
Execution Reconstruction: Harnessing Failure
Reoccurrences for Failure Reproduction

Gefei Zuo
gefeizuo@umich.edu

University of Michigan, USA

Jiacheng Ma
jcma@umich.edu

University of Michigan, USA

Andrew Quinn
arquinn@umich.edu

University of Michigan, USA

Pramod Bhatotia
pramod.bhatotia@in.tum.de

TU Munich, Germany

Pedro Fonseca
pfonseca@purdue.edu

Purdue University, USA

Baris Kasikci
barisk@umich.edu

University of Michigan, USA

Abstract

Reproducing production failures is crucial for software reli-
ability. Alas, existing bug reproduction approaches are not
suitable for production systems because they are not simul-
taneously efficient, effective, and accurate. In this work, we
survey prior techniques and show that existing approaches
over-prioritize a subset of these properties, and sacrifice the
remaining ones. As a result, existing tools do not enable the
plethora of proposed failure reproduction use-cases (e.g., de-
bugging, security forensics, fuzzing) for production failures.
We propose Execution Reconstruction (ER), a technique

that strikes a better balance between efficiency, effective-
ness and accuracy for reproducing production failures. ER
uses hardware-assisted control and data tracing to shepherd
symbolic execution and reproduce failures. ER’s key novelty
lies in identifying data values that are both inexpensive to
monitor and useful for eliding the scalability limitations of
symbolic execution. ER harnesses failure reoccurrences by it-
eratively performing tracing and symbolic execution, which
reduces runtime overhead. Whereas prior production-grade
techniques can only reproduce short executions, ER can re-
produce any reoccuring failure. Thus, unlike existing tools,
ER reproduces fully replayable executions that can power a
variety of debugging and reliabilty use cases. ER incurs on
average 0.3% (up to 1.1%) runtime monitoring overhead for
a broad range of real-world systems, making it practical for
real-world deployment.

CCS Concepts: · Software and its engineering → Soft-

ware testing and debugging.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies

are not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. Copyrights

for components of this work owned by others than the author(s) must

be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee. Request permissions from permissions@acm.org.

PLDI ’21, June 20ś25, 2021, Virtual, Canada

© 2021 Copyright held by the owner/author(s). Publication rights licensed

to ACM.

ACM ISBN 978-1-4503-8391-2/21/06. . . $15.00

https://doi.org/10.1145/3453483.3454101

Keywords: debugging, symbolic execution

ACM Reference Format:

Gefei Zuo, Jiacheng Ma, Andrew Quinn, Pramod Bhatotia, Pedro

Fonseca, and Baris Kasikci. 2021. Execution Reconstruction: Har-

nessing Failure Reoccurrences for Failure Reproduction. In Pro-

ceedings of the 42nd ACM SIGPLAN International Conference on

Programming Language Design and Implementation (PLDI ’21), June

20ś25, 2021, Virtual, Canada. ACM, New York, NY, USA, 16 pages.

https://doi.org/10.1145/3453483.3454101

1 Introduction

Failure reproduction is critical for software reliability. Not
only is failure reproduction the first step in effective debug-
ging [5, 21, 87, 89, 99], it also enables tools across many soft-
ware reliability domains including security forensics [49],
configuration management [34], and directed testing and
fuzzing [42]. These tools are particularly valuable when used
on production failures, because such failures may be elu-
sive and difficult to replicate in house, outside of specific
deployment scenarios. For instance, eliminating a produc-
tion bug can drastically improve availability [8ś10, 61], or
a security audit of a production breach can help with leak
assessment [97, 102, 112].
Many techniques automate the process of reproducing

failures in software, yet, none offer comprehensive support
for production usage. Prior systems sacrifice at least one
of three key properties that are necessary for failure repro-
duction in production settings: (1) efficiency, which relates
to the amount of resources expended to reproduce failures,
(2) effectiveness, which relates to the capability to reproduce
different kinds of bugs (e.g., concurrency bugs [78] and bugs
where the failure and root cause are distant [54]), and (3)
accuracy, which relates to whether the control flow and the
data values of an execution can be recovered correctly. Our
motivating study (ğ2) reveals that existing bug reproduction
techniques over-prioritize a subset of the efficiency, effec-
tiveness and accuracy properties and thus over-sacrifice in
the other properties. Consequently, when used in production
systems, existing techniques cannot enable the plethora of
use cases (e.g., debugging, security forensics, fuzzing, etc.)
that are otherwise available.

1155

https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://doi.org/10.1145/3453483.3454101
https://doi.org/10.1145/3453483.3454101

PLDI ’21, June 20ś25, 2021, Virtual, Canada Gefei Zuo, Jiacheng Ma, AndrewQuinn, Pramod Bhatotia, Pedro Fonseca, and Baris Kasikci

For instance, record/replay systems [32, 63ś65, 82, 88, 92,
95, 98, 108] can accurately reproduce any execution and
are thus very effective in reproducing bugs, however, they
incur high overheads (e.g., up to 2× for a state-of-the-art sys-
tem [108]), making them unsuitable for production use cases.
Many techniques reduce runtime overhead by reproducing
failures using a combination of online (runtime) recording
and offline program analysis [47, 55, 93, 111, 113, 117]. For
instance, REPT [111] and POMP [113] use hardware tracing
to efficiently record a program’s control flow at runtime and
recover the program’s data values via static analysis. How-
ever, since programs overwrite data values frequently, these
tools cannot accurately reproduce full executions with only
control-flow information and the final program state. It is
difficult to debug programs with unreliable control flow and
data information, and, even worse, these systems cannot be
used in many domains including security forensics, directed
testing and fuzzing, and configuration management.
We present Execution Reconstruction (ER), a hybrid of-

fline/online failure reproduction technique that explores a
sweet spot in the efficiency-effectiveness-accuracy trade-off
space. Compared to prior work, ER’s main contribution lies
in determining a subset of the execution information that
is both inexpensive to monitor online and useful for failure
reproduction. ER is efficient enough to be deployed in pro-
duction (i.e., it incurs on average 0.3% runtime overhead);
effective in reproducing different kinds of bugs; and accurate
in reproducing data values and control flow that lead to the
original failure, which enables a variety of debugging and
analysis use cases for production scenarios.
At the heart of ER lies shepherded symbolic execution,

which uses dynamic control flow and data value information
to reconstruct an execution that leads to a production fail-
ure. Rather than exploring exponentially many control-flow
paths, ER follows a single recorded path that leads to a failure,
thereby eliminating the notorious path explosion problem
of symbolic execution. Symbolic execution computes con-
straints on program inputs that lead to the failure. Once ER
completes symbolic execution along the entire path that was
recorded during the failing production run, it invokes a con-
straint solver to compute failure-inducing program inputs.

Unfortunately, for real-world programs, eliminating path
explosion is not sufficient to reconstruct an execution via
symbolic execution. The constraints on input values grow
very complex, which prevents symbolic execution from mak-
ing progress (i.e., symbolic execution stalls) and eventually
causes constraint solving to timeout (see ğ 4 for how stalls
occur in practice). Our evaluation shows that shepherded
symbolic execution using only a control-flow trace stalls on
11/13 failures (ğ 5). ER overcomes this challenge by carefully
selecting and recording a minimal set of data values that
simplify constraint solving and thus eliminate slowdowns
in symbolic execution without rendering ER too inefficient
for production use.

