex workloads (e.g.,

via stress testing).

2.3 FPGA Programming Techniques and
Constructs

Hardware developers leverage a number of common techniques

and constructs to implement FPGA designs.

Buffers and Queues. Hardware developers use buffers and queues
to temporarily store values. Hardware buffers and queues are similar

to their software equivalents, except they must be constant-sized,

since all hardware components occupy a fixed area in a circuit.

Communication Control: Valid Interface. Logically, hardware
circuits continually process data, with one or more input signals

consumed every clock cycle. However, an input signal may not

always be meaningful. For instance, a module may only receive a

“packet” every 5 cycles. Thus, developers use valid interfaces that

indicate whether a particular input is valid (i.e., a “valid bit” variable

associated with one or more inputs).

Communication Control: Backpressure. In a communication

channel where a source repeatedly sends data to a destination, the

destination may use a backpressure or “ready” signal to inform the

source that it needs time to process inputs. These signals indicate

to the source that the destination can only receive 𝑥 new packets,

where 𝑥 is defined by the communication protocol (e.g., 𝑥 = 1 for

a binary ready signal). In the event of backpressure, the source

should stop sending packets or reduce the sending rate to avoid

bugs at the destination.

Finite State Machines. Hardware developers frequently incorpo-

rate finite state machines (FSMs) in their designs [32, 118]. Figure 1

demonstrates an example FSM; Listing 1 shows the Verilog code

that implements the FSM. In Verilog, an FSM is implemented using

conditional assignments (e.g., an assignment inside a switch case);

once a condition is satisfied, the “state” transfers along the arrows

in the next clock cycle.

Module. A module is a sub-component of a Verilog circuit with a

group of input and output signals, akin to a software function.

Intellectual Property (IP). A hardware intellectual property (IP)

block is a “blackbox” module that implement commonly-used or

platform-specific functionality, akin to a static software library. Like

a software function, an IP block accepts user-controlled inputs and

produces a set of outputs.

3 STUDY OF BUGS IN FPGA DESIGNS
To identify useful FPGA debugging tools, we study 68 hardware

bugs across 19 FPGA designs and build a testbed [1] that reliably re-

produces 20 of these bugs
1
in a push-button manner to enable their

detailed study (§6.1). The study explores functional bugs, i.e., bugs

in the HDL code that lead to functional issues rather than timing-

related issues, since most production FPGA bugs are functional

bugs [54]. Our methodology for gathering bugs is as follows:

Target Systems. First, we study bugs in four applications that we

used in prior work. In particular, these applications use the Intel

HARP platform [60], which uses the FPGA as a reconfigurable accel-

erator and provides an end-to-end acceleration stack. Specifically,

we identify bugs in a SHA512 accelerator [24], Reed-Solomon de-

coder [25], and grayscale image accelerator [26] applications from

HardCloud [45] (a framework with applications using HARP-based

FPGA acceleration). Additionally, we find bugs in Optimus [85] (a

HARP-based FPGA hypervisor).

Second, we examine bugs in hardware designs described in the

ZipCPU website, a popular hardware design blog [2]. We iden-

tify bugs in SDSPI [3] (a library that drives an SD card through

a Serial Peripheral Interface), Xilinx’s two example AXI endpoint

implementations [4, 5], and an FFT implementation [27].

Third, we study bugs found in hardware components from the

most popular FPGA projects on GitHub, including a WiFi con-

troller [6], a GPGPU processor [7], two RISC-V CPUs [8, 9], a Bitcoin

Miner [10], a NIC [11, 12], and two hardware libraries [13, 14].

Finally, we examine a floating-point adder [15] that was pro-

vided to us by a hardware developer upon consultation about their

experiences debugging hardware.

Bug Collection. Bugs in FPGA designs are difficult to collect,

reproduce, and study due to the relative dearth of open-source

hardware. Exacerbating this problem, among the 50 most popular

FPGA projects on GitHub, 56% do not have a publicly-accessible

bug tracker and 88% do not include test cases to reproduce bugs.

Therefore, rather than analyzing hardware bugs from bug track-

ers, we resorted to searching commit histories/issues of FPGA

projects on GitHub to identify hardware bugs. In some cases, we

found bugs through direct communication with developers (Opti-

mus and FADD) and the ZipCPU website.

For each identified bug, we manually inspect related commit

messages and discussions in GitHub Issues to understand the bug’s

root cause and symptoms. Sometimes, the commit messages and

1
We select these 20 bugs because they occur in an application/platform with which

we have familiarity. The rest of the bugs could be reproduced with additional effort.

ASPLOS ’22, February 28 – March 4, 2022, Lausanne, Switzerland Jiacheng Ma, Gefei Zuo, Kevin Loughlin, Haoyang Zhang, AndrewQuinn, and Baris Kasikci

Bug Class Bug Subclass Number of Bugs Common Symptoms
App Stuck Data Loss Incorrect Output External

Data Mis-Access

Buffer Overflow 5 ✓
Bit Truncation 12 ✓ ✓
Misindexing 5 ✓ ✓
Endianness Mismatch 1 ✓
Failure-to-Update 5 ✓ ✓ ✓

Communication

Deadlock 3 ✓
Producer-Consumer Mismatch 3 ✓ ✓ ✓
Signal Asynchrony 10 ✓
Use-Without-Valid 1 ✓

Sementic

Protocol Violation 3 ✓ ✓ ✓
API Misuse 3 ✓
Incomplete Implementation 7 ✓
Erroneous Expression 10 ✓

Table 1: The result of our bug classification, including 3 main classes, 13 different subclasses, the number of bug instances
observed in each subclass, and the common symptoms of each subclass.

issues do not provide sufficient information for a thorough under-

standing; in these cases, we inspect the hardware design’s codebase

as well as bug-related patches to understand the bug.

3.1 Bug Classification
We cluster bugs with similar root causes and symptoms into 3

main classes and 13 subclasses. Table 1 shows the classification

results, identifying each bug subclass, the bug class to which each

subclasses belongs, the number of bugs in the study that belong

to each subclass, and the most common symptoms of each bug

subclass.

The three bug classes roughly correspond to the three classes

of software bugs from Li et al.’s software bug study [82] and are

as follows: data mis-access bugs (§3.2), which arise when data is

accessed without proper consideration for properties of the data

format and are similar to software memory bugs; communication

bugs (§3.3), which arise when a circuit violates inter-component

communication standards and are similar to software concurrency

bugs; and semantic bugs (§3.4), which arise from other remaining

violations of a circuit’s intended functionality and correspond to

software semantic bugs. Some bugs could be classified into multiple

classes/subclasses (e.g., a buffer overflow may arise because of an

erroneous expression); we assign such multi-class bugs to the most

related and specific subclass to which they could be assigned.

In the rest of this section, we provide a detailed description

of each subclass of bug including their intrinsic properties, root

causes, and common symptoms. We identify similarities between

the hardware bugs and well-studied software bugs, which provide

inspiration for the hardware debugging tools that we propose.

3.2 Data Mis-Access Bugs
Data mis-access bugs occur when the developer accesses data with-

out proper considerations for size, endianness, and other properties

of data. These bugs are similar to software memory bugs [82] (e.g.,

buffer overflows, our first example).

3.2.1 Buffer Overflow. A buffer overflow in an FPGA design oc-

curs when a buffer is accessed with an offset that is greater than

the size of the buffer. We identify 5 real-world examples of buffer

overflow bugs in our bug study. We present a basic code snippet

for simplicity.

1 reg mybuf [N-1:0]; // a buffer with N 1-bit elements
2 always @(posedge clk)
3 mybuf[offset] <= value; // offset >= N

Line 1 defines a buffer named mybuf consisting of 𝑁 single-bit

elements; mybuf [N-1:0] can be legally indexed from 0 to 𝑁 − 1

(inclusive). On Line 3, the snippet uses offset to assign a bit of

mybuf to a value; however, the value of offset is greater than 𝑁

and therefore overflows mybuf.
Accordingly, a buffer overflow in an FPGA design is similar

to a software buffer overflow. However, unlike software buffer

overflow bugs, which can corrupt memory by overwriting adjacent

addresses, there is no notion of address adjacency beyond a buffer

in hardware logic. Instead, hardware buffer overflows yield two

possible outcomes: (1) the highest bits of offset are truncated, so

an incorrect position in buffer is assigned (when the buffer size is a

power of two), or (2) the assignment is ignored (when the buffer

size is not a power of two). In select cases, hardware developers

rely on truncation of the high bits of offset in their circuits for

correctness, but this approach does not work for common data

structures such as heaps and queues.

Symptoms. Data loss from truncation or ignored assignment.

Fixes. Hardware buffer overflows are fixed similarly to software

buffer overflows: Developers enlarge the buffer or change the be-

havior of the FPGA design to avoid the overflow.

3.2.2 Bit Truncation. Bit truncation bugs in FPGA designs occur

when assigning a variable to another variable with fewer bits. We

identify 12 bit truncation bugs in 7 different FPGA designs.

The software equivalent of a bit truncation bug occurs when

casting a variable to another variable that is represented with fewer

bits. As in software, bit truncation in hardware may be used to

intentionally discard part of a variable, which makes precise bug

detection challenging.

In the following code snippet, left is a 42-bit variable and right
is a 64-bit variable whose 42 bits from [47:6] contain meaningful

data. On Line 4, right is cast into a 42-bit variable via 42’(right)

Debugging in the Brave New World of Reconfigurable Hardware ASPLOS ’22, February 28 – March 4, 2022, Lausanne, Switzerland

and then right-shifted by 6 bits before being assigned to left. As a
result, bits [47 : 42] are truncated unintentionally.

1 reg [41:0] left; // left is a 42-bit register
2 reg [63:0] right; // bits [47:6] are meaningful
3 always@(posedge clk)
4 left <= 42'(right) >> 6;

Symptoms. An incorrect value or an error (e.g., a page fault) re-

ported by an external monitor (such as an FPGA shell).

Fixes. Depending on the developer’s intentions, one technique for

fixing truncation bugs is to perform shifts before bit-width casts.

In our example, this means the developer would change Line 4 to:

left <= 42'(right >>6;) Another potential fix is to grow the

variables that can cause truncation. For instance, a developer can

change the width of left to 48 bits, which prevents trucation of

meaningful bits in right. In this case, Line 4 would be updated to:

left <= 48'(right) >> 6;.

3.2.3 Misindexing. A misindexing bug occurs when a developer

uses an incorrect index to extract information from a variable. We

identify 5 misindexing bugs in our study. For example, the IEEE-

754 [22] standard defines the binary layout of 32-bit floating point,

where the bits [22:0] are the fraction and the bits [30:23] are the
exponent. However, in an implementation of floating point adder,

the developer incorrectly extracted bits [23:0] as the fraction in a

floating point adder, which lead to the wrong output value.

Symptoms. Incorrect output or data loss, if the misindexed data

used for a control signal.

Fixes. Misindexing bugs are fixed by correcting the index.

3.2.4 Endianness Mismatch. Endianness mismatches occur when

an FPGA design assumes the wrong endianness for a particular

piece of data (e.g., register arrays, off-chip DRAM, and disks), similar

to how kernel code may assume the wrong endianness for device

driver data. One instance of endianness mismatch bug is identified

in our study.

In the simplified code snippet below, the circuit stores the least

significant bits of an input in data[7:0] (on Line 2) and the most

significant bits in data[15:8] (on Line 3). As a consequence, the

input is stored in data in the little endian format. On Line 5, data
is passed to a function expecting a big endian input, causing out to

have the wrong result.

1 // Store data as little endian
2 data[7:0] <= least_significant_byte;
3 data[15:8] <= most_significant_byte;
4 // Pass data to function expecting big endian input
5 out <= big_endian_function(data);

Symptoms. A wrong value following assignment.

Fixes. Developers fix endianness mismatch bugs by manipulating

bytes to account for the endianness difference. For example, the

bug in the above code snippet is fixed by replacing Lines 2-3 with

the following code:

1 data[7:0] <= most_significant_byte;
2 data[15:8] <= least_significant_byte;

3.2.5 Failure-to-Update. A failure-to-update bug occurs when a

developer forgets to put (including reset and initialization) a signal;

we identify 5 failure-to-update bugs in our study.

Below, we provide a simple example code snippet of a failure-

to-update bug. In this example, input_counter is incremented

when the input_valid signal is set, while output_counter is in-
cremented when output_ready is set. However, upon reset, only
input_counter is set to 0, so output_counter may contain incor-

rect data after reset.
1 if (input_valid) input_counter <= input_counter + 1;
2 if (output_ready) output_counter <= output_counter + 1;
3 if (reset) input_counter <= 0;

Symptoms. Invalid output, data loss, or violation of communica-

tion interfaces if the failure-to-reset occurs on ready/valid signals

(§2.3).

Fixes. The developer will reset each relevant signal in the system.