Ideally, ER would select the data values that optimally
simplify constraint solving, but this is intractable. Instead,
ER turns to a novel heuristic to identify data values that dras-
tically simplify constraint solving in practice. ER builds and
analyzes a constraint graph during symbolic execution to
determine key data values (e.g., instruction operands, return
values, addresses, parts of the input), which are involved in
complex constraint dependencies. In particular, ER identifies
two patterns in the constraint graph that often cause con-
straint solver timeouts: long chains of symbolic writes, in
which each write in the chain is dependent upon a previous
write in the chain, and accesses to large symbolic memory
objects, which can be difficult to reason about, as many mem-
ory locationsmay be accessed. If known, the data values from
these patterns substantially simplify constraint solving. In
our evaluation, the selection heuristic identifies a small set
of data values that simplify constraint solving such that ER
can reconstruct failures with negligible overhead.
Anticipating the key data values and recording them be-

fore a failure is difficult. Key data values depend on the
constraints in symbolic execution, which ER cannot predict
without symbolically executing the program. Thus, to repro-
duce a production failure, ER introduces a novel iterative
algorithm that leverages frequent failure reoccurrences in
large scale deployments, similar to existing production moni-
toring systems [58, 71ś73]. In each iteration, ER gathersmore
data about the reoccurring failure, uses symbolic execution
to determine constraints of the failing execution, selects addi-
tional data values that can help symbolic execution complete,
and collects more data from programs in the next iteration.
To bootstrap this process, ER uses always-on control-flow
recording. When symbolic execution completes, ER deter-
mines program inputs that lead to the original failure and
stops iterating. Using this iterative process, ER guarantees
reconstruction of an entire failing execution for any reoccur-
ing failure. In certain cases (i.e., 2/13 cases in our evaluation),
ER can reproduce a failing execution even after a single oc-
currence of a failure. In practice, ER reproduces failures in
only a few occurrences (only requiring an average of ~3.5
occurrences in our evaluation).

ER resides at the sweet spot in the efficiency-effectiveness-
accuracy trade-off. By using hardware tracing, ER is efficient

enough for production use, as it incurs on average 0.3% (up to
1.1%) runtime overhead during online monitoring. By using
the iterative approach to shepherded symbolic execution, ER
is effective in reproducing failures in long-running real-world
program executions. Finally, by using shepherded symbolic
execution, ER is accurate enough for a plethora of software
reliability use cases (debugging, security forensics, fuzzing,
etc.). ER generates program inputs that are guaranteed to lead
to the original production failure. While ER-generated inputs
may differ from actual inputs that led to the production
failure, we empirically validate ER is useful for debugging

1156

Execution Reconstruction: Harnessing Failure Reoccurrences for Failure Reproduction PLDI ’21, June 20ś25, 2021, Virtual, Canada

and other software reliability use cases, including a case-
study that uses likely program invariant computation to
perform automated failure localization.

To summarize, we propose Execution Reconstruction (ER),
an end-to-end technique for reproducing production failures
and make the following contributions:

• Shepherded Symbolic Execution, which follows a con-
trol flow and data value trace recorded in production
to eschew path explosion and solver stalls that hinder
traditional symbolic execution.

• Key Data Value Selection, which identifies data values
that drastically speed up constraint solving and can be
monitored efficiently with existing hardware support.

• An evaluation of ER on 13 bugs in real systems (e.g.,
memcached, SQLite, python, etc.) shows that ER is
efficient (on average 0.3% and up to 1.1% runtime over-
head), effective, and accurate enough for production

• An invariant-based failure localization case-study that
shows that ER can enable production use of software
reliability tools.

2 Motivation

Ideally, production-grade failure reproduction systemswould
achieve three key properties: (1) efficiency, which is the abil-
ity to incur low overhead and use few resources, (2) effec-
tiveness, which is the ability to reproduce different kinds of
failures (e.g., due to concurrency bugs or latent bugs where
the failure (e.g., a crash) and the bug (e.g., an overflow) are
distant), (3) accuracy, which is the ability to recover the con-
trol flow (branches executed) and data (values read/written)
of the failing execution correctly. Unfortunately, all known
approaches that achieve effectiveness and accuracy on multi-
threaded applications (e.g., record/replay systems) record
detailed execution information, which imposes high over-
head. As a result, practical failure reproduction systems for
production must trade-off one or more desirable properties.

High Overhead Production-grade Overhead

Full RR Efficient RR

REPT

POMP

ESD

RDE

BugRedux

Hybrid RR

(a) Efficiency. Systems on right have production-grade overhead.

Cannot Handle Production Bugs Handles Production Bugs

Full RREfficient RR

REPT

POMPESD

BugRedux

Hybrid RR

RDE

(b) Effectiveness. Systems on right reproduce all production bugs.

Unreliable Reproduction Reliable Reproduction

Full RR

Efficient RRREPT

POMP ESD
BugRedux

Hybrid RR

RDE

(c) Accuracy. Systems on right reliably reproduce failures.

Figure 1. Prior techniques on a spectrum for each reproduc-
tion property. RR stands for record /replay. Hybrid RR and
BugRedux are shown as boxes spanning a property range.

We study prior failure reproduction systems and place
them on a spectrum for each failure reproduction prop-
erty (see Fig. 1). For each property, we identify a usability-
boundary (shown as a vertical dotted-line in Fig. 1), an in-
flection point at which a failure reproduction system shifts
from an undesirable trade-off to an acceptable one. While
many systems are usable in one or two properties, no exist-
ing failure reproduction system is simultaneously efficient
enough for production, able to handle common production
bugs, and able to reliably reproduce an execution. Thus, no
existing failure reproduction system provides production sup-
port for the powerful software reliability tools that have been
developed for debugging, security forensics, fuzzing, etc. Be-
low we place systems onto each spectrum and construct a
usability-boundary for each property.

2.1 Efficiency

Efficiency, or low runtime performance overhead, is para-
mount for a production-grade system. A few failure repro-
duction techniques maximize efficiency by using an offline
analysis. For instance, ESD [114, 115] takes as input a failure
(e.g., a deadlock) location, statically computes intermedi-
ate statements that the program must execute before the
failure (e.g., locks before a deadlock), and steers symbolic ex-
ecution towards intermediate statements and then towards
the failure. Similarly, RDE [109] imposes negligible overhead
because it uses existing or light-weight data from the produc-
tion environment (application logs, system call sequences) to
guide symbolic execution towards a failure-inducing input.
Purely offline approaches struggle to achieve effective-

ness (see ğ 2.2), so many systems record execution informa-
tion at the cost of efficiency. Record/replay systems [29, 63ś
65, 81, 82, 86, 88, 95, 98, 108] record all program inputs
and other non-deterministic events. Full record/replay sys-
tems [29, 108] record all inputs and all non-deterministic
events resulting in high overhead that is unsuitable for pro-
duction usage (up to 2× for a state-of-the-art system [108]);
efficient record/replay systems [49, 81, 86] record fewer
events but are less effective than full record/replay systems
(i.e., they cannot handle data races, see ğ 2.2).

Hybrid online/offline techniques provide a middle-ground;
they achieve better effectiveness than offline techniques by
recording some execution information, while achieving bet-
ter efficiency than record/replay by offloading analysis to
offline processing. BugRedux [69] uses symbolic execution to
synthesize an execution that reaches the locations traced by
one of two approaches: complete tracing records all control
flow (up to 10× overhead), or the more efficient call sequence
tracing, which records each function call (between 2%ś50%
overhead). Similarly, hybrid record/replay techniques (e.g.,
PRES [93] and ODR [32]) search for an execution that reaches
execution states monitored using recording granularities
that occupy different points in the efficiency-effectiveness-
accuracy trade-off space: the finest-grained tracing records

1157

PLDI ’21, June 20ś25, 2021, Virtual, Canada Gefei Zuo, Jiacheng Ma, AndrewQuinn, Pramod Bhatotia, Pedro Fonseca, and Baris Kasikci

full program traces and has high overhead (3×-20×) but good
effectiveness/accuracy, while coarse-grained modes impose
lower overhead by only recording non-deterministic input
and synchronization operations, but have poor effective-
ness/accuracy. In Fig. 1, we plot ranges for BugRedux and
hybrid record/replay systems.
Recent hybrid approaches, REPT [111] and POMP [113],

use hardware-assisted tracing (e.g., Intel Processor Trace
(PT) [67]) to record control-flow information with low over-
head (below 5% [71, 111]). These approaches use static anal-
yses that perform reverse and/or forward execution along
the trace to reconstruct program state.
To identify a usability boundary, we use the analysis of

always-on record/replay systems [49, 86], which suggest that
run-time overhead of 10% or less is acceptable in production.
We consider offline, recent hybrid approaches (REPT and
POMP), and efficient record/replay systems to be efficient-
enough for production use. Full record/replay and BugRedux
are too inefficient for production use. Finally, hybrid record
/replay systems are efficient-enough when using coarse-
grained recording, but are too inefficient when using fine-
grained recording. Fig. 1b depicts this spectrum.

2.2 Effectiveness

A failure reproduction system is only useful if it can effec-
tively reproduce common production failures. Full record
/replay systems [29, 108] are maximally effective since they
can reproduce any error in any application. Efficient record
/replay systems [49, 81, 86] have unacceptable effectiveness
for production failure reproduction since they cannot replay
executions that contain data-races, an important class of pro-
duction bugs [54, 99]. REPT has limited effectiveness since it
does not guarantee that it can reconstruct data for arbitrary
failures. In particular, REPT can only reconstruct short execu-
tion fragments (15-60% of the data values are incorrectly re-
covered for traces longer than 100K dynamic instructions) be-
cause programs overwrite data values frequently. Thus, REPT
is not effective for latent bugs, where failures are distant
from the root cause. Latent bugs are an important and com-
plex class of production incidents [45, 46, 54, 60, 104, 105].
Prior techniques that rely on symbolic execution (ESD, Bu-
gRedux, and RDE) are not guaranteed to reproduce failures
because constraint solvers may timeout on real failures. Fi-
nally, hybrid record/replay systems are efficient when using
fine-grained recording, but can struggle to reproduce an
execution when using coarse-grained recording.
We find that very few solutions are effective enough for

production usage. Existing solutions that rely on symbolic
execution are not guaranteed to reproduce failures and are
undesirably ineffective. In addition, the inability of efficient
record/replay systems to handle data races and the latent
bug restrictions of REPT render these tools similarly ineffec-
tive, since these bug classes are prevalent in production. We

identify a usability-boundary inspired by the coarse inter-
leaving hypothesis introduced by Snorlax [71] and adopted
by REPT [111]. The coarse interleaving hypothesis observes
that most events in concurrency bugs [74, 76] are interleaved
coarsely (e.g., 10s of microseconds separate the events). Thus,
we consider failure reproduction tools that can reproduce
any bug not violating the coarse interleaving hypothesis to
be effective-enough for production use, since these tools can
faithfully reproduce errors that arise in production (shown
in Fig. 1b). While REPT reproduces executions that satisfy
the coarse interleaving hypothesis, it cannot support latent
bugs and is thus not effective enough for production bugs.

2.3 Accuracy

All record/replay systems are accurate since they faithfully
reproduce all state in an execution [29, 49, 81, 86, 108]. ESD
and other offline tools achieve a useful accuracy propertyÐ
while ESD does not always reproduce the same data and con-
trol flow as the failure, it reproduces an execution that will
lead to the same failure. Hybrid record/replay systems offer
accuracy between record/replay and offline tools, depend-
ing on the recording granularity. REPT guesses data values
during post-mortem analysis, which yields incorrect regis-
ter or memory values in the majority of the reconstructed
executionsÐin its original evaluation, all failure reproduc-
tions contain incorrect values [111]. REPT is especially in-
accurate for bugs with long traces; for traces longer than
100K instructions, 15%-60% of the values were incorrectly
recovered by REPT. Even worse, incorrect values are not
guaranteed to be consistent with recorded control-flow trace
and may not be detectable without reproducing the failure,
thereby misleading developers.
Record/replay systems, offline techniques like ESD, and

hybrid record/replay techniques produce control flow and
data that lead to the failure. Thus, developers can trust the
output of these tools. In contrast, best-effort tools, such as
REPT, produce output with missing and/or inconsistent data
and control-flow. Inaccuracy is a major obstacle in practiceÐ
the reliability of the tools and the accuracy of their results is
particularly important for developers [73], because testing
and debugging often requires significant effort and time [87].
Moreover, the output from best-effort failure reproduction
systems is not executable, which makes it impossible to lever-
age dynamic tools on top of these systems (see ğ 2.4). We
identify a usability-boundary at this inflection point: a tool
is acceptably accurate if it is guaranteed to reproduce a re-
playable execution with the same failure.

2.4 Summary

Existing bug reproduction tools are not sufficiently efficient,
effective, and accurate to (1) ensure low overheads that
are compatible with the performance requirements of pro-
duction settings, (2) reproduce complex failures found in

1158

Execution Reconstruction: Harnessing Failure Reoccurrences for Failure Reproduction PLDI ’21, June 20ś25, 2021, Virtual, Canada

Program

In-production User Executions (Online) Analysis Engine (Offline)

ER Runtime

and OS Driver

Runtime trace

(shipped upon failure)

1

FAILURE

Successfully

reproduces the failure?

Test case

generated

No
Instrument the program

(to record data values that

help symbolic execution)

2

Shepherded

Symbolic Execution

Key Data Value

Selection

Yes

Data +

Control Flow Recording

Figure 2. The high-level design and usage model of ER

production environments, and (3) provide reliable and ex-
ecutable output. We find that prior systems over-prioritize
one or more properties at the expense of the others. Of-
fline and hybrid solutions, like REPT, are overly efficient;
they record little to no information, which imposes negli-
gible run-time overhead but sacrifices efficiency/accuracy.
Full record/replay systems are overly effective; they support
bugs which violate the coarse interleaving hypothesis, even
though those bugs do not appear in practice [71]. Efficient
record/replay systems are overly accurate; they are guaran-
teed to reproduce the exact control flow and data values from
a failure, but, in software reliability domains (e.g., debugging,
fuzzing, security forensics), it is sufficient to reproduce any
execution that leads to the same failure [114] (see ğ 5).

In contrast, ER lies at the usability-boundary of each fail-
ure reproduction property. Thus, ER reliably reproduces pro-
duction failures with production-grade efficiency and adds
production support for the wide-range of dynamic tools
that are built on top of failure reproduction systems. For
example, ER enables tools for debugging [63], configuration
management [34], security forensics [49], automated failure
localization [100, 120], large-scale parallelism [96], and bug
detection [42]. In ğ 5, we provide a case study that uses ER
for invariant-based failure localization.