Takeaway #1. Data mis-access bugs can often be localized to a

specific assignment, so stepping through dependency chains/FSM

transitions can help localize the bug.

Takeaway #2. Data mis-access often results in data loss, so data

loss detection (e.g., counting inputs received versus outputs sent)

is crucial for finding bugs.

3.3 Communication Bugs
Communication bugs occur when the developer violates inter-

component communication standards (e.g., inter-module interfaces,

different clock domains, pipeline stages, etc.). They are similar to

concurrency bugs in the software [82].

3.3.1 Deadlock. A deadlock in an FPGA design occurs when two

(ormore) variables have a circular control dependency on each other.

Hardware deadlocks are similar to software deadlocks, where a cir-

cular dependency among resources (e.g., locks) causes the program

to stall. In hardware, deadlocks are triggered due to conditional

assignments (e.g., assignments inside if-statements) that execute in

parallel. We identify 3 deadlock bugs in our study.

In the following code snippet, if a and b are both initialized to 0,

the assignment to out on Line 3 will never execute.

1 if (a) b <= 1;
2 if (b) a <= 1;
3 if (a) out <= result;

Symptoms. Infinite stall.
Fixes. To fix the bug in the above code snippet, a developer could

initialize either a or b to 1. Fixing a deadlock bug in a complex

circuit is often difficult because it is challenging to identify circular

dependencies.

3.3.2 Producer-Consumer Mismatch. When a collection of con-

sumer registers cannot process the data values produced by a col-

lection of producer registers, a producer-consumer bug occurs. For

example, if the producers yield more valid data in a cycle than

the consumers can process and store, data will be lost. Hence, a

producer-consumer mismatch bug is similar to the classic “bounded-

buffer” [51] producer-consumer problem in software, in which

consumer threads can only process/store a limited quantity of out-

put from producer threads. We identify 3 real-world examples of

producer-consumer mismatch bugs in our study.

For a simple example, consider the following code snippet that

uses a valid interface (§2.3), where producers generate and overwrite
x and y at every cycle. If both x_valid and y_valid are 𝑡𝑟𝑢𝑒 in the

same cycle, then the value of y may be lost, since only the code on

line 1 will execute.

ASPLOS ’22, February 28 – March 4, 2022, Lausanne, Switzerland Jiacheng Ma, Gefei Zuo, Kevin Loughlin, Haoyang Zhang, AndrewQuinn, and Baris Kasikci

1 if (x_valid) out <= x;
2 else if (y_valid) out <= y;

Symptoms. Data loss, invalid output, or an infinite stall (if the

consumer FSM logic waits for a lost producer value).

Fixes. In software, locks and condition variables are used to force

producer threads to wait until the consumer threads are ready

to receive new values. In hardware, an analogous solution is to

pause a producer by adding a back-pressure signal throughout the

circuit. However, pausing a producer is invasive, since nearly all

components of the circuit must be altered to accommodate the

pause. Instead, an easier solution is creating a larger buffer for pro-

duced values that have not been consumed, assuming the maximum

needed queue size is bounded.

3.3.3 Signal Asynchrony. A signal asynchrony bug occurs when

two variables that are supposed to be used together—such as a

data variable and its valid/backpressure interface signals (§2.3) or

the two operands of a mathematical operation—are not updated

synchronously. We identify 10 signal asynchrony bugs in our study.

The following code snippet shows a simplified example of a sig-

nal asynchrony bug. The code responds to requests from a module

that requires a minimum 2 cycle difference between requests and

responses. Accordingly, upon receiving a request, the code buffers

the response (calculated in a single cycle) in buffered_response
for an extra cycle (Line 1), before outputting final_response
(Line 2). Unfortunately, the final_response_valid signal (indi-

cating the validity of the response data) is set immediately fol-

lowing receipt of request (Line 3), meaning final_response and

final_response_valid are out of sync. For simplicity, we omit

the code resetting final_response_valid to 0.

1 if (request) buffered_response <= input_data + 1;
2 final_response <= buffered_response;
3 if (request) final_response_valid <= 1;

Symptoms. An incorrect output value.

Fixes. The signal asynchrony bug in the snippet can be fixed by

properly delaying the final_response_valid signal to be syn-

chronous with the final_response signal. For instance, the devel-

oper may replace Line 3 with the following lines to fix the bug.

1 if (request) delayed_response_valid <= 1;
2 final_response_valid <= delayed_response_valid;

3.3.4 Use-Without-Valid. A use-without-valid bug occurs when a

data variable guarded by a valid signal (§2.3) is used when the valid

signal is in an invalid state. Use-without-valid bugs are similar to

signal asynchrony bugs, but occur when data is used erroneously,

as opposed to signal asynchrony bugs which occur when data is

updated erroneously. We identify one instance of use-without-valid

bug in our study.

In the following code snippet, if data is a variable using a valid

interface (e.g., with data_valid as its valid signal), sum may not

be calculated correctly because it can use an invalid data as input.

1 // data is associated with a valid variable (data_valid)
2 sum <= sum + data;

Symptoms. An incorrect output value.

Fixes. Developers fix use-without-valid bugs by updating their

code to use the correct valid interface. For example, the bug in the

above code snippet is fixed by replacing Line 2 with the following

two lines:

1 if (data_valid) sum <= sum + data;
2 else sum <= sum;

Takeaway #3. Given the proliferation of FSMs, circular depen-

dencies, and infinite stalls in communication bugs, localizing the

bugs would be easier with ability to record key states and statis-

tics at arbitrary points in the circuit.

Takeaway #4. Like data mis-access bugs, debugging communi-

cations bugs would benefit from localized data loss detection.

3.4 Semantic Bugs
Semantic bugs occur due to remaining violations that cause the

circuit to incorrectly perform its intended functionality. Semantic

bugs include bugs where a developer does not correctly imple-

ment the entire high-level circuit specification (e.g., the protocol or

FSM logic), misuses the API of a pre-implemented module, or does

not implement special cases in complex logic. They are similar to

semantic software bugs [82].

3.4.1 Protocol Violation. Components of an FPGA design (e.g.,

modules) communicate through industry-standard communication

protocols such as AXI4 [35]. However, such protocols are complex

and contain corner cases that are difficult to cover in testing. If a

developer fails to handle all cases correctly, a protocol violation

occurs and escapes from simulation-based testing. We identify 3

instances of protocol violations.

Symptoms. Invalid outputs, infinite stall, or a protocol violation

error reported by an external monitor (e.g., an FPGA shell).

Fixes. Fixing protocol violations requires correcting a mismatch

between the high-level specification and implementation or adding

logic for an unhandled corner case.

3.4.2 API Misuse. FPGA designers use a hierarchy of modules

to organize code and simplify the FPGA design process. An API

misuse bug occurs when developers fail to use a pre-implemented

module or IP block correctly. A hardware design may have an API

misuse bug even if it implements all the involved communication

protocols correctly, as it may pass wrong parameters to the module

or configure it improperly. We identify 3 API misuse bugs in our

study.

The following code snippet shows an example of an API misuse

bug. Suppose that a developer wants to determine whether signal

a is greater than signal b using a module, greater_than, which
takes two parameters, x and y, and returns x>y. However, when
instantiating the module, the developer erroneously connects signal

a to the module’s input port y and signal b to the module’s input

port x. Consequently, themodule instance (i.e., a_greater_than_b)
computes b>a instead of a>b, resulting in an incorrect output value.

1 // The greater_than module calculates whether x>y
2 greater_than a_greater_than_b(.x(b), .y(a), .result(out));

Symptoms. An incorrect output value.

Fixes. Fixing API misuse bugs involves correcting the mismatch

between a module’s API definition and how the module is used,

usually by changing signal connections and the module’s configu-

ration.

3.4.3 Incomplete Implementation. Hardware designs can be exceed-
ingly complex, so hardware developers omit logic to handle corner

cases, either intentionally or unintentionally. Such omissions are

Debugging in the Brave New World of Reconfigurable Hardware ASPLOS ’22, February 28 – March 4, 2022, Lausanne, Switzerland

incomplete implementation bugs and often occur in corner cases

that are difficult to trigger during testing. We identify 7 instances

of incomplete implementation bugs in our study.

Symptoms. Incorrect and invalid output.

Fixes. Developers fix incomplete implementation bugs by imple-

menting the missing functionality, which may involve a redesign of

certain components of the hardware design. Developers may also

add additional test cases to cover the newly-added code.

3.4.4 Erroneous Expression. An erroneous expression bug occurs

when hardware developers use a wrong expression in a control-

flow statement (e.g., an if-statement) or data-flow statement (e.g.,

an assign-statement). Erroneous expression bugs are different from

incomplete implementation bugs in that they involve an incorrect
expression rather than omitted expressions. A wrong expression

in a control-flow statement steers the hardware’s control-flow to

a wrong direction; a wrong expression in a data-flow statement

generates an incorrect data value, which is used in other statements.

In our study, we include 5 erroneous expression bugs in control-flow

and 5 such bugs in data-flow.

Symptoms. Incorrect and invalid output.

Fixes. Developers fix erroneous expression bugs by correcting the

erroneous expression in the control-flow or the data-flow.

Takeaway #5. Corner cases that trigger semantic bugs are dif-

ficult to detect, especially in simulation; runtime data recording

enables debugging these scenarios.

4 DESIGN OF FPGA DEBUGGING TOOLS
Our bug study in §3 demonstrates that FPGA debugging can ben-

efit from debugging tools similar to those used in software (e.g.,

flexible logging capabilities and program analysis). In contrast, past

hardware debugging tools have emphasized airtight verification,

and do little to help a developer diagnose the cause of a bug after

its symptoms have been observed.

Therefore, we propose a set of hybrid static/dynamic analysis

tools that simplify root cause diagnosis in FPGA designs. In this

section, we describe the tools; the evaluation demonstrates their

applicability to the bugs in our study (§6).

First, we unify simulation and on-FPGA debugging with Signal-

Cat (§4.1). While “printf”-like statements have traditionally only

been available in HDL simulators or required platform-specific IP

to implement on FPGAs, SignalCat synthesizes these statements

for actual FPGA deployments across multiple platforms. The infras-

tructure provided by SignalCat serves as a cornerstone upon which

developers can build symptom-specific tools without needing to

consider the execution context of the circuit and applies directly to

all 5 of the takeaways from our bug study.

Using SignalCat, we build three monitoring tools that gather

targeted information based upon insights from our bug study. First,

FSM Monitor (§4.2) statically detects FSM variables and records

them at runtime, automatically reconstructing FSM state-transition

traces to aid developers in debugging. Second, Dependency Mon-

itor (§4.3) statically analyzes the dependencies of user-specified

variables and dynamically records the updates to each dependency,

allowing developers to backtrace and localize the source of an in-

correct output-of-interest. Third, Statistics Monitor (§4.4) provides

counters for user-specified events, helping users identify bugs re-

flected in statistical metadata (e.g., data loss is often indicated by

fewer outputs generated than inputs received).

Finally, given the commonality of data loss in our bug symptoms,

we develop an additional tool for the event that a developer sus-

pects or detects data loss. In particular, LossCheck (§4.5) pinpoints

the location of data loss within a hardware design. LossCheck stati-

cally analyzes an FPGA design and instruments it with logic that

dynamically checks for data loss in suspected locations.

4.1 SignalCat for Unified Logging
Our bug study shows that hardware debugging would benefit from

the ability to log arbitrary runtime information, just as software

debugging does [121]. Today, while developers can use debug state-

ments (e.g., $display) to log values during HDL simulation, similar

tools are not pervasively available on deployed FPGAs without spe-

cific FPGA virtualization or IO support [80, 97]. In lieu of generic

“printf”-like statements, developers typically use vendor-provided

data recording IPs (e.g., Intel SignalTap [62] and Xilinx ILA [119])

to record a subset of variables when debugging a deployed FPGA

design. Thus, developers must maintain two different versions of

their FPGA design when debugging, one that uses simulation-based

deubgging primitives, and one that uses on-FPGA primatives.

SignalCat bridges this gap by unifying simulation-based and

on-FPGA debugging through automatic generation of on-FPGA

recording logic (e.g., using FPGA vendors’ IPs) from debugging

statements (e.g., $display). SignalCat incorporates a static and

a dynamic component. The static component analyzes the path

constraints of debugging statements and generates an IP instance

for on-FPGA data collection, while the dynamic component records

the trace via the IP instance in an on-FPGA scenario.

SignalCat searches the abstract syntax tree (AST) of an FPGA de-

sign for debugging statements. For each such statement, SignalCat

determines the arguments (i.e., the variables that the developers

want to print) and the path constraint (i.e., the conditions under

which the statement is reached) of the statement. Then, SignalCat

generates an instance of a vendor-provided data recording IP to

record the collected arguments and path constraints, encoding path

constraints as a 1-bit bool per debugging statement. At each cycle,

The system stores all arguments and encoded path constraints in

the recording IP buffer if at least one path constraint is true. Signal-

Cat reconstructs and prints debugging logs after execution allowing

the same format for on-FPGA debugging and simulation.