3 Design

ER resides at the sweet spot in the design space of bug re-
production systems with respect to the aforementioned key
properties of efficiency, effectiveness, and accuracy. ER uses
execution information (control flow and data values) in con-
junction with symbolic execution to reconstruct a failure.
Through careful combination of these techniques, ER simul-
taneously mitigates the efficiency problems of purely online
approaches and the effectiveness problems of purely offline
approaches. At a high-level, ER follows an iterative algorithm
that monitors production failures and performs symbolic ex-
ecution to either generate a failure-inducing input or identify
the reason why inputs cannot be generated. In the latter case,
ER selects new data values to monitor which allow symbolic
execution to generate a failing input during future failure
occurrences.

Fig. 2 shows the high-level design of ER. ER provides a
runtime that monitors an execution to produce a trace of
control flow and data values as per the direction of ER’s
Analysis Engine (ğ 3.1). When a failure occurs, the runtime
ships the failure trace to the analysis engine to perform shep-
herded symbolic execution. Shepherded symbolic execution
uses the runtime trace recorded in production to reconstruct
an execution that reproduces the failure (ğ 3.2). Control-
flow information allows shepherded symbolic execution to
eschew the notorious path-explosion problem in symbolic
execution. However, the constraints on inputs nevertheless
grow complex and stall symbolic execution, eventually lead-
ing to constraint solver timeouts. So, ER performs key data
value selection, which analyzes the constraints from sym-
bolic execution to identify a small set of data values that will
simplify constraints and thus eliminate stalls in symbolic
execution(ğ 3.3). ER instruments the program to record se-
lected data values, redeploys the program in production, and
waits until the failure reoccurs. This process continues until
ER successfully generates an input that leads to the failure.
We describe how ER performs online monitoring (ğ 3.1),

shepherded symbolic execution (ğ 3.2), and key data value
selection (ğ 3.3), and how ER supports concurrency (ğ 3.4).

3.1 Online Monitoring

ER uses the runtime and driver support to monitor a pro-
duction failure using efficient hardware support (via Intel
PT [67]). ER records the control flow and data values of pro-
duction executions, as per the directions of ER’s key data
value selection (ğ 3.3). By default, ER always traces control-
flow, because control-flow information is useful to eliminate
path explosion (ğ 3.2) and existing hardware techniques en-
able non-intrusive control-flow recording (i.e., executions
can be traced without any modifications). If desired, devel-
opers can configure ER to enable tracing only after a failure
is observed multiple times.
When a failure is detected, ER ships the runtime trace

including the control-flow trace and any data values to shep-
herded symbolic execution (ğ 3.2, step 1). The failure can
either be fail-stop (e.g. crashes, hangs, etc.) or programmati-
cally detectable by other criteria (e.g. semantic bugs checked
by developer-specified assertions).

3.2 Shepherded Symbolic Execution

Shepherded symbolic execution generates program inputs
that reproduce a production failure by following the runtime
trace produced during online monitoring and gathering con-
straints on input variables. The runtime trace includes the
control flow of the failing execution (i.e., the branches, calls,
and returns) and any data values (e.g., arguments to a func-
tion, return values, etc.) selected by key data value selection
(ğ 3.3). The trace of a failure reoccurrences may have sub-
tle discrepancies with previous traces for the same failure;
shepherded symbolic execution always uses the latest trace.

1159

PLDI ’21, June 20ś25, 2021, Virtual, Canada Gefei Zuo, Jiacheng Ma, AndrewQuinn, Pramod Bhatotia, Pedro Fonseca, and Baris Kasikci

1
2
3
4
5
6
7
8
9
10
11
12
13

uint32 V[256] = {0};
foo(uint32 a, uint32 b, uint32 c, uint32 d) {
uint32 x = (a + b);
if (x < 256 && c < 256 && d < 256) {
V[x] = 1;
if (V[c] == 0) // x != c
V[c] = 512;

V[V[x]] = x;
if (c < d) // d != c
if (V[V[d]] == x)
abort();

}
}

Figure 3. Running example

To demonstrate ER’s end-to-end operation, we use the list-
ing in Fig. 3. If this program aborts (Line 11), then x equals d,
due to the statements V[V[x]] = x (Line 8) and if (V[V[d]]

== x) (Line 10). Although this program is simple, it shows
the code patterns that cause symbolic execution stalls in
real-world applications, as discussed in ğ 3.3.
In our example, we make a few assumptions: (1) foo is

called as foo(0,2,0,2), which satisfies all the branch con-
ditions, (2) the program crashes on Line 11 due to the abort,
and (3) this is the first time the failure has occurred (so the
runtime trace only contains control-flow information). The
control-flow trace of the failing execution (i.e., the line num-
bers of the executed statements after each taken branch) in
Fig. 3 is 2→ 5→ 7→ 10→ 11 (FAILURE). The ER runtime
ships this control-flow trace to the analysis engine.

By following a control-flow trace from a production failure,
shepherded symbolic execution eliminates the path explo-
sion challenge, since it only explores a single program state
that follows the trace. ER still executes the program with
symbolic inputs and builds up a path constraint. A path con-
straint is a collection of constraints on the program input at
any given point in symbolic execution.

In our example, ER starts executing foowith four symbolic
(unconstrained) arguments, 𝜆𝑎 , 𝜆𝑏 , 𝜆𝑐 and 𝜆𝑑 (Line 2). Since
all the operands are symbolic, the value of x computed on
Line 3 is also symbolic. The branch on Line 4 compares
symbolic inputs (𝜆𝑐 , 𝜆𝑑) and the symbolic value x to 256.
Since the next instruction executed in the recorded control-
flow trace is the memory write at Line 5 (see the above trace
in bold), the branch on Line 4 was taken and ER will update
the path constraint to include the outcome of the branch
condition, i.e. ((𝜆𝑎 + 𝜆𝑏) < 256) ∧ (𝜆𝑐 < 256) ∧ (𝜆𝑑 < 256).
Line 5 uses x to dereference an entry in V and creates

a symbolic memory address (the base address of V, offset
by (𝜆𝑎 + 𝜆𝑏)). ER cannot determine the addresses of V[x],
but the fact that the control-flow trace has more elements
indicates that dereferencing V[x] does not lead to the failure.
The control-flow trace indicates that the branch on Line 6
was also taken. Since V is updated at a symbolic address
on Line 5, the branch condition on Line 6 needs to treat
array V symbolically: (Read(Write(𝑉 , 𝑥, 1), 𝑐) == 0). Here,
we use a standard representation of accesses to symbolic

memory [48, 56]: 1) Read(𝐴, 𝑖) returns the value at location
𝐴[𝑖], where 𝐴 is an array and 𝑖 is the index. 2) Write(𝐴, 𝑖, 𝑣)
updates the 𝑖-th entry in the array 𝐴 with value 𝑣 .
ER continues shepherded symbolic execution by updat-

ing the path constraint until it reaches the failure, or until
symbolic execution stalls because the underlying constraint
solver cannot handle the complex constraints that have been
gathered. During shepherded symbolic execution, ER in-
vokes a constraint solver every time the program accesses
symbolic memory (e.g., (Read(Write(𝑉 , 𝑥, 1), 𝑐) in our exam-
ple) to determine the set of concrete memory locations that
may be accessed. This approach prevents the symbolic execu-
tion engine from assuming that a write operation may write
to any address, which would complicate the path constraints
and lead to other scalability issues in symbolic execution.

If shepherded symbolic execution reaches the failure that
occurred in production (i.e., at the end of the trace), ER in-
vokes a constraint solver to determine concrete program
inputs that would lead to the failure. If constraint solving
can determine a satisfying assignment to the path constraint,
the failure is reproduced and a full test case is generated
for the developer. The generated test case may not include
the same inputs that caused the production failure, but is
guaranteed to lead the program along the same recorded
control flow and reproduce the same failure. As we show in
our evaluation, in a few cases (2 out of 13), ER can reproduce
the failure in the first attempt.
However, for most cases (11/13 in our evaluation), shep-

herded symbolic execution is not able to reproduce the fail-
ure in the first attempt. In these cases, ER identifies a solver
timeout (ğ 4) and constructs a constraint graph (explained
below) that depicts the dependencies among data values and
constraints. ER passes the constraint graph to key data value
selection (ğ 3.3).
Constraint Graph Construction When there is a solver
timeout, ER constructs a constraint graph, which succinctly
describes the dependencies between values and constraints
that are established as the program is symbolically executed.
This graph representation is inspired by the internal data
structures of the STP constraint solver [56]. The nodes in
the graph represent operations (arithmetic, logic, memory),
constants, program inputs (which are symbolic and there-
fore unknown), objects in the symbolic memory model (e.g.,
an array allocated in the program), and symbolic memory
addresses. The edges represent the dependencies among the
nodes and point from a node to its input dependencies. The
goal of a constraint solver is to identify a concrete assignment
for each symbolic input node that simultaneously satisfies
all the constraints in the graph.
We use our example from Fig. 3 to explain how ER con-

structs the constraint graph. Recall that shepherded symbolic
execution follows the control-flow trace (2→ 5 → 7 → 10

→ 11 (FAILURE)) recorded by running foo, and tries to re-
produce the crash (due to abort) on Line 11. Fig. 4 shows the

1160

Execution Reconstruction: Harnessing Failure Reoccurrences for Failure Reproduction PLDI ’21, June 20ś25, 2021, Virtual, Canada

x = (λ! + λ") V x = 1

1

if V λ# == 0

V λ# = 512

Step 1 Step 2 Step 3 Step 5

int

V[256]

Value Dependency

Array in Symbolic Memory
Symbolic Write Arithmetic /Logic

Constant
Symbolic Read

!! !"

Add

0

!#

!

V V x = x

Address Dependency

Eq

V[λ!]

Symbolic Input

512

Step 4

if(V V λ$ == x)

!$

V[!]

<

Read

Read

Eq

V[λ"]

< 256 < 256 < 256

Line 3 Line 5 Line 6 & 7 Line 8 Line 10

2Write
3Write

4Write

3Read

4Read

Line 4

Figure 4. Step-by-step construction of the constraint graph
for the example in Fig. 3.

example constraint graph that is generated right before foo
aborts. Since ER is executing the program symbolically, foo’s
arguments are represented as four symbolic input nodes
(𝜆𝑎 , 𝜆𝑏 , 𝜆𝑐 , 𝜆𝑑). As shown in step 1 , the value computed by
𝑥 = (𝑎 + 𝑏) on Line 3 is an arithmetic "addition" node, Add,
that depends on the values of the symbolic inputs 𝜆𝑎 and 𝜆𝑏 .

Using the recorded control-flow trace, ER knows that the
branch on Line 4 was taken. Subsequently, in step 2 , the
value x is used to index into the array V and write 1 to an
element (Line 5). The write operation (Write 2

1) depends on
the target array (V), the destination address (x), and the value
to write (1). Note that the graph representation of the write
operation is equivalent to the representation we introduced
above, namely Write(V, x, 1).

In step 3 (Lines 6-7), the branch condition includes a read
operation (Read 3) , which depends on: (i) a symbolic array
to read from (which is represented by Write 2 , as this node
represents the last state of the array V that was written to
in step 2 and (ii) a source address (𝜆𝑐). Note that the graph
representation of the read operation is equivalent to the rep-
resentation we introduced above, namely Read(Write 2 , 𝜆𝑐).
The path constraint that ER builds by following the control-
flow trace (i.e., the branches that are taken) is represented in
the graph using the logic Eq nodes. Eq 3 denotes that Read 3

was equal to 0. Finally, Write 3 represents the value 512 be-
ing written to the symbolic array V (whose final state before
being written to is again represented by Write 2).

Constraint graph generation is similar for steps 4 , 5 .

3.3 Key Data Value Selection

Key data value selection eliminates symbolic execution stalls
by analyzing the constraint graph and determining the key
data values that will simplify the path constraints. We de-
scribe the main sources of constraint solving complexity (in
ğ3.3.1) and how ER determines the set of key data values
that will remove stalls in symbolic execution (in ğ3.3.2).

1We use subscripts to distinguish different nodes in different steps.

3.3.1 Sources of Constraint Complexity. Recall from
section 3.2 that ER invokes the constraint solver every time a
symbolic memory location is accessed to simplify reasoning
about subsequent memory accesses. We now describe how
constraints on symbolic memory accumulate and provide
intuition about how these constraints lead to symbolic ex-
ecution stalls. We then explain the two key contributors to
constraint complexity, namely (1) the length of symbolic
write chains, and (2) the size of the accessed symbolic mem-
ory.
Examples of complex constraints. Consider the example
in Fig. 3, and the associated constraint graph in Fig. 4. On Line
5, (step 2 in the constraint graph), the program writes the
value 1 to a symbolic address (V[x]), because 𝑥 is a symbolic
value, x= (𝜆𝑎 + 𝜆𝑏). Depending on the value of 𝑥 , the access
will either be within the bounds of the array V and simplify
reasoning, or, outside the bounds of the array and require
that ER update other memory objects. Since the branch on
Line 4 was taken, the path constraint contains the constraint
𝜆𝑎 + 𝜆𝑏 < 256, and the solver deduces that the array access
on Line 5 is within the bounds of V, which has 256 elements.
ER represents the state of the symbolic memory in step 2
as Write(𝑉 , 𝑥, 1), or Write 2 for short.

Symbolic execution can stall when encountering chains of
symbolic addresses. Consider the statement V[V[x]]=x on
Line 8 (step 4 in the constraint graph). This statement first
reads V[x] from the most recent update to V (i.e. Write 3)
with offset x, where 𝑥 = 𝜆𝑎 + 𝜆𝑏 . By the logic of the pre-
vious paragraph, the solver determines that the offset x is
always within the bounds of the array V. We denote this read
operation in step 4 as Read 4 = Read(Write 3 , 𝑥), where
Write 3 = Write(Write 2 , 𝜆𝑐 , 512). Expanding Write 2 pro-
vides Write 3 = Write(Write(𝑉 , 𝑥, 1), 𝜆𝑐 , 512). Togetherwith
the initialization of V on Line 1, this chain of writes identifies
that V[x] is 0, 1 or 512. Thus, it is difficult to determine if
the access on line 8 (V[V[x]]) is within the bounds of the
array V; the solver will have to combine constraints gathered
from Lines 5 (V[x] = 1) and 6 (if (V[c]==0)) to determine
that c cannot be equal to x and thus V[x] cannot be equal to
512. The memory read and the branch condition on Line 10
(if(V[V[d]] == x)) involves similar non-trivial reasoning
on the solver’s part.
While modern solvers, and hence ER, are able to reason

about cases such as Lines 8 and 10, as chains of symbolic
memory accesses increases, constraint solving becomes a
challenge. In addition, constraint solving is complicated by
accesses to large memory objects, since the solver needs to
reason about accesses to more memory locations. Therefore,
for the purpose of illustration, we assume that the accesses
on Line 8 and Line 10 are challenging for solvers to resolve
and thus cause symbolic execution to stall.
Key contributors of constraint complexity. An obvious
way to avoid all constraint solving complexity would be
to record all program inputs, similar to what record/replay