SignalCat requires that developers specify the size (i.e., the num-

ber of data entries) of the IP’s recording buffer and events that start

and stop data recording (e.g., when the first packet arrives or an

assertion is triggered). Developers can also configure the buffer to

capture a fixed interval before and/or after the user-provided event.

Since SignalCat provides a single interface for simulation and

on-FPGA logging, developers of debugging tools can instrument an

HDL design with a “printf”-like statement and support simulation

and on-FPGA debugging with a single code-base. In fact, all of

our subsequent debugging tools (§4.2–§4.5) leverage SignalCat for

runtime data recording.

ASPLOS ’22, February 28 – March 4, 2022, Lausanne, Switzerland Jiacheng Ma, Gefei Zuo, Kevin Loughlin, Haoyang Zhang, AndrewQuinn, and Baris Kasikci

4.2 FSM Monitor for State Machine Traces
Hardware circuits often use finite state machines (FSMs) in their

design (§2.3). When this design paradigm is used, an FSM (state-

transition) trace provides a user-friendly abstraction for circuit

execution and debugging, especially in comparison to a low-level

waveform (i.e., a graph of all signals at every cycle). Therefore, we

propose FSM Monitor to help developers automatically generate

FSM traces. FSM Monitor detects FSMs in a circuit and generates

logic that monitors state changes for each detected FSM.

Hardware FSMs employ fixed code patterns that are detectable

with static analysis [32, 118], unlike software FSMs, which are

difficult to detect without complex online tracing tools [39]. In an

FSM, a state transforms to another state when certain condition(s)

are satisfied. State transitions usually conditionally assign (e.g., an

assignment inside a switch case) to FSM variables and include FSM

variables as a part of the condition. Additionally, circuits rarely

perform mathematical operations (e.g., addition or subtraction) on

FSM variables and rarely select individual bits of FSM variables.

Accordingly, FSM Monitor traverses the abstract syntax tree

(AST) of a circuit and searches for FSM variables by using the

aforementioned heuristics. For each identified FSM variable, FSM

Monitor generates Verilog code that displays a log message when

the variable is updated.

FSM Monitor’s heuristics can incur both false positives and false

negatives, but we find a high degree of accuracy in our evaluation

(of the 32 manually-identified FSMs in our benchmark suite, FSM

Monitor has 0 false positives and 5 false negatives). Furthermore,

more sophisticated FSM detection approaches, like those used by

the Intel and Xilinx synthesizers, could further increase accuracy.

Finally, FSMMonitor allows developers to patch mistakes by adding

undetected FSMs and filtering out FSMs that are inaccurate or

irrelevant for their current bug.

4.3 Dependency Monitor for Provenance
Tracking

Our bug study indicates that the only symptom of many hardware

bugs is one or more incorrect output values (Table 2). Since the root

cause of a bug can occur many cycles prior to output generation,

it is useful to build the dependency chains for a specific variable

and trace updates to variables in the dependency chain during

execution.

We therefore build Dependency Monitor to statically analyze

the dependencies of a variable and generate the necessary logic to

monitor their updates. Dependency Monitor first statically finds all

registers that may propagate to a variable v within the previous k
cycles (where v and k are specified by the developer). Dependency

Monitor then generates logic that logs each update to variables in

the dependency chain at runtime.

Dependency Monitor handles partial assignments (i.e., assign-

ment to a strict subset of a variable’s bits) by logically splitting

a partially assigned variable to multiple variables. Similarly, De-

pendency Monitor splits constant-indexed arrays into individual

variables. If an array is accessed with at least one variable index,

Dependency Monitor considers the whole array as an individual

register and an assignment to/from the array as a special assignment

that only occurs when the index matches. To track dependencies

through a blackbox IP, Dependency Monitor requires the developer

to provide a model of data and control dependencies within the IP.

An IP model describes the relationship between the input signals

and the output signals of the IP, which is included in the IP specifi-

cation and typically well-understood by developers before using an

IP. Developers can reuse IP models across projects that share the

same IPs.

By default, Dependency Monitor analyzes both control and data

dependencies; however, it can be configured to only analyze one

type of dependency.

4.4 Statistics Monitor for Counting
Events-of-Interest

Collecting hardware statistics (i.e., event counters) provides insight

into program execution without requiring cycle-by-cycle record-

ing of numerous variables. Furthermore, per-component (e.g., per

pipeline stage) counters help a developer localize a statistical anom-

aly (indicative of a bug) to a small region of a complex circuit.

Accordingly, we propose Statistics Monitor, a tool to help devel-

opers collect statistics for events of interest when debugging an

FPGA design. Statistics Monitor generates Verilog code that counts

occurrences of single-bit signals specified by a developer and adds

logging code that emits messages when counts change.

Statistics Monitor is particularly useful when developers suspect

that 1) it is too expensive (i.e., with regard to resource consump-

tion) or unnecessary to record all variables of interest on an FPGA

deployment (especially cycle-by-cycle), and 2) the bug’s symptoms

can be inferred via statistical anomalies (e.g., unexpected differences

between valid input and valid output counts, indicating potential

data loss).

4.5 LossCheck for Precise Data Loss
Localization

While Statistics Monitor may indicate the presence of data loss

(among other bug symptoms) and may localize it to a portion of

the circuit, the pervasiveness of bugs manifesting as data loss in

our bug study indicates that precise data loss localization would be

helpful for hardware debugging.

We therefore design LossCheck, a tool that localizes the root

cause of data loss symptoms. A developer specifies a Source reg-

ister, a Sink register, and a valid signal for Source (§2.3). Then,

LossCheck instruments the HDL code to monitor the propagation

of valid data between Source and Sink. If a valid register is over-

written before its value is propagated from Source to Sink (i.e.,

overwritten before being used as a right-hand variable), LossCheck

indicates potential data loss.

We note that the tracking of data propagation logic in Loss-

Check shares similarities with that of Dependency Monitor. How-

ever, unlike Dependency Monitor, LossCheck does not yield a trace

of updates to variables of interest in a dependency chain. Rather,

LossCheck indicates the precise location of a potential data loss.

Ultimately, LossCheck’s dynamic analysis conveniently enables

automatic localization of data loss bugs without recording a large

number of data propagation events.

We now describe how LossCheck statically analyzes HDL code

(§4.5.1), instruments the code (§4.5.2), and dynamically detects data

Debugging in the Brave New World of Reconfigurable Hardware ASPLOS ’22, February 28 – March 4, 2022, Lausanne, Switzerland

loss while mitigating false alerts (§4.5.3). We then discuss the limi-

tations of LossCheck (§4.5.4).

4.5.1 Static Analysis of Data Propagation. LossCheck statically

analyzes data propagation in an FPGA design and builds a table of

propagation relations. It uses these relations to calculate metadata

variables that indicate potential data loss (§4.5.2).

A propagation relation 𝑋 ⇝𝜎 𝑌 implies that the data value

stored in register 𝑋 will propagate to register 𝑌 when the condition

𝜎 is satisfied. In other words, the value stored in 𝑌 at cycle 𝑘 + 1

(i.e., 𝑌𝑘+1) will be influenced by the value stored in 𝑋 at cycle 𝑘 (i.e.,

𝑋𝑘), if 𝜎 is true at cycle 𝑘 (i.e, 𝜎𝑘).

At a high level, LossCheck uses logic similar to Dependency

Monitor to detect propagation relations and thereby build the prop-

agation relation table. More specifically, LossCheck first identifies a

set of data propagation sequences through which a value stored in

Source can propagate to Sink. LossCheck then analyzes the con-

trol and data dependencies for each register 𝑅 in the propagation

sequences, and adds each identified propagation relation into the

table.

We use the following code snippet as a running example of how

LossCheck works, where in is the Source register, out is the Sink

register, and in_valid is the valid bit for in:
1 always @(posedge clk) begin
2 // buggy code (b's value can be lost)
3 if (cond_a) out <= a;
4 else if (cond_b) out <= b;
5 if (in_valid) b <= in;
6 end

To analyze the dependencies of𝑏 in this example, LossCheck first

detects the propagation sequence: in→ b→ out. LossCheck then

analyzes the dependencies for b and out, building the following

table with 3 propagation relations.

Line Propagation Relations
3 a⇝cond_a out
4 b⇝¬cond_a∧cond_b out
5 in⇝in_valid b

Similar to Dependency Monitor, if the source code for an IP is

unavailable, LossCheck inserts propagation relations into the table

based upon developer-provided IP models.

4.5.2 Instrumentation of HDL Code. LossCheck uses the propaga-

tion relations to guide circuit instrumentation that enables data loss

detection at runtime. The instrumentation process of LossCheck

contains two phases: 1) inferring various loss-related metadata for

each register in each propagation sequence, and 2) inserting corre-

sponding logic to check for potential data loss via this metadata.

Assignment, Validity, and Propagation Statuses. Intuitively,
potential data loss occurs when the assignment of a valid register

occurs before its value is propagated to another register, thereby

overwriting (unused) valid data. So, to detect potential data loss for a

register 𝑅, LossCheck generates assignment𝐴(𝑅), valid-assignment

𝑉 (𝑅), and propagation 𝑃 (𝑅) shadow variables for the register.

For some cycle 𝑘 , a register’s assignment status 𝐴(𝑅)𝑘 indicates

whether 𝑅 is assigned a value during cycle 𝑘 . The value of 𝐴(𝑅)𝑘 is

inferred at runtime from the propagation relation table. Specifically,

𝐴(𝑅)𝑘 evaluates to true if at least one register 𝑅′
propagates its

value to 𝑅 at cycle 𝑘 . More formally, the condition 𝜎 for some

propagation relation 𝑅′⇝𝜎 𝑅 must be satisfied at cycle 𝑘 .

Similarly, 𝑉 (𝑅)𝑘 indicates whether 𝑅 is specifically assigned

a valid value during cycle 𝑘 . 𝑉 (𝑅)𝑘 is therefore determined by

combining the logic for calculating𝐴(𝑅)𝑘 with runtime information

about data validity. In simple cases (such as our code example), data

validity status is trivially available for the variable of interest (e.g.,

via a corresponding valid signal); in more complex cases, LossCheck

calculates validity status for each variable of interest according to

the initial input validity value and propagation relations.

Finally, a register’s propagation status 𝑃 (𝑅)𝑘 indicates whether

𝑅 is used to compute another register’s value during cycle 𝑘 . Similar

to how𝐴(𝑅)𝑘 represents assignment to register 𝑅, 𝑃 (𝑅)𝑘 represents

assignment from register 𝑅. Thus, 𝑃 (𝑅)𝑘 evaluates to true if 𝑅 can

propagate its value to at least one register 𝑅′
at cycle 𝑘 (i.e., if the

condition 𝜎 for some propagation relation 𝑅⇝𝜎 𝑅′
is satisfied at

cycle 𝑘).

After LossCheck determines the values of 𝐴(𝑅),𝑉 (𝑅), and 𝑃 (𝑅),
it instruments the circuit with the logic to compute the values of

these variables at each cycle. Below, we apply these rules to variable

b from the original code snippet:

1 always @(posedge clk) begin
2 // update shadow vars for next cycle
3 A_b <= in_valid;
4 V_b <= in_valid;
5 P_b <= ~cond_a & cond_b;
6 end

Lines 3–5 calculate the values of 𝐴(b), 𝑉 (b), and 𝑃 (b) for the
next cycle based on the propagation relations. We note that, in this

example, 𝐴(b) = 𝑉 (b) because assignment to b is guarded by the

valid signal in_valid.
Inserting Checking Logic. Given a register’s shadow variables,

data loss for register 𝑅 at cycle 𝑘 occurs if the following 3 conditions

hold: (1) 𝑅 is assigned at cycle 𝑘—i.e., 𝐴(𝑅)𝑘 = true, (2) 𝑅 is not

simultaneously propagated at cycle 𝑘—i.e., 𝑃 (𝑅)𝑘 = false, and (3) 𝑅

was assigned a valid value in some previous cycle, which has not

yet propagated.