1161

PLDI ’21, June 20ś25, 2021, Virtual, Canada Gefei Zuo, Jiacheng Ma, AndrewQuinn, Pramod Bhatotia, Pedro Fonseca, and Baris Kasikci

engines do. Unfortunately, record/replay can incur high over-
head, therefore, ER aims to determine key data values that
causes the constraints to become complex and record them.
We observe that there are two key contributors to the com-
plexity of symbolic memory constraints:
1) Length of symbolic write chains. Updates (i.e., writes)

to symbolic memory add constraints to the memory state,
complicating constraint solving. In our example, the chain
of three Write operations in Fig. 4 can be represented as:

Write 4 = Write(Write(Write(𝑉 , 𝑥, 1), 𝜆𝑐 , 512),

Read((Write(Write(𝑉 , 𝑥, 1), 𝜆𝑐 , 512), 𝑥), 𝑥)

This chain bottlenecks shepherded symbolic execution, when
the solver gets invoked for the read operations in steps 4
and 5 (Lines 8 and 10).
2) Size of the accessed symbolic memory. If the size of the

symbolic memory that is accessed is large, the solver needs to
reason about a large number of locations that can be accessed,
which is complicated. An example is the three Write nodes
in Fig. 4 that modify the 1024-byte array V (256 × 4), which
is larger than any other memory object in the graph.

3.3.2 Computing the Bottleneck and Recording Sets.

ER exhaustively searches in the constraint graph to identify
the longest symbolic write chain and the write chain that
updates the largest symbolic memory object. (Note that these
two chains can be the same.) We call the set of all symbolic
values that are read/written by operations in these two chains
as the bottleneck set; collectively, this set represents key data
values that should be recorded to simplify constraints and
resolve symbolic execution stalls. In our example, where we
assume constraint solving stalls on Line 8 in step 4 , there is
a single write chain (Write 4 → Write 3 → Write 2) that
updates the symbolic array V, which is the largest symbolic
memory object. The bottleneck set comprises all the sym-
bolic values that are referred to by these three writes (see
the dashed address dependency arrows depicted in Fig. 4),
namely {x, 𝜆𝑐 , V[x]}.
Reducing the Cost of Recording. A naive strategy to sim-
plify constraint solving would be to record all the elements
in the bottleneck set the next time the failure occurs. In Fig. 4,
this strategy would correspond to recording the concrete
values for node x, 𝜆𝑐 and V[x] (3× 4 = 12 bytes total), which
will make it easier for the constraint solver to satisfy all the
constraints in the first four steps.
Unfortunately, this approach has high overhead. So, ER

reduces the amount of data it records by identifying an al-
ternative set of data values to record from which the bot-
tleneck set can be inferred. ER achieves this with the fol-
lowing algorithm: Initially, ER assigns the recording set of
data values, E = {𝐸0, 𝐸1, . . . , 𝐸𝑘 }, to be the bottleneck set. ER
assigns a cost (𝐶𝑖) to recording each element that is equal
to the size of the element times the number of times the
node is referenced in the recorded control-flow trace, i.e.,

𝐶𝑖 = 𝑠𝑖𝑧𝑒𝑜 𝑓 (𝐸𝑖) ×𝐶𝑜𝑢𝑛𝑡𝐸𝑖 . ER’s goal is to minimize the total

cost of recording, 𝐶 =

∑
𝑘

𝑖=1𝐶𝑖 .
For each element 𝐸𝑖 in E, ER performs a depth-first search

in the constraint graph to determine if it can record a node
(or multiple nodes) with a lower cost than𝐶𝑖 that ER can use
to determine the value of 𝐸𝑖 . ER continues searching until it
can no longer reduce 𝐶 , the total cost of recording.

Consider the symbolic elements of the bottleneck set {x, 𝜆𝑐 ,
V[x]} in Fig. 4, where each element has a reference count of 1
since all the statements in foo executed once. The algorithm
first considers the element x, which has a recording cost of
4 (4 bytes of data × referred 1 time). ER continues the depth
first search and determines that it cannot record x with a
lower cost (the cost of recording both 𝜆𝑎 and 𝜆𝑏Ðsum of
which equals xÐis 8). Similarly, when ER does a depth-first
search starting with 𝜆𝑐 , it does not update the recording
set (since 𝜆𝑐 is a leaf node, i.e., an input). Finally, when ER
performs a search starting with V[x], it finds out that V[x]
can be deduced given the values of x and 𝜆𝑐 . This happens,
because given the values of x and 𝜆𝑐 , all the memory writes
in steps 2 ś 4 write a concrete value to a concrete address,
therefore, Read 4 reads a concrete value from a concrete
address as well. Consequently, ER removes V[x] from the
recording set. At this stage of the search, the elements in
the recording set do not change anymore and the set of key
values ER will record is {x, 𝜆𝑐 }.

3.3.3 Recording Key Data Values. Based on the final
recording set, ER instructs its runtime to record the elements
(e.g., values, addresses). The runtime records an element at a
point in the execution corresponding to where the element
is introduced in the constraint graph. For the recording set
{x, 𝜆𝑐 } in our example, ER records the value x (to concretize
𝜆𝑎 + 𝜆𝑏), when x is first computed (Line 3 in Fig. 3, step 1 in
Fig. 4). ER records the input value c (to concretize 𝜆𝑐) when
it is introduced in the graph in the expression if (V[c] ==

0) (Line 6 in Fig. 3 and step 3 in Fig. 4).

3.3.4 Iterative Operation. ER continues the iterative pro-
cess of recording runtime information, shepherded symbolic
execution, and key data value selection until it can repro-
duce the failure. In our example, a second occurrence of the
failure will ship the control-flow trace and values of 𝑥 and
𝜆𝑐 to shepherded symbolic execution. Symbolic execution
will stall when calculating the memory read on Line 10 and
key data selection will identify a recording set of {x, 𝜆𝑐 , 𝜆𝑑 }.
After a third occurrence of the failure, shepherded symbolic
execution is able to reproduce the failure on Line 11.

3.4 Handling Concurrency

Traditionally, symbolic execution reasons about different
thread interleavings in a program by encoding the thread
schedule in the path constraint of an execution [39]. Unfortu-
nately, in order to explore the potential thread interleavings,

1162

Execution Reconstruction: Harnessing Failure Reoccurrences for Failure Reproduction PLDI ’21, June 20ś25, 2021, Virtual, Canada

a symbolic execution engine has to fork program states af-
ter every instruction in the program, exacerbating the path
explosion problem. Although this naive method can be im-
proved by identifying data races in the program and only
forking program states at racing memory accesses [31, 75,
77], it is still not a tractable approach for large systems [114].

ER instead relies on observations of prior works [71, 111]
that suggest that in many cases, it is possible to use a coarse-
grained timer to track the execution order of shared memory
accesses in a multi-threaded program. Specifically, ER relies
on time tracking capabilities of modern hardware (timestamp
packets in Intel PT [67]) to record a partial order of instruc-
tions across multiple threads. During shepherded symbolic
execution, ER executes chunks of instructions from different
threads according to the partial order described by the timer
packets in the recorded trace. If ER is unable to establish a
total order among the chunks of instructions because the
associated timestamps overlap, ER arbitrarily selects a se-
quence of instructions and tries to reconstruct the execution.
If the granularity of the timer packets is fine enough to

capture all the data races and synchronization operations, ER
reconstructs the execution reliably. For the multi-threaded
programs in our evaluation (ğ5), ER is able to reconstruct
failing executions. However, if a program exhibits a high-
degree of fine-grained racing accesses, ER may not be able
to reconstruct the execution. In such cases, ER could use
state-space exploration techniques [32, 93] to determine the
order of finer grained racing accesses.

4 Implementation

Runtime and OS Driver. ER uses hardware-assisted con-
trol and data tracing in Intel PT [67] to collect the runtime
traces to quantify performance overhead. ER configures the
Intel PT Linux driver and records the control-flow, timing
information, key data values, in a 64MB ring buffer for each
monitored application. The buffer size is decided by the
largest trace we collect from the evaluated failures (ğ5.1).
Mapping x86_64 control-flow traces into LLVM IR (which is
required by Klee to symbolically execute code) introduces
inaccuracies due to optimizations. In our evaluation, we ob-
serve that only 91.5% of the control-flow events (branches,
calls, returns) in the x86_64 executions can be mapped back
to LLVM IR. Meanwhile, recorded key data values can be
mapped fully accurately. Our prototype currently makes up
for the control-flow inaccuracy by tracing both control-flow
and key data values within Klee.
Even though symbolic execution in Klee can deal with

partially-recovered LLVM traces at the expense of slight path
explosion [106], we intend to tackle this problem by either
(1) instrumenting the clang optimization passes that cause
information loss to save metadata about optimizations in
order to increase the accuracy of x86_64-to-LLVM mapping,
or (2) turning to a binary symbolic execution engine [44].

Recording Key Data Values. We implemented an LLVM
compiler pass (156 LoC) to instrument programs with the
ptwrite instructions [27], which records data values iden-
tified by key data value selection into the Intel PT trace.
Instrumentation requires redeploying a new version of the
application to record additional values, which suits the rapid
development cycles of modern software [101] well. Dynamic
binary instrumentation [37, 38, 83] presents a potentially less
invasive solution for less frequently updated applications.
Shepherded Symbolic Execution. We implemented a pro-
totype shepherded symbolic execution engine on top of
Klee [40] in 13.8K LoC.WemodifiedKlee to follow a control-
flow trace and extended its POSIX environment model based
upon the changes from Cloud9 [39]. The extended POSIX
environment treats thread-interleavings and system calls
(e.g. the content of input files, packets from network sockets,
clock information, etc.) as sources of non-determinism. Our
prototype treats these non-deterministic values as symbolic
(unknown). The shepherded symbolic execution engine de-
tects the reoccurrence of a failure based on matching the
program counter and the call stack where the failure occurs.
Detecting Symbolic Execution Stalls Complex constra-
ints prevent symbolic execution from progressing. Some con-
straints (e.g. floating-point) are not expressible in Klee; cer-
tain classes of constraints are known to be undecidable[35].
For constraints supported and solvable in Klee, ER deter-
mines if shepherded symbolic execution is stalled by identi-
fying solver timeouts. The ideal timeout depends upon the
frequency of a failure. For failures that occur frequently, ER
should be configured with a relatively short timeout so that
shepherded symbolic execution can quickly simplify sym-
bolic constraints using recorded data values; for infrequent
failures, ER should use a longer timeout to reduce the num-
ber of reoccurrences required to reproduce a failure. For the
failures in our evaluation, we found that a 30 second timeout
provides a good balance between the time spent on symbolic
execution and the number of failure reoccurrences required
to reproduce a failure.
Key Data Value Selection.We implemented the key data
value selection algorithm in Python (1.3K LoC). When the
solver times out, ER passes the path constraint from Klee

to the analyzer. The analyzer generates a list of LLVM IR
registers as the key data values to record.

5 Evaluation

In this section, we first describe our experimental setup (ğ5.1)
as well as our benchmark selection. We then evaluate our
prototype of ER by answering the following questions:
Effectiveness and Accuracy (ğ5.2) Can ER reproduce fail-
ures in complex, long-running executions? Is ER able to ac-
curately reproduce failing executions? Does key data value
selection choose to record useful data values? How useful is
data value recording for shepherded symbolic execution?

1163

PLDI ’21, June 20ś25, 2021, Virtual, Canada Gefei Zuo, Jiacheng Ma, AndrewQuinn, Pramod Bhatotia, Pedro Fonseca, and Baris Kasikci

Table 1. Bugs used in the evaluation of ER along with bug IDs and types. łMTž denotes if the program is multithreaded (Y for
Yes, N for No). łLoCž denotes the lines of code of each application. ł#Instr(x86_64)ž denotes the total number of executed
x86_64 instructions in the failing execution.ł#Occurž denotes the number of failure occurrences ER needs to reproduce the
failure. łSymbex Timež represents the total time (sum for all iterations) ER spends on shepherded symbolic execution.

Application-BugID Bug Type MT LoC #Instr(x86_64) #Occur Symbex Time Performance Benchmark

PHP-2012-2386 Integer overflow [7] N 968,607 5,460,436 6 1.7 min Benchmark Script [6]
PHP-74194 Heap buffer overflow [13] N 1,303,868 5,791,278 10 111 min Benchmark Script [6]
SQLite-7be932d NULL pointer dereference [14] N 413,846 1,408,411 3 3.3 min Official fuzz test
SQLite-787fa71 Inconsistent data-structure [17] N 221,771 1,115,003 4 61.3 min Official fuzz test
SQLite-4e8e485 NULL pointer dereference [18] N 302,653 1,349,129 3 21.8 min Official fuzz test
Nasm-2004-1287 Stack buffer overrun [2] N 224,147 1,480,285 3 12.5 min Assemble a large asm file
Objdump-2018-6323 Integer overflow [16] N 1,077,896 323,788 3 0.06 min Disassemble a large binary
Matrixssl-2014-1569 Stack buffer overrun [20] N 160,447 4,448,948 6 6.5 min Official test
Memcached-2019-11596 NULL pointer dereference [19] Y 151,716 1,840,258 2 3.1 min memtier_benchmark [22]
Libpng-2004-0597 Buffer overflow [1] N 73,442 71,752 1 0.2 min resvg-test-suite [23]
Bash-108885 NULL pointer dereference [12] N 335,176 866,668 1 0.3 min Quicksort in Bash script
Python-2018-1000030 Shared data corruption [15] Y 1,020,698 36,108,946 2 23.5 min From PyPy benchmarks [24]
Pbzip2 Use-after-free [11] Y 13,052 6,937,510 2 2.6 min Compress a .tar file

Efficiency (ğ5.3) What is the runtime performance over-
head incurred by ER due to online control and data record-
ing? How does ER’s runtime overhead compare against
record/replay? What is ER’s offline computational and mem-
ory overhead?
Case Study (ğ5.4) Can ER provide production support for
software reliability tools? How does ER’s support for these
tools differ from existing systems?