The first two conditions are trivially calculated for 𝑅 at the cur-

rent cycle via aforementioned logic. For the third condition, Loss-

Check keeps track of an additional “Needs-Propagation” variable

𝑁 (𝑅), which is set to true when a valid value is assigned to 𝑅 and

reset to false when the value propagates. In mathematical terms,

𝑁 (𝑅)0 = false (since no valid value has been assigned at cycle 0),

and for 𝑘 > 0,

𝑁 (𝑅)𝑘 = 𝑉 (𝑅)𝑘−1 ∨ [𝑁 (𝑅)𝑘−1 ∧ ¬𝑃 (𝑅)𝑘−1] . (1)

Potential data loss at cycle 𝑘 is then calculated as:

Loss = 𝐴(𝑅)𝑘 ∧ ¬𝑃 (𝑅)𝑘 ∧ 𝑁 (𝑅)𝑘 . (2)

Notably, while the shadow variables (i.e., 𝐴(𝑅), 𝑃 (𝑅), and 𝑁 (𝑅))
have a unique value at each cycle, 𝑘 , LossCheck can detect loss in 𝑅

at cycle 𝑘 using only the most recent value of each shadow variable,

(i.e.,𝐴(𝑅)𝑘 , 𝑃 (𝑅)𝑘 , and 𝑁 (𝑅)𝑘). Consequently, the amount of state

that LossCheck tracks is bounded, so LossCheck can be realized on

hardware.

LossCheck generates code that calculates 𝑁 (𝑅) and checks Equa-
tion 2. The instrumented circuit that checks for data loss on b is:
1 always @(posedge clk) begin
2 // calculate N_b for next cycle from shadow vars
3 if (reset) N_b <= 0;
4 else N_b <= V_b | (N_b & ~P_b);
5 // check for data loss at current cycle

ASPLOS ’22, February 28 – March 4, 2022, Lausanne, Switzerland Jiacheng Ma, Gefei Zuo, Kevin Loughlin, Haoyang Zhang, AndrewQuinn, and Baris Kasikci

6 if (A_b & ~P_b & N_b)
7 $display("LossCheck: potential data loss at b");
8 end

Lines 3–4 calculate𝑁 (b) for the next cycle according to Equation
1, and Lines 6–7 perform the check for potential data loss at cycle

𝑘 based on Equation 2.

4.5.3 Filtering False Positives and Final Analysis. Notably, Loss-
Check’s design can generate false positives due to an intentional

data drop (as opposed to an unintentional data loss). For example,

an FPGA may intentionally drop a network packet input that fails

a checksum; LossCheck would flag the packet as data loss. Accord-

ingly, LossCheck uses an FPGA design’s test cases—presumably

passed during simulation testing— as “ground-truth” test programs;

LossCheck suppresses warnings triggered by these test cases. We

note that pre-existing test programs for the open-source designs

in our study filter 23/24 false positive registers (i.e., those with

intentional data drops).

Like the monitors, LossCheck leverages SignalCat to transform

the filtered debugging statements (indicating unintentional data

loss) into log messages for either simulation or on-FPGA scenarios.

Thus, if potential data loss is detected for some register 𝑅, a log

message indicates 𝑅 as the source of the loss, and the bug can be

precisely localized.

4.5.4 Limitations of LossCheck. While LossCheck can accurately

localize data losses to a specific register, it cannot distinguish inten-

tional data drops from unintentional data losses. As a consequence,

if an unintentional data loss and an intentional data drop occur at

the same place, the data loss may be filtered by LossCheck, resulting

in a false negative. We identify a single such false negative (out of

7 data loss bugs) in our testbed (§6.3).

5 IMPLEMENTATION
We build our static analyses using Pyverilog [108], a toolbox for

Verilog analysis and instrumentation. We use Pyverilog’s dataflow

analysis framework to analyze data dependencies and its Verilog

code generator to output the instrumented circuit. Furthermore,

to analyze circuits developed in SystemVerilog (i.e., an extension

of Verilog with more language features), we augment Pyverilog

to use the more modern SystemVerilog parser of Verilator [105],

a SystemVerilog simulator. Verilator parses SystemVerilog files

and performs optimizations such as inline expansion and module

instantiation, resulting in an analysis-friendly abstract syntax tree

(AST) that Pyverilog can analyze. We modify and add 269 lines of

C++ code and 1,750 lines of Python code to integrate Verilator and

Pyverilog.

We implement the debugging tools (i.e., SignalCat, FSM Monitor,

Dependency Monitor, Statistics Monitor, and LossCheck) as a col-

lection of analysis and instrumentation passes on Pyverilog ASTs.

These passes are implemented with 3,797 lines of Python code.

Dependency Monitor and LossCheck require developers to im-

plement a model that describes the relation between the inputs

and outputs for each closed-source IP. In our testbed, three IPs are

used: altsyncram, a block RAM implementation; scfifo, a single
clock queue implementation; and dcfifo, a double clock queue

implementation. We implement the models for these IPs in Python

and Verilog, resulting in 394 lines of code in total.

6 EVALUATION
In this section, we first present our testbed (§6.1) and experimental

setup (§6.2). Then, we evaluate the effectiveness of our debugging

tools at helping developers debug the bugs in our study (§6.3).

Finally, we present the resource usage and performance overhead

when using the debugging tools to diagnose the study bugs (§6.4).

6.1 Testbed of Reproducible FPGA Bugs
We built and released a testbed consisting of 20 bugs that we repro-

duced to facilitate further study of FPGA bugs and FPGA debugging

tools [1]. The bugs span the 3 major classes of bugs we identified—

data mis-access, communication, and semantic—and multiple de-

velopment platforms (e.g., Intel HARP and Xilinx). For each bug,

we identify the subclass, application, symptom, and the tools that

are helpful when debugging each bug, as shown in Table 2. The

artifact also includes a simplified code snippet for each bug for

explanation purposes and provides instructions for reproducing

the bug in a push-button manner with the open-source Verilator

simulator [105] . Using a simulator eliminates the need for testbed

users to spend substantial time and effort acquiring design-specific

knowledge that would otherwise be necessary to reproduce each

bug.

Although each bug in the testbed is reproducible on real hard-

ware, but, we opt to reproduce the bugs in Verilator for 3 reasons.

First, a Verilator-compatible testbed demonstrates that both the

fundamental properties of the bugs and the logic of our debugging

tools are broadly-applicable in FPGA development. Second, other

developers can reason about these bugs and a range of development

platforms without purchasing expensive hardware. Third, Verila-

tor simplifies the environmental conditions required to reproduce

each bug—crucially, without changing the buggy programs them-

selves. For the key platform-specific recording IP primitives used

by SignalCat (SignalTap [62] and ILA [119]), we provide support

for simulating their behavior. Unless specifically mentioned, the

buffer size for these data recording IPs is fixed at 8,192 entries.

6.2 Experimental Setup
Platform for Overhead Measurement.We evaluate the resource

and performance overhead of our debugging tools using Quartus

17.0 [17] and Vivado 2020.2 [19], the official synthesizers for Intel’s

and Xilinx’s FPGAs, respectively. We synthesize all Intel HARP-

specific designs to the HARP platform [60] (using Quartus), with the

remaining designs synthesized to the Xilinx KC705 [21] platform

(using Vivado).

Use Cases. We evaluate our tools in two use cases. In the first

case, we use SignalCat and the three monitors (FSM Monitor, De-

pendency Monitor, and Statistics Monitor) to debug all bugs in our

study; in the second one, we use LossCheck to localize the source

of data loss symptoms for the 4 relevant bugs. Table 2 shows the

tools used during the debugging process of each bug.

6.3 Effectiveness of Debugging Tools
We evaluate the effectiveness of our debugging tools by assessing

how much they simplify root cause diagnosis for the bugs in our

study (§3). An experienced developer could diagnose, localize, and

Debugging in the Brave New World of Reconfigurable Hardware ASPLOS ’22, February 28 – March 4, 2022, Lausanne, Switzerland

ID Subclass Application Platform Symptom Helpful Tools
Stuck Loss Incor. Ext. SC FSM Stat. Dep. LC

D1

Buffer Overflow

RSD HARP ✓ ✓ ✓ ✓ ✓ ✓
D2 Grayscale HARP ✓ ✓ ✓ ✓ ✓ ✓
D3 Optimus HARP ✓ ✓ ✓ ✓ ✓ ✓ ✓
D4 Frame FIFO Generic ✓ ✓ ✓ ✓ ✓

D5

Bit Truncation

SHA512 HARP ✓ ✓ ✓ ✓ ✓
D6 FFT Generic ✓ ✓ ✓

D7

Misindexing

FADD Generic ✓ ✓
D8 AXI-Stream Switch Generic ✓ ✓

D9 Endianness Mismatch SDSPI Generic ✓ ✓

D10

Failure-to-Update

SHA512 HARP ✓ ✓ ✓ ✓
D11 Frame FIFO Generic ✓ ✓ ✓
D12 Frame FIFO Generic ✓ ✓ ✓
D13 Frame Length Measurer Generic ✓ ✓ ✓ ✓

C1 Deadlock SDSPI Generic ✓ ✓ ✓ ✓

C2 Producer-Consumer Mismatch Optimus HARP ✓ ✓ ✓ ✓ ✓ ✓ ✓

C3

Signal Asynchrony

SDSPI Generic ✓ ✓
C4 AXI-Stream FIFO Generic ✓ ✓ ✓

S1

Protocol Violation

AXI-Lite Demo Xilinx ✓ ✓
S2 AXI-Stream Demo Xilinx ✓ ✓

S3 Incomplete Implementation AXI-Stream Adapter Generic ✓ ✓

Table 2: The testbed of reproducible bugs, including their classes, subclasses, platforms, symptoms, and which of our new tools
help localize their root cause. Bug D1–D13 are data mis-access bugs, Bug C1–C4 are communication bugs, and Bug S1–S3 are
semantic bugs. A “Generic” platform means that the application does not target on a specific platform and can be synthesized
to different FPGAs. For bug symptoms, “Stuck” indicates a symptom of infinite waiting; “Loss’ indicates a data loss; “Incor.”
means the FPGA design gives an incorrect output; and “Ext.” means an external monitor (such as an FPGA shell) reports an
error. For helpful tools, “SC” stands for SignalCat; “FSM” stands for FSM monitor; “Stat.” stands for statistics monitor; “Dep.”
stands for dependency monitor; and “LC” stands for LossCheck.

fix the bugs in our study without extra tooling; this is what oc-

curred when these bugs were first reported. But, we find that the

localization process is simpler when using our tools. We specifi-

cally answer two questions (1) How often is each tool useful when

debugging the bugs in our study? and (2) How much work do the

debugging tools automate? Additionally, we provide a case study

that demonstrates how a developer would use the tools to localize

a data loss bug in an Intel HARP application.

SignalCat and Monitors. SignalCat is useful for debugging every

bug in our study, serving as the fundamental cross-platform logging

infrastructure. Each of the 3 monitors assists with debugging at

least four bugs from the testbed. During debugging (with SignalCat

and the 3 monitors), we often find FSM Monitor to be the most

helpful in an initial debugging iteration when one or more FSMs

were present in the design. Statistics Monitor is generally most

usefully deployed in subsequent iterations, where developers try to

narrow down the search space of a bug’s root cause. Finally, upon

encountering a variable with an unexpected value, SignalCat is

useful for directly recording updates to the specific variable, while

Dependency Monitor supplements this with an analysis of the

variable’s dependencies. On average, SignalCat and the monitors

generate and insert 72 lines of Verilog code to help with root cause

localization.

LossCheck. LossCheck precisely locates the root cause of data

loss (i.e., a specific register) for 6 out of 7 bugs exhibiting data loss

(i.e., Bugs D1, D2, D3, D4, C2, and C4) in our study. For 2 of these

bugs (D4 and C4), LossCheck uniquely identifies the root cause

of the bug without using the false positive filtering technique in

§4.5.3. For 3 of these bugs (D2, D3, and C2), LossCheck uses the false

positive filtering technique to localize the bug without reporting

false positives. For the Reed-Solomon decoder buffer overflow (D1),

LossCheck reports 1 false positive (i.e., it mistakenly identifies an

intentionally dropped register as unintentional data loss), because

the developer-provided test case does not perform an intentional

data drop at themis-reported register, so LossCheck does not silence

the warning. LossCheck cannot localize the data loss in Bug D11

because the unintentional data loss occurs in a register where the

data value may be dropped intentionally under certain conditions;

as a result, the data loss is mis-filtered by the LossCheck’s false

positive filtering. LossCheck generates and inserts 522–19,462 lines

of Verilog code to analyze data propagation and detect data loss at

runtime, which helps developers avoid the time-consuming manual

implementation of data loss checking logic.

Case Study: Debugging Grayscale’s Buffer Overflow.We de-

scribe a case study in which a developer uses the new tools to debug

a buffer overflow in the Grayscale application [26]. Grayscale is an

end-to-end application written for Intel HARP [60] that includes an

FPGA accelerator and a software component. The CPU-side soft-

ware component reads an image from the file system and programs

the FPGA accelerator to read the image from CPU-side memory,

perform the grayscale transformation, and write the result back

to CPU-side memory. The software component identifies that the

acceleration task hangs when the bug occurs.

ASPLOS ’22, February 28 – March 4, 2022, Lausanne, Switzerland Jiacheng Ma, Gefei Zuo, Kevin Loughlin, Haoyang Zhang, AndrewQuinn, and Baris Kasikci

1K 2K 4K 8K
0.2
0.4
0.8
1.6
2.4
4.3

Bl
oc

k
RA

M
 (M

bi
ts

)

1K 2K 4K 8K
0

2

4

6

Re
gi

st
er

s (
x1

00
0)

1K 2K 4K 8K
0

1

2

Lo
gi

c
(x

10
00

) D1
D2
D3
D5
D10
C2

1K 2K 4K 8K

0.1
0.2
0.4
0.8
1.4
2.4

Bl
oc

k
RA

M
 (M

bi
ts

)

1K 2K 4K 8K
0
2
4
6
8

Re
gi

st
er

s (
x1

00
0)

1K 2K 4K 8K
0

2

4

6

Lo
gi

c
(x

10
00

) D4
D6
D7
D8
D9
D11
D12

D13
C1
C3
C4
S1
S2
S3

Figure 2: The resource overhead of manual debugging using SignalCat, FSM Monitor, Statistics Monitor, and Dependency
Monitor on Intel HARP (top) and Xilinx KC705 (bottom) platforms. Resource overheads (y-axes) are shown in terms of block
RAM, registers, and logic (i.e., the three types of resources on an FPGA) with an increasing recording buffer size (x-axes). The
buffer size and block RAM overhead are shown in log-scale.

Grayscale consists of multiple FSMs, so the developer first uses

FSM Monitor to identify the state of each FSM when the hang

occurs. The developer re-executes the application to trigger the

bug. FSM Monitor’s output identifies that the accelerator finished

reading data from the CPU, since the read FSM—which controls

how the accelerator reads CPU memory—is in the RD_FINISH state.

However, the circuit has not finished writing data to the CPU, since

the write FSM—which controls how the accelerator writes CPU

memory—is in the WR_DATA state. The developer concludes that the
hang occurs in write-related logic.

Next, the developer inspects the state transition logic of the

write FSM. They find that the state of the write FSM only transfers

from WR_DATA to WR_FINISH after the accelerator writes the whole

transformed image to the CPU-side memory. Since the accelerator

has already read all data from the CPU (i.e., the read FSM is in the

RD_FINISH state), the hang indicates data loss in the accelerator dur-
ing the propagation between a memory read and its corresponding

memory write.

Finally, the developer uses LossCheck to identify the source

of the data loss. They re-execute the application with LossCheck

enabled. LossCheck identifies the source of the data loss as a specific

register in the accelerator.

6.4 Efficiency of Debugging Tools
In this section, we assess the efficiency of the debugging tools by

measuring (1) the additional resources consumed when circuits

are instrumented using our tools—i.e., the resource overhead, and

(2) the necessary clock frequency slowdown stemming from the

augmented logic that must execute each cycle—i.e., the runtime

performance overhead.

SignalCat and Monitors. Figure 2 shows the resource overhead
(in terms of block RAM, registers, and logic) of SignalCat and the

monitors, applied to each buggy design. The most significant re-

source overhead lies in block RAM usage, which increases linearly

as the developer-specified recording buffer size increases. The reg-

ister and logic overheads tend to be stable for each bug, regardless

of the recording buffer size. Among our benchmarks, the two bugs

on the Optimus hypervisor and the Bit Truncation bug on the FFT

accelerator incur the largest register and logic overheads consum-

ing approximately 0.23% and 0.3% of register and logic resources

on the Intel platform (3.08% and 1.99% on Xilinx).

Runtime performance overhead is only incurred for 1 design;

namely, Optimus fails to achieve its targeted clock frequency (400

MHz) after the debugging instrumentation. As a result, we reduce

its frequency to 200 MHz for debugging. While SHA512 also targets

a 400 MHz frequency, it still achieves this frequency after instru-

mentation. Other designs target a 200 MHz frequency and likewise

do not incur performance overhead to account for debugging logic.

LossCheck. Figure 3 shows LossCheck’s resource overhead in

terms of registers and logic for the data loss bugs in our study.

LossCheck’s instrumentation uses less than 1.7% of the total register

and logic resources for the four data loss bugs on the Intel platform,

and uses less than 0.7% of total resources for the two data loss bugs

on Xilinx.

As with SignalCat and the monitors, LossCheck reduces the

frequency of Optimus from 400 MHz to 200 MHz. The 200 MHz

target frequency of other FPGA designs remain unchanged.

7 RELATEDWORK
Hardware Bug Studies. HardFails [50] performs a bug study of

security bugs in CPUs that include real-world and synthetic bugs

and creates a testbed by injecting bugs into an open-source CPU

design. HardFails only includes security bugs, which are represen-

tative of few bugs that make it to production [54]. In contrast, our

study examines real-world functionality bugs in FPGA designs.

Simulation-Based FPGA Debugging. Developers usually sim-

ulate an FPGA design before deploying on-FPGA. Most simula-

tors [18, 20, 105, 107, 114] can generate a waveform—a visualization

of signal values—during simulation to aid with debugging. Previous

Debugging in the Brave New World of Reconfigurable Hardware ASPLOS ’22, February 28 – March 4, 2022, Lausanne, Switzerland

D1 D2 D3 C2
0.0

0.5

1.0

1.5

No
rm

al
ize

d
Ov

er
he

ad
 (%

) Register
Logic

D4 C4
0.0

0.2

0.4

0.6

Figure 3: LossCheck’s overhead in terms of registers and logic,
normalized to the total resources available on Intel HARP
(left) and Xilinx KC705 (right) platforms.

research accelerates simulation-based debugging using language

features [48, 89] and by offloading simulation to an FPGA [64, 65, 97]

or a GPU [91]. Our debugging tools are designed for both on-FPGA

and simulation-based debugging.

Trace-Based FPGA Debugging. Trace-based FPGA debugging

tools allow developers to collect the value of a selected set of sig-

nals in an FPGA deployment. FPGA vendors provide IPs (e.g., Intel

SignalTap [62] and Xilinx ILA [119]) that export manual interfaces

(e.g., GUIs). To use these tools, developers manually specify the

signals that they wish to trace and triggering conditions that should

enable tracing output. In contrast, SignalCat automates the selec-

tion of signals and corresponding trigger conditions (by statically

analyzing “printf”-like statements and their path constraints) and

provides a natural, vendor-agnostic debugging interface. Prior work

reduces the runtime recording overhead of platform-specific IPs

by reducing buffer usage [55–57, 59, 76, 84, 90, 103]; SignalCat can

benefit from these optimizations when applicable.

Checkpointing-Based FPGA Debugging. Checkpointing-based
FPGA tools [37, 38, 75, 80, 97] allow a developer to capture the state

of an FPGA deployment for later analysis or debugging, but do not

help with localizing the root cause of bugs. Our debugging infras-

tructure could benefit from similar checkpoint-based functionality.

SynthesizingTraditionally-UnsynthesizableHDL.Cascade [97]
and Synergy [80] enable traditionally “unsynthesizable” Verilog, in-

cluding “printf”-like statements, to execute on an FPGA. Cascade

and Synergy can store arbitrarily-long logs in off-FPGA storage (e.g.,

in CPU-side memory or disk), but may slow down the circuit since

they pause circuit execution when executing “printf”-like state-
ments. In contrast, SignalCat offers a different tradeoff: SignalCat

imposes lower overhead since it does not pause circuit execution,

but can only store limited information since it uses on-FPGA storage

(e.g., block RAM).

Interactive FPGA Debugging. Interactive FPGA debugging tools

allow a developer to interactivelymanipulate packets in their FPGA’s

communication channels [86] and provide GDB-like interfaces for

FPGA debugging [34]. These tools are useful during simulation but

are not applicable for on-FPGA debugging and do not directly help

a developer localize the root-cause of a hardware bug.

Traditional Hardware Testing. Traditionally, hardware develop-
ers implement test suites with industry standard frameworks [30] to

extensively test hardware designs in simulation. Hardware fuzzing

techniques [79, 110] and formal verification [58, 63, 81, 93, 94, 115,

126] help developers find and eliminate bugs before fabrication, but

do not help a developer identify the root-cause of a bug and are

resource-intensive. In contrast, our work explores bug localization

tools designed for both simulation and on-FPGA scenarios.

Hardware-Assisted Testing and Debugging. A plethora of tools

[49, 66–69, 130] have used efficient hardware tracing techniques

(typically used in profiling and optimization of hardware/software

designs [70–72]) for testing and debugging. In this paper, we show

how reconfigurable hardware can be leveraged to instead design

more targeted debugging support by designing and implementing

foundational debugging tools. We expect future work to use the

reconfigurable nature of FPGAs to design advanced debugging

support.

Software Bug Detection at Runtime. Our work on FPGA bug

localization is inspired by software debugging tools and techniques

such as AddressSanitizer [98], ThreadSanitizer [99], Memcheck

[100], and dynamic slicing [95]. Particularly, LossCheck’s key build-

ing block–tracking data propagation dynamically—is closely in-

spired by such work. Since our own work shows that software

techniques are useful for hardware debugging, we believe that the

core data propagation logic of LossCheck could be generalized and

adapted to other sophisticated FPGA debugging tools.

8 CONCLUSION
The proliferation of reconfigurable hardware has enabled a software-

like rapid development cycle in which teams relax verification ef-

forts. While the community has expended effort into bug finding

tools (e.g., simulation-based testing tools), very little work has fo-

cused on localizing the root cause of hardware bugs. In this work,

we performed a study of bugs in open-source FPGA designs and

showed that hardware bugs follow a similar taxonomy to software

bugs. We argue that hardware bugs are amenable to software-style

hybrid static/dynamic program analysis and monitor tools and

provide a toolset that aids FPGA debugging and facilitates greater

confidence in emerging test-deploy-patch FPGA development cy-

cles.

ACKNOWLEDGMENTS
We thank our shepherd, Adrian Sampson, for his guidance and the

anonymous reviewers for their insightful feedback. Additionally,

we thank the numerous hardware developers whose advice and

feedback helped us in our efforts. This work was supported by

the NSF CAREER award 1942218, the NSF DGE award 1256260,

a Google fellowship, and the Applications Driving Architectures

(ADA) Research Center (a JUMP Center co-sponsored by SRC and

DARPA).

A ARTIFACT APPENDIX
A.1 Abstract
The artifact includes 20 hardware bugs, each of which can be repro-

duced with Verilator in a push-button manner. It also includes the

five tools we designed to help bug localization (i.e., SignalCat, FSM

Monitor, Statistics Monitor, Dependency Monitor, and LossCheck),

examples of using each bug localization tool, and instructions for

the figures in the paper. Below we describe each of these compo-

nents in more detail:

ASPLOS ’22, February 28 – March 4, 2022, Lausanne, Switzerland Jiacheng Ma, Gefei Zuo, Kevin Loughlin, Haoyang Zhang, AndrewQuinn, and Baris Kasikci

A.2 Artifact check-list (meta-information)
• Included Programs: 20 reproducible hardware bugs and 5 debug-

ging tools

• Required Compilation tools: Verilator, Make, C/C++, Vivado,

Quartus, VCS

• Runtime environment: Ubuntu 20.04

A.3 Description
A.3.1 Access. The source code and tutorial are available via GitHub2

and Zenodo
3
.

A.3.2 Software dependencies. All experiments are conducted un-

der Ubuntu 20.04. Reproducing the 20 hardware bugs requires GCC

9.3.0, G++ 9.3.0, Make 4.2.1, and a modified version of Verilator,

which is included the artifact repository. Using the tools and repro-

ducing the evaluation results requires additional software, including

Vivado 2020.2, Quartus Prime Pro 17.0 (with the necessary licenses—

i.e., 6AF7 00FB, 6AF7 0119, 6AF7 011A, 6AF7 011B—and platform files

for Skylake HARP), and Synopsys VCS MX 2017.03.

A.4 Installation and experiment workflow
We provide detailed tutorials in the README.md file of the artifact
repository. In the tutorial, we describe (1) how to install the reposi-

tory, (2) how to reproduce each bugs in the repository, and (3) how

to reproduce the evaluation result in §6.

A.5 Expected results
The following three results are expected to be reproduced:

• All bugs listed in Table 2 can be reproduced in a push-button

manner. Specifically, for each bug, the user should expect

an error message printed out after entering the command

described in the tutorial.

• After instrumenting the hardware designs with our tools, the

resource overhead reported by the synthesis tool (Quartus

or Vivado) matches Figure 2.

• LossCheck reports the register where the data loss occurs

for the 6 data loss bugs. For 5 bugs, LossCheck does not in-

cur false positive. After instrumentation, the resource usage

reported by Quartus matches Figure 3.

REFERENCES
[1] [n. d.]. https://github.com/efeslab/hardware-bugbase.

[2] [n. d.]. https://zipcpu.com.

[3] [n. d.]. https://github.com/ZipCPU/sdspi.

[4] [n. d.]. https://zipcpu.com/formal/2018/12/28/axilite.html.

[5] [n. d.]. https://zipcpu.com/dsp/2020/04/20/axil2axis.html.

[6] [n. d.]. https://github.com/open-sdr/openwifi-hw.

[7] [n. d.]. https://github.com/jbush001/NyuziProcessor.

[8] [n. d.]. https://github.com/openhwgroup/cva6.

[9] [n. d.]. https://github.com/SpinalHDL/VexRiscv.

[10] [n. d.]. https://github.com/progranism/Open-Source-FPGA-Bitcoin-Miner.

[11] [n. d.]. https://github.com/corundum/corundum.

[12] [n. d.]. https://github.com/alexforencich/verilog-ethernet.

[13] [n. d.]. https://github.com/analogdevicesinc/hdl.

[14] [n. d.]. https://github.com/alexforencich/verilog-axis.

[15] [n. d.]. https://github.com/mjc0608/really-simple-fadd.

[16] [n. d.]. AXI Hardware ICAP. https://www.xilinx.com/products/intellectual-

property/axi_hwicap.html.

2
https://github.com/efeslab/asplos22-hardware-debugging-artifact

3
https://doi.org/10.5281/zenodo.5855030

[17] [n. d.]. Intel Quartus Prime Software Suite. https://www.intel.com/content/w

ww/us/en/software/programmable/quartus-prime/overview.html.

[18] [n. d.]. Questa Verification & Simulation. https://eda.sw.siemens.com/en-US/i

c/questa/simulation.

[19] [n. d.]. Vivado Design Suite. https://www.xilinx.com/products/design-tools/vi

vado.html.

[20] [n. d.]. Xcelium Logic Simulation. https://www.cadence.com/en_US

/home/tools/system-design-and-verification/simulation-and-testbench-

verification/xcelium-simulator.html.

[21] [n. d.]. Xilinx Kintex-7 FPGA KC705 Evaluation Kit. https://www.xilinx.com/p

roducts/boards-and-kits/ek-k7-kc705-g.html.

[22] 1985. IEEE Standard for Binary Floating-Point Arithmetic. ANSI/IEEE Std
754-1985 (1985), 1–20. https://doi.org/10.1109/IEEESTD.1985.82928

[23] 2015. https://www.exostivlabs.com/fpga-debug-flow-should-be-improved/.

[24] 2018. https://github.com/omphardcloud/hardcloud/tree/master/samples/sh

a512.

[25] 2018. https://github.com/omphardcloud/hardcloud/tree/master/samples/reed_s

olomon_decoder.

[26] 2018. https://github.com/omphardcloud/hardcloud/tree/master/samples/graysc

ale.

[27] 2018. https://zipcpu.com/dsp/2018/10/02/fft.html.

[28] 2018. AXI Protocol Checker v2.0. https://www.xilinx.com/support/docum

entation/ip_documentation/axi_protocol_checker/v2_0/pg101-axi-protocol-

checker.pdf.

[29] 2018. IEEE Standard for SystemVerilog–Unified Hardware Design, Specification,

and Verification Language. IEEE Std 1800-2017 (Revision of IEEE Std 1800-2012)
(2018), 1–1315. https://doi.org/10.1109/IEEESTD.2018.8299595

[30] 2020. IEEE Standard for Universal VerificationMethodology Language Reference

Manual. IEEE Std 1800.2-2020 (Revision of IEEE Std 1800.2-2017) (2020), 1–458.
https://doi.org/10.1109/IEEESTD.2020.9195920

[31] Alibaba. [n. d.]. Deep Dive into Alibaba Cloud F3 FPGA as a Service In-

stances. https://www.alibabacloud.com/blog/deep-dive-into-alibaba-cloud-

f3-fpga-as-a-service-instances_594057.

[32] Altera. 2013. Implementing State Machines (Verilog HDL). https:

//www.intel.com/content/www/us/en/programmable/quartushelp/13.0/

mergedProjects/hdl/vlog/vlog_pro_state_machines.htm.

[33] Amazon. [n. d.]. Amazon EC2 F1 Instances - Run Customizable FPGAs in the

AWS Cloud. https://aws.amazon.com/ec2/instance-types/f1.

[34] Hari Angepat, Gage Eads, Christopher Craik, and Derek Chiou. 2010. NIFD:

Non-intrusive FPGA Debugger–Debugging FPGA’Threads’ for Rapid HW/SW

Systems Prototyping. In 2010 International Conference on Field Programmable
Logic and Applications. IEEE, 356–359.

[35] ARM. 2021. AMBA AXI and ACE Protocol Specification.

[36] Osama G Attia, Tyler Johnson, Kevin Townsend, Philip Jones, and Joseph Zam-

breno. 2014. Cygraph: A reconfigurable architecture for parallel breadth-first

search. In 2014 IEEE International Parallel & Distributed Processing Symposium
Workshops. IEEE, 228–235.

[37] Sameh Attia and Vaughn Betz. 2020. Feel Free to Interrupt: Safe Task Stopping

to Enable FPGA Checkpointing and Context Switching. ACM Transactions on
Reconfigurable Technology and Systems (TRETS) 13, 1 (2020), 1–27.

[38] Sameh Attia and Vaughn Betz. 2020. StateMover: Combining Simulation and

Hardware Execution for Efficient FPGA Debugging. In Proceedings of the 2020
ACM/SIGDA International Symposium on Field-Programmable Gate Arrays (FPGA
’20). Association for ComputingMachinery, New York, NY, USA, 175–185. https:

//doi.org/10.1145/3373087.3375307

[39] Ivan Beschastnikh, Jenny Abrahamson, Yuriy Brun, and Michael D Ernst. 2011.

Synoptic: Studying logged behavior with inferred models. In Proceedings of the
19th ACM SIGSOFT symposium and the 13th European conference on Foundations
of software engineering. 448–451.

[40] Jayaram Bhasker. 1999. A Vhdl Primer. Prentice-Hall.
[41] Marco Spaziani Brunella, Giacomo Belocchi, Marco Bonola, Salvatore Pontarelli,

Giuseppe Siracusano, Giuseppe Bianchi, Aniello Cammarano, Alessandro

Palumbo, Luca Petrucci, and Roberto Bifulco. 2020. hXDP: Efficient Software

Packet Processing on {FPGA} NICs. In 14th {USENIX} Symposium on Operating
Systems Design and Implementation ({OSDI} 20). 973–990.

[42] Stuart Byma, J Gregory Steffan, Hadi Bannazadeh, Alberto Leon Garcia, and

Paul Chow. 2014. Fpgas in the cloud: Booting virtualized hardware accelerators

with openstack. In 2014 IEEE 22nd Annual International Symposium on Field-
Programmable Custom Computing Machines. IEEE, 109–116.

[43] Andrew Canis, Jongsok Choi, Mark Aldham, Victor Zhang, Ahmed Kammoona,

Jason H Anderson, Stephen Brown, and Tomasz Czajkowski. 2011. LegUp: high-

level synthesis for FPGA-based processor/accelerator systems. In Proceedings
of the 19th ACM/SIGDA international symposium on Field programmable gate
arrays. 33–36.

[44] Andrew Canis, Jongsok Choi, Mark Aldham, Victor Zhang, Ahmed Kammoona,

Tomasz Czajkowski, Stephen D Brown, and Jason H Anderson. 2013. LegUp:

An open-source high-level synthesis tool for FPGA-based processor/accelerator

systems. ACM Transactions on Embedded Computing Systems (TECS) 13, 2 (2013),

https://github.com/efeslab/hardware-bugbase
https://zipcpu.com
https://github.com/ZipCPU/sdspi
https://zipcpu.com/formal/2018/12/28/axilite.html
https://zipcpu.com/dsp/2020/04/20/axil2axis.html
https://github.com/open-sdr/openwifi-hw
https://github.com/jbush001/NyuziProcessor
https://github.com/openhwgroup/cva6
https://github.com/SpinalHDL/VexRiscv
https://github.com/progranism/Open-Source-FPGA-Bitcoin-Miner
https://github.com/corundum/corundum
https://github.com/alexforencich/verilog-ethernet
https://github.com/analogdevicesinc/hdl
https://github.com/alexforencich/verilog-axis
https://github.com/mjc0608/really-simple-fadd
https://www.xilinx.com/products/intellectual-property/axi_hwicap.html
https://www.xilinx.com/products/intellectual-property/axi_hwicap.html
https://github.com/efeslab/asplos22-hardware-debugging-artifact
https://doi.org/10.5281/zenodo.5855030
https://www.intel.com/content/www/us/en/software/programmable/quartus-prime/overview.html
https://www.intel.com/content/www/us/en/software/programmable/quartus-prime/overview.html
https://eda.sw.siemens.com/en-US/ic/questa/simulation
https://eda.sw.siemens.com/en-US/ic/questa/simulation
https://www.xilinx.com/products/design-tools/vivado.html
https://www.xilinx.com/products/design-tools/vivado.html
https://www.cadence.com/en_US/home/tools/system-design-and-verification/simulation-and-testbench-verification/xcelium-simulator.html
https://www.cadence.com/en_US/home/tools/system-design-and-verification/simulation-and-testbench-verification/xcelium-simulator.html
https://www.cadence.com/en_US/home/tools/system-design-and-verification/simulation-and-testbench-verification/xcelium-simulator.html
https://www.xilinx.com/products/boards-and-kits/ek-k7-kc705-g.html
https://www.xilinx.com/products/boards-and-kits/ek-k7-kc705-g.html
https://doi.org/10.1109/IEEESTD.1985.82928
https://www.exostivlabs.com/fpga-debug-flow-should-be-improved/
https://github.com/omphardcloud/hardcloud/tree/master/samples/sha512
https://github.com/omphardcloud/hardcloud/tree/master/samples/sha512
https://github.com/omphardcloud/hardcloud/tree/master/samples/reed_solomon_decoder
https://github.com/omphardcloud/hardcloud/tree/master/samples/reed_solomon_decoder
https://github.com/omphardcloud/hardcloud/tree/master/samples/grayscale
https://github.com/omphardcloud/hardcloud/tree/master/samples/grayscale
https://zipcpu.com/dsp/2018/10/02/fft.html
https://www.xilinx.com/support/documentation/ip_documentation/axi_protocol_checker/v2_0/pg101-axi-protocol-checker.pdf
https://www.xilinx.com/support/documentation/ip_documentation/axi_protocol_checker/v2_0/pg101-axi-protocol-checker.pdf
https://www.xilinx.com/support/documentation/ip_documentation/axi_protocol_checker/v2_0/pg101-axi-protocol-checker.pdf
https://doi.org/10.1109/IEEESTD.2018.8299595
https://doi.org/10.1109/IEEESTD.2020.9195920
https://www.alibabacloud.com/blog/deep-dive-into-alibaba-cloud-f3-fpga-as-a-service-instances_594057
https://www.alibabacloud.com/blog/deep-dive-into-alibaba-cloud-f3-fpga-as-a-service-instances_594057
https://www.intel.com/content/www/us/en/programmable/quartushelp/13.0/mergedProjects/hdl/vlog/vlog_pro_state_machines.htm
https://www.intel.com/content/www/us/en/programmable/quartushelp/13.0/mergedProjects/hdl/vlog/vlog_pro_state_machines.htm
https://www.intel.com/content/www/us/en/programmable/quartushelp/13.0/mergedProjects/hdl/vlog/vlog_pro_state_machines.htm
https://aws.amazon.com/ec2/instance-types/f1
https://doi.org/10.1145/3373087.3375307
https://doi.org/10.1145/3373087.3375307

Debugging in the Brave New World of Reconfigurable Hardware ASPLOS ’22, February 28 – March 4, 2022, Lausanne, Switzerland

1–27.

[45] Ciro Ceissler, Ramon Nepomuceno, Marcio Pereira, and Guido Araujo. 2018.

Automatic offloading of cluster accelerators. In 2018 IEEE 26th Annual Interna-
tional Symposium on Field-Programmable Custom Computing Machines (FCCM).
IEEE, 224–224.

[46] Fei Chen, Yi Shan, Yu Zhang, Yu Wang, Hubertus Franke, Xiaotao Chang, and

Kun Wang. 2014. Enabling FPGAs in the cloud. In Proceedings of the 11th ACM
Conference on Computing Frontiers. 1–10.

[47] Xinyu Chen, Hongshi Tan, Yao Chen, Bingsheng He, Weng-Fai Wong, and

Deming Chen. 2021. ThunderGP: HLS-based Graph Processing Framework on

FPGAs. In The 2021 ACM/SIGDA International Symposium on Field-Programmable
Gate Arrays. 69–80.

[48] Young-Kyu Choi, Yuze Chi, Jie Wang, and Jason Cong. 2020. FLASH: Fast,

Parallel, and Accurate Simulator for HLS. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems 39, 12 (2020), 4828–4841.

[49] Weidong Cui, Xinyang Ge, Baris Kasikci, Ben Niu, Upamanyu Sharma, Ruoyu

Wang, and Insu Yun. 2018. {REPT}: Reverse debugging of failures in deployed

software. In 13th {USENIX} Symposium on Operating Systems Design and Imple-
mentation ({OSDI} 18). 17–32.

[50] Ghada Dessouky, David Gens, Patrick Haney, Garrett Persyn, Arun Kanuparthi,

Hareesh Khattri, Jason M Fung, Ahmad-Reza Sadeghi, and Jeyavijayan Rajen-

dran. 2019. Hardfails: Insights into software-exploitable hardware bugs. In 28th
{USENIX} Security Symposium ({USENIX} Security 19). 213–230.

[51] Edsger W. Dijkstra and DIJKSTRA EW. 1972. Information streams sharing a

finite buffer. (1972).

[52] Daniel Firestone, Andrew Putnam, Sambhrama Mundkur, Derek Chiou, Alireza

Dabagh, Mike Andrewartha, Hari Angepat, Vivek Bhanu, Adrian Caulfield, Eric

Chung, et al. 2018. Azure accelerated networking: Smartnics in the public cloud.

In 15th {USENIX} Symposium on Networked Systems Design and Implementation
({NSDI} 18). 51–66.

[53] Kermin Fleming and Michael Adler. 2016. The LEAP FPGA operating system.

In FPGAs for Software Programmers. Springer, 245–258.
[54] Harry Foster. 2020. 2020 Wilson Research Group functional verification study:

FPGA functional verification trend report.

[55] Jeffrey Goeders and Steven JE Wilton. 2014. Effective FPGA debug for high-

level synthesis generated circuits. In 2014 24th International Conference on Field
Programmable Logic and Applications (FPL). IEEE, 1–8.

[56] Jeffrey Goeders and Steve JE Wilton. 2015. Using dynamic signal-tracing to

debug compiler-optimized HLS circuits on FPGAs. In 2015 IEEE 23rd annual
international symposium on field-programmable custom computing machines.
IEEE, 127–134.

[57] Daniel Holanda Noronha, Ruizhe Zhao, Jeff Goeders, Wayne Luk, and Steven JE

Wilton. 2019. On-chip fpga debug instrumentation for machine learning ap-

plications. In Proceedings of the 2019 ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays. 110–115.

[58] Bo-Yuan Huang, Hongce Zhang, Pramod Subramanyan, Yakir Vizel, Aarti Gupta,

and Sharad Malik. 2018. Instruction-Level Abstraction (ILA) A Uniform Spec-

ification for System-on-Chip (SoC) Verification. ACM Transactions on Design
Automation of Electronic Systems (TODAES) 24, 1 (2018), 1–24.

[59] Eddie Hung and Steven JEWilton. 2012. Scalable signal selection for post-silicon

debug. IEEE Transactions on Very Large Scale Integration (VLSI) Systems 21, 6
(2012), 1103–1115.

[60] Intel. [n. d.]. Hardware Accelerator Research Program. https://software.intel.c

om/en-us/hardware-accelerator-research-program.

[61] Intel. [n. d.]. Intel High Level Synthesis Compiler. https://www.intel.com/con

tent/www/us/en/software/programmable/quartus-prime/hls-compiler.html.

[62] Intel. 2020. Intel Quartus Prime Pro Edition User Guide: Debug

Tools. https://www.intel.com/content/dam/www/programmable/us/en/pdfs/lit

erature/ug/ug-qpp-debug.pdf.

[63] Himanshu Jain, Daniel Kroening, Natasha Sharygina, and Edmund Clarke. 2005.

Word level predicate abstraction and refinement for verifying RTL verilog. In

Proceedings of the 42nd annual Design Automation Conference. 445–450.
[64] Sagar Karandikar, Howard Mao, Donggyu Kim, David Biancolin, Alon Amid,

Dayeol Lee, Nathan Pemberton, Emmanuel Amaro, Colin Schmidt, Aditya

Chopra, et al. 2018. FireSim: FPGA-accelerated cycle-exact scale-out system

simulation in the public cloud. In 2018 ACM/IEEE 45th Annual International
Symposium on Computer Architecture (ISCA). IEEE, 29–42.

[65] Sagar Karandikar, Albert Ou, Alon Amid, Howard Mao, Randy Katz, Borivoje

Nikolić, and Krste Asanović. 2020. FirePerf: FPGA-accelerated full-system

hardware/software performance profiling and co-design. In Proceedings of the
Twenty-Fifth International Conference on Architectural Support for Programming
Languages and Operating Systems. 715–731.

[66] Baris Kasikci, Weidong Cui, Xinyang Ge, and Ben Niu. 2017. Lazy Diagnosis of

In-Production Concurrency Bugs. In SOSP. Shanghai, China. https://doi.org

/10.1145/3132747.3132767

[67] Baris Kasikci, Cristiano Pereira, Gilles Pokam, Benjamin Schubert, Malandal

Musuvathi, and George Candea. 2015. Failure Sketches: A Better Way to Debug.

In 15th Workshop on Hot Topics in Operating Systems (HotOS XV). USENIX

Association, Kartause Ittingen, Switzerland.

[68] Baris Kasikci, Benjamin Schubert, Cristiano Pereira, Gilles Pokam, and George

Candea. 2015. Failure Sketching: A Technique for Automated Root Cause

Diagnosis of In-Production Failures. In SOSP. Monterey, CA. https://doi.org

/10.1145/2815400.2815412

[69] Baris Kasikci, Cristian Zamfir, and George Candea. 2013. RaceMob: Crowd-

sourced Data Race Detection. In SOSP. Farmington, PA. https://doi.org/10.1145/

2517349.2522736

[70] Tanvir Ahmed Khan, Nathan Brown, Akshitha Sriraman, Niranjan K Soundarara-

jan, Rakesh Kumar, Joseph Devietti, Sreenivas Subramoney, Gilles A Pokam,

Heiner Litz, and Baris Kasikci. 2021. Twig: Profile-Guided BTB Prefetching for

Data Center Applications. In 54th Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO).

[71] Tanvir Ahmed Khan, Akshitha Sriraman, Joseph Devietti, Gilles Pokam, Heiner

Litz, and Baris Kasikci. 2020. I-SPY: Context-Driven Conditional Instruction

Prefetching with Coalescing. In 2020 53rd Annual IEEE/ACM International Sym-
posium on Microarchitecture (MICRO). IEEE, 146–159.

[72] Tanvir Ahmed Khan, Dexin Zhang, Akshitha Sriraman, Joseph Devietti, Gilles

Pokam, Heiner Litz, and Baris Kasikci. 2021. Ripple: Profile-Guided Instruction

Cache Replacement for Data Center Applications. In Proceedings of the 48th
International Symposium on Computer Architecture.

[73] Ahmed Khawaja, Joshua Landgraf, Rohith Prakash, Michael Wei, Eric Schkufza,

and Christopher J Rossbach. 2018. Sharing, protection, and compatibility for

reconfigurable fabric with amorphos. In 13th {USENIX} Symposium onOperating
Systems Design and Implementation ({OSDI} 18). 107–127.

[74] Alireza Khodamoradi, Kristof Denolf, and Ryan Kastner. 2021. S2N2: A FPGA

Accelerator for Streaming Spiking Neural Networks. In The 2021 ACM/SIGDA
International Symposium on Field-Programmable Gate Arrays. 194–205.

[75] Donggyu Kim, Christopher Celio, Sagar Karandikar, David Biancolin, Jonathan

Bachrach, and Krste Asanović. 2018. DESSERT: Debugging RTL Effectively with

State Snapshotting for Error Replays across Trillions of Cycles. In 2018 28th
International Conference on Field Programmable Logic and Applications (FPL).
IEEE, 76–764.

[76] Ho Fai Ko and Nicola Nicolici. 2010. Automated trace signals selection using

the RTL descriptions. In 2010 IEEE International Test Conference. IEEE, 1–10.
[77] Dario Korolija, Timothy Roscoe, and Gustavo Alonso. 2020. Do {OS} abstrac-

tionsmake sense on FPGAs?. In 14th {USENIX} Symposium onOperating Systems
Design and Implementation ({OSDI} 20). 991–1010.

[78] Dongup Kwon, Junehyuk Boo, Dongryeong Kim, and Jangwoo Kim. 2020.

{FVM}: FPGA-assisted Virtual Device Emulation for Fast, Scalable, and Flexible

Storage Virtualization. In 14th {USENIX} Symposium on Operating Systems
Design and Implementation ({OSDI} 20). 955–971.

[79] Kevin Laeufer, Jack Koenig, Donggyu Kim, Jonathan Bachrach, and Koushik

Sen. 2018. RFUZZ: Coverage-directed fuzz testing of RTL on FPGAs. In 2018
IEEE/ACM International Conference on Computer-Aided Design (ICCAD). IEEE,
1–8.

[80] Joshua Landgraf, Tiffany Yang, Will Lin, Christopher J Rossbach, and Eric

Schkufza. 2021. Compiler-driven FPGA virtualization with SYNERGY. In Pro-
ceedings of the 26th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems. 818–831.

[81] Suho Lee and Karem A Sakallah. 2014. Unbounded scalable verification based

on approximate property-directed reachability and datapath abstraction. In

International Conference on Computer Aided Verification. Springer, 849–865.
[82] Zhenmin Li, Lin Tan, XuanhuiWang, Shan Lu, Yuanyuan Zhou, and Chengxiang

Zhai. 2006. Have things changed now? An empirical study of bug character-

istics in modern open source software. In Proceedings of the 1st workshop on
Architectural and system support for improving software dependability. 25–33.

[83] Shuang Liang, Shouyi Yin, Leibo Liu, Wayne Luk, and Shaojun Wei. 2018. FP-

BNN: Binarized neural network on FPGA. Neurocomputing 275 (2018), 1072–

1086.

[84] Xiao Liu and Qiang Xu. 2009. Trace signal selection for visibility enhancement

in post-silicon validation. In 2009 Design, Automation & Test in Europe Conference
& Exhibition. IEEE, 1338–1343.

[85] Jiacheng Ma, Gefei Zuo, Kevin Loughlin, Xiaohe Cheng, Yanqiang Liu, Abel Mu-

lugeta Eneyew, Zhengwei Qi, and Baris Kasikci. 2020. A hypervisor for shared-

memory fpga platforms. In Proceedings of the Twenty-Fifth International Confer-
ence on Architectural Support for Programming Languages and Operating Systems.
827–844.

[86] Marco Antonio Merlini, Isamu Poy, and Paul Chow. 2021. Interactive Debug-

ging at IP Block Interfaces in FPGAs. In The 2021 ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays. 138–144.

[87] Roberto Millón, Emmanuel Frati, and Enzo Rucci. 2020. A comparative study

between HLS and HDL on SoC for image processing applications. arXiv preprint
arXiv:2012.08320 (2020).

[88] Muhsen Owaida, David Sidler, Kaan Kara, and Gustavo Alonso. 2017. Centaur:

A framework for hybrid CPU-FPGA databases. In 2017 IEEE 25th Annual Interna-
tional Symposium on Field-Programmable Custom Computing Machines (FCCM).
IEEE, 211–218.

https://software.intel.com/en-us/hardware-accelerator-research-program
https://software.intel.com/en-us/hardware-accelerator-research-program
https://www.intel.com/content/www/us/en/software/programmable/quartus-prime/hls-compiler.html
https://www.intel.com/content/www/us/en/software/programmable/quartus-prime/hls-compiler.html
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/ug/ug-qpp-debug.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/ug/ug-qpp-debug.pdf
https://doi.org/10.1145/3132747.3132767
https://doi.org/10.1145/3132747.3132767
https://doi.org/10.1145/2815400.2815412
https://doi.org/10.1145/2815400.2815412
https://doi.org/10.1145/2517349.2522736
https://doi.org/10.1145/2517349.2522736

ASPLOS ’22, February 28 – March 4, 2022, Lausanne, Switzerland Jiacheng Ma, Gefei Zuo, Kevin Loughlin, Haoyang Zhang, AndrewQuinn, and Baris Kasikci

[89] Clément Pit-Claudel, Thomas Bourgeat, Stella Lau, and Adam Chlipala. 2021.

Effective simulation and debugging for a high-level hardware language using

software compilers. In Proceedings of the 26th ACM International Conference
on Architectural Support for Programming Languages and Operating Systems.
789–803.

[90] Andrew Putnam, Adrian M Caulfield, Eric S Chung, Derek Chiou, Kypros Con-

stantinides, John Demme, Hadi Esmaeilzadeh, Jeremy Fowers, Gopi Prashanth

Gopal, Jan Gray, et al. 2014. A reconfigurable fabric for accelerating large-

scale datacenter services. In 2014 ACM/IEEE 41st International Symposium on
Computer Architecture (ISCA). IEEE, 13–24.

[91] Hao Qian and Yangdong Deng. 2011. Accelerating RTL simulation with GPUs.

In 2011 IEEE/ACM International Conference on Computer-Aided Design (ICCAD).
IEEE, 687–693.

[92] Weikang Qiao, Jieqiong Du, Zhenman Fang, Michael Lo, Mau-Chung Frank

Chang, and Jason Cong. 2018. High-throughput lossless compression on tightly

coupled CPU-FPGAplatforms. In 2018 IEEE 26th Annual International Symposium
on Field-Programmable Custom Computing Machines (FCCM). IEEE, 37–44.

[93] Alastair Reid. 2016. Trustworthy specifications of ARM® v8-A and v8-M system

level architecture. In 2016 Formal Methods in Computer-Aided Design (FMCAD).
IEEE, 161–168.

[94] Alastair Reid, Rick Chen, Anastasios Deligiannis, David Gilday, David Hoyes,

Will Keen, Ashan Pathirane, Owen Shepherd, Peter Vrabel, and Ali Zaidi. 2016.

End-to-end verification of processors with ISA-Formal. In International Confer-
ence on Computer Aided Verification. Springer, 42–58.

[95] Swarup Kumar Sahoo, John Criswell, Chase Geigle, and Vikram Adve. 2013. Us-

ing likely invariants for automated software fault localization. In Proceedings of
the eighteenth international conference on Architectural support for programming
languages and operating systems. 139–152.

[96] Sahand Salamat, Armin Haj Aboutalebi, Behnam Khaleghi, Joo Hwan Lee,

Yang Seok Ki, and Tajana Rosing. 2021. NASCENT: Near-Storage Acceleration

of Database Sort on SmartSSD. In The 2021 ACM/SIGDA International Symposium
on Field-Programmable Gate Arrays. 262–272.

[97] Eric Schkufza, Michael Wei, and Christopher J Rossbach. 2019. Just-in-time

compilation for Verilog: A new technique for improving the FPGA programming

experience. In Proceedings of the Twenty-Fourth International Conference on
Architectural Support for Programming Languages and Operating Systems. 271–
286.

[98] Konstantin Serebryany, Derek Bruening, Alexander Potapenko, and Dmitry

Vyukov. 2012. AddressSanitizer: A Fast Address Sanity Checker. In Proceedings
of the 2012 USENIX Conference on Annual Technical Conference (Boston, MA)

(USENIX ATC’12). USENIX Association, USA, 28.

[99] Konstantin Serebryany and Timur Iskhodzhanov. 2009. ThreadSanitizer: Data

race detection in practice. In Proceedings of the workshop on binary instrumenta-
tion and applications. 62–71.

[100] Julian Seward and Nicholas Nethercote. 2005. Using Valgrind to Detect Unde-

fined Value Errors with Bit-Precision. In Proceedings of the Annual Conference
on USENIX Annual Technical Conference (Anaheim, CA) (ATEC ’05). USENIX
Association, USA, 2.

[101] Hardik Sharma, Jongse Park, Divya Mahajan, Emmanuel Amaro, Joon Kyung

Kim, Chenkai Shao, Asit Mishra, and Hadi Esmaeilzadeh. 2016. From high-level

deep neural models to FPGAs. In Microarchitecture (MICRO), 2016 49th Annual
IEEE/ACM International Symposium on. IEEE, 1–12.

[102] Hardik Sharma, Jongse Park, Divya Mahajan, Emmanuel Amaro, Joon Kyung

Kim, Chenkai Shao, Asit Mishra, and Hadi Esmaeilzadeh. 2016. From high-level

deep neural models to FPGAs. In 2016 49th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO). IEEE, 1–12.

[103] David Sidler and Ken Eguro. 2016. Debugging framework for FPGA-based soft

processors. In 2016 International Conference on Field-Programmable Technology
(FPT). IEEE, 165–168.

[104] David Sidler, Zsolt István, Muhsen Owaida, and Gustavo Alonso. 2017. Ac-

celerating pattern matching queries in hybrid CPU-FPGA architectures. In

Proceedings of the 2017 ACM International Conference on Management of Data.
ACM, 403–415.

[105] Wilson Snyder. 2021. https://www.veripool.org/verilator/.

[106] Hayden Kwok-Hay So and Robert W Brodersen. 2007. Borph: An operating
system for fpga-based reconfigurable computers. Citeseer.

[107] Synopsys. 2021. VCS Functional Verification Solution. https://www.synopsys.c

om/verification/simulation/vcs.html.

[108] Shinya Takamaeda-Yamazaki. 2015. Pyverilog: A Python-Based Hardware

Design Processing Toolkit for Verilog HDL. In Applied Reconfigurable Computing
(Lecture Notes in Computer Science, Vol. 9040). Springer International Publishing,
451–460. https://doi.org/10.1007/978-3-319-16214-0_42

[109] Donald Thomas and Philip Moorby. 2008. The Verilog® Hardware Description
Language. Springer Science & Business Media.

[110] Timothy Trippel, Kang G Shin, Alex Chernyakhovsky, Garret Kelly, Dominic

Rizzo, andMatthewHicks. 2021. Fuzzing Hardware Like Software. arXiv preprint
arXiv:2102.02308 (2021).

[111] Han Wang, Robert Soulé, Huynh Tu Dang, Ki Suh Lee, Vishal Shrivastav, Nate

Foster, and HakimWeatherspoon. 2017. P4fpga: A rapid prototyping framework

for p4. In Proceedings of the Symposium on SDN Research. 122–135.
[112] QinggangWang, Long Zheng, Yu Huang, Pengcheng Yao, Chuangyi Gui, Xiaofei

Liao, Hai Jin, Wenbin Jiang, and Fubing Mao. 2021. GraSU: A Fast Graph Update

Library for FPGA-based Dynamic Graph Processing. In The 2021 ACM/SIGDA
International Symposium on Field-Programmable Gate Arrays. 149–159.

[113] Wei Wang, Miodrag Bolic, and Jonathan Parri. 2013. pvFPGA: Accessing an

FPGA-based hardware accelerator in a paravirtualized environment. In 2013
International Conference on Hardware/Software Codesign and System Synthesis
(CODES+ ISSS). IEEE, 1–9.

[114] Stephen Williams. [n. d.]. Icarus Verilog. http://iverilog.icarus.com/.

[115] Clifford Wolf. 2016. Yosys open synthesis suite.

[116] Xilinx. [n. d.]. SDAccel Development Environment. https://www.xilinx.com/p

roducts/design-tools/software-zone/sdaccel.html.

[117] Xilinx. [n. d.]. Vitis High-Level Synthesis. https://www.xilinx.com/products/de

sign-tools/vivado/integration/esl-design.html.

[118] Xilinx. 2015. Finite State Machines. https://www.xilinx.com/support/doc

umentation/university/Vivado-Teaching/HDL-Design/2015x/VHDL/docs-

pdf/lab10.pdf.

[119] Xilinx. 2016. Integrated Logic Analyzer v6.2. https://www.xilinx.com/support

/documentation/ip_documentation/ila/v6_2/pg172-ila.pdf.

[120] Hangchen Yu, Arthur Michener Peters, Amogh Akshintala, and Christopher J

Rossbach. 2020. AvA: Accelerated Virtualization of Accelerators. In Proceed-
ings of the Twenty-Fifth International Conference on Architectural Support for
Programming Languages and Operating Systems. 807–825.

[121] Ding Yuan, Soyeon Park, and Yuanyuan Zhou. 2012. Characterizing logging

practices in open-source software. In 2012 34th International Conference on
Software Engineering (ICSE). IEEE, 102–112.

[122] H. Zeng, C. Zhang, and V. Prasanna. 2017. Fast Generation of High Through-

put Customized Deep Learning Accelerators on FPGAs. In 2017 International
Conference on ReConFigurable Computing and FPGAs (ReConFig). 1–8. https:

//doi.org/10.1109/RECONFIG.2017.8279792

[123] Yue Zha and Jing Li. 2020. Virtualizing FPGAs in the cloud. In Proceedings of the
Twenty-Fifth International Conference on Architectural Support for Programming
Languages and Operating Systems. 845–858.

[124] Yue Zha and Jing Li. 2021. When application-specific ISA meets FPGAs: a multi-

layer virtualization framework for heterogeneous cloud FPGAs. In Proceedings of
the 26th ACM International Conference on Architectural Support for Programming
Languages and Operating Systems. 123–134.

[125] Min Zhang, Linpeng Li, Hai Wang, Yan Liu, Hongbo Qin, and Wei Zhao. 2019.

Optimized compression for implementing convolutional neural networks on

fpga. Electronics 8, 3 (2019), 295.
[126] Rui Zhang, Calvin Deutschbein, Peng Huang, and Cynthia Sturton. 2018. End-

to-End Automated Exploit Generation for Validating the Security of Processor

Designs. In Proceedings of the 51st Annual IEEE/ACM International Symposium
on Microarchitecture (Fukuoka, Japan) (MICRO-51). IEEE Press, 815–827. https:

//doi.org/10.1109/MICRO.2018.00071

[127] Yichi Zhang, Junhao Pan, Xinheng Liu, Hongzheng Chen, Deming Chen, and

Zhiru Zhang. 2021. FracBNN: Accurate and FPGA-Efficient Binary Neural

Networks with Fractional Activations. In The 2021 ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays. 171–182.

[128] Ritchie Zhao, Weinan Song, Wentao Zhang, Tianwei Xing, Jeng-Hau Lin, Mani

Srivastava, Rajesh Gupta, and Zhiru Zhang. 2017. Accelerating binarized con-

volutional neural networks with software-programmable fpgas. In Proceedings
of the 2017 ACM/SIGDA International Symposium on Field-Programmable Gate
Arrays. ACM, 15–24.

[129] Shijie Zhou and Viktor K Prasanna. 2017. Accelerating graph analytics on

CPU-FPGA heterogeneous platform. In 2017 29th International Symposium on
Computer Architecture and High Performance Computing (SBAC-PAD). IEEE,
137–144.

[130] Gefei Zuo, Jiacheng Ma, Andrew Quinn, Pramod Bhatotia, Pedro Fonseca, and

Baris Kasikci. 2021. Execution Reconstruction: Harnessing Failure Reoccur-

rences for Failure Reproduction. In ACM SIGPLAN conference on Programming
language design and implementation.

https://www.veripool.org/verilator/
https://www.synopsys.com/verification/simulation/vcs.html
https://www.synopsys.com/verification/simulation/vcs.html
https://doi.org/10.1007/978-3-319-16214-0_42
http://iverilog.icarus.com/
https://www.xilinx.com/products/design-tools/software-zone/sdaccel.html
https://www.xilinx.com/products/design-tools/software-zone/sdaccel.html
https://www.xilinx.com/products/design-tools/vivado/integration/esl-design.html
https://www.xilinx.com/products/design-tools/vivado/integration/esl-design.html
https://www.xilinx.com/support/documentation/university/Vivado-Teaching/HDL-Design/2015x/VHDL/docs-pdf/lab10.pdf
https://www.xilinx.com/support/documentation/university/Vivado-Teaching/HDL-Design/2015x/VHDL/docs-pdf/lab10.pdf
https://www.xilinx.com/support/documentation/university/Vivado-Teaching/HDL-Design/2015x/VHDL/docs-pdf/lab10.pdf
https://www.xilinx.com/support/documentation/ip_documentation/ila/v6_2/pg172-ila.pdf
https://www.xilinx.com/support/documentation/ip_documentation/ila/v6_2/pg172-ila.pdf
https://doi.org/10.1109/RECONFIG.2017.8279792
https://doi.org/10.1109/RECONFIG.2017.8279792
https://doi.org/10.1109/MICRO.2018.00071
https://doi.org/10.1109/MICRO.2018.00071

	Abstract
	1 Introduction
	2 Background
	2.1 Languages for Hardware Programming
	2.2 FPGA Debugging Stages
	2.3 FPGA Programming Techniques and Constructs

	3 Study of Bugs in FPGA Designs
	3.1 Bug Classification
	3.2 Data Mis-Access Bugs
	3.3 Communication Bugs
	3.4 Semantic Bugs

	4 Design of FPGA Debugging Tools
	4.1 SignalCat for Unified Logging
	4.2 FSM Monitor for State Machine Traces
	4.3 Dependency Monitor for Provenance Tracking
	4.4 Statistics Monitor for Counting Events-of-Interest
	4.5 LossCheck for Precise Data Loss Localization

	5 Implementation
	6 Evaluation
	6.1 Testbed of Reproducible FPGA Bugs
	6.2 Experimental Setup
	6.3 Effectiveness of Debugging Tools
	6.4 Efficiency of Debugging Tools

	7 Related Work
	8 Conclusion
	Acknowledgments
	A Artifact Appendix
	A.1 Abstract
	A.2 Artifact check-list (meta-information)
	A.3 Description
	A.4 Installation and experiment workflow
	A.5 Expected results

	References