5.1 Experimental Setup

Target Programs and Bugs. As shown in Table 1, we eval-
uate ER using 13 failures from a broad range of 10 real-
world programs including the PHP interpreter; the Python
interpreter; SQLite database; memcached, a widely-used dis-
tributed object store; the Bash shell; the binary analysis tool
objump; NASM, a popular assembler in Linux; libpng, a per-
vasive image processing library; MatrixSSL, a TLS/SSL im-
plementation, and pbzip2, a parallel compression tool.
Bug IDs and bug types are also shown in Table 1. We

choose programs and bugs from closely-related work [71, 73,
111] and CVE exploits [25, 26] that were supported by the
POSIX environment model of the KLEE symbolic execution
engine [40], which ER uses for shepherded symbolic execu-
tion. The failures are caused by inconsistent data-structures,
integer overflow, buffer overflow, shared data corruption,
use-after-free, etc.
Workloads for PerformanceEvaluation.When available,
we use existing benchmarking and testing suites to assess
the performance impact of data and control-flow recording
by ER. To evaluate the performance overhead of NASM and
objdump, we assemble and disassemble the SQLite binary,
respectively. To evaluate pbzip’s performance, we compress
the SQLite codebase which is a 71 MB .tar file. We ran each
performance experiment 10 times and report averages and
standard error.
Software and Hardware Configuration. We evaluate ER
on two servers with Intel Xeon Silver 4114 CPU and Intel

Pentium Silver J5005 CPU. The servers have 187 GB and 8
GB of memory, respectively. The Linux kernel version on
both machines is 5.5.2.
Baseline. We compare ER against REPT [111], a state-of-
the-art deployed bug reproduction system, and rr [29], a
state-of-the-art record-and-replay system. Since REPT is not
publicly available, we are only able to compare with the
results reported in the REPT paper.

5.2 Effectiveness and Accuracy of ER

Length andComplexity of Reproduced Executions. Ta-
ble 1 shows all the failures that ER reproduced along with
the number of instructions in the executions that ER recon-
structed. As shown in the "#Instr(x86_64)" column, ER was
able to reconstruct failures in executions of up to ~36 mil-
lion dynamic x86_64 instructions, which is more than two
orders of magnitude (361×) longer than the executions that
REPT [111] can reproduce (~100K).
Accuracy of Reproduced Executions. ER accurately re-
constructs all data values of a failing execution, given a trace
of the control flow and a few key data values recorded in
production. Even though the input generated by ER may not
be the same input that caused the in-production failure, ER
guarantees the generated input will lead to the same control
flow as the failure and reproduce the same failure. Thus, ER
is able to provide developers a concrete test case (input +
control flow) that they can run in a debugger to debug root
causes. For example, the SQL queries recovered by ER in
three SQLite bugs ([14, 17, 18]) differ from the original in-
put that leads to these bugs in terms of SQL keywords (e.g.
sEleCT instead of SELECT), identifier names (e.g. different
table/field names), data values, etc. Despite these differences,
the generated input follows the same control-flow because 1)
keywords are case-insensitive; 2) renaming identifiers does
not change query semantics; 3) recovered data satisfies all
control-flow conditions in the trace.

1164

Execution Reconstruction: Harnessing Failure Reoccurrences for Failure Reproduction PLDI ’21, June 20ś25, 2021, Virtual, Canada

In some instances, developers may be able to debug an
issue using an inaccurate execution, such as the one provided
by REPT, without relying on a full test case. However, REPT
has a substantial number of unknown and inaccurate values
as trace length extends beyond 100K instructions. To make
matters worse, a developer cannot know which values are
inaccurate, since they lack the ground truth. To demonstrate
when this may be an issue, we investigated the MatrixSSL
bug (for which thorough developer patches and documenta-
tion were available) to determine the root cause of the failure.
We found the last instruction from the patch that fixes the
bug to be executed 3 million instructions prior to the failure.
So, REPT would likely not have been able to provide infor-
mation about the data values of the variables used by the
patch and not accurate enough for a developer to debug this
issue (we only provide a qualitative comparison, as REPT is
closed-source and only available on Windows).
Key Data Value Selection Effectiveness. To determine
the effectiveness of key data value selection, we compared
key data value selection with a version of ER that uses a
random data recording strategy. The random recording strat-
egy records the same amount of data that ER records, but
selects the data randomly among all the data elements in
the constraint graph. ER with random data recording only
reproduces one failure among the failures that require data
value recording (Nasm-2004-1287). In all other cases, ER with
random data recording encounters symbolic execution stalls
which it is not able to simplify with the random data, and
thus cannot complete symbolic execution.
Benefits of Data Value Recording. We show the benefits
of data value recording on shepherded symbolic execution.
Fig. 5 compares the progress of shepherded symbolic execu-
tion on the PHP-74194 bug when using a control-flow trace
compared to using traces containing control flow and the
data values selected during the first and second iterations of
key data value selection. We disable the solver timeout and
let shepherded symbolic execution execute the same num-
ber of instructions in all three cases. Our results show that
shepherded symbolic execution with no data values, the first
iteration data values and the second iteration data values
take 11468, 5006, and 1800 seconds, respectively, to symboli-
cally execute the same number of instructions. We conclude
that shepherded symbolic execution drastically benefits from
data values and that ER’s iterative approach is effective in
current production environments where bugs often reoccur.

5.3 Efficiency of ER

Runtime Performance Overhead. We measure the run-
time performance overhead of online control flow and data
value tracing. For each program, we report the recording
overhead of ER for the last occurrence of the failure needed
to reproduce the failure. We choose the last occurrence be-
cause ER records the most data in the last iteration. Similar to
prior work [57], our sensitivity analysis shows no statistical

 12.59

 12.592

 12.594

 12.596

 12.598

 12.6

 12.602

 12.604

 12.606

 12.608

 0 2000 4000 6000 8000 10000

In
st

ru
ct

io
n
 c

o
u
n
t

(m
il

li
o
n
)

WallTime (seconds)

control-flow + no data values
control-flow + 1st iteration data values

control-flow + 2nd iteration data values

Figure 5. Number of instructions executed and the time
spent on shepherded symbolic execution for PHP-74194.

difference in the runtime overhead for buffer sizes of 4KB,
64KB, 1MB, 16MB, 64MB (using a 90% confidence interval).
As shown in Fig. 6, ER incurs on average 0.3% (and up to

1.1%) runtime performance overhead across all the programs
we evaluate. The overhead numbers for some applications
are sufficiently low to be affected by the variability in other
factors such as disk I/O (e.g., Libpng’s performance bench-
marks open and read about 1000 files). These results are in
line with prior work that demonstrated that Intel PT is effi-
cient enough to be deployed in production [71, 73, 111]. In
our work, we also demonstrate that recording a few key data
values does not increase the overhead incurred by Intel PT.
Comparison to Record/Replay.A key question we set out
to explore in this paper is whether we can achieve the same
level of effectiveness (i.e., failure reproduction ability) as a
record replay engine, with better efficiency (i.e., by incurring
lower runtime performance overhead).
Fig. 6 also displays the recording overhead incurred by a

state-of-the-art record/replay engine, Mozilla rr. rr imposes
an average of 48.0% (and up to 142.2%) runtime performance
overhead. The overhead of rr is prohibitive, even for single-
threaded applications (objdump, libpng, etc.). We conclude
that ER is able to effectively reconstruct all the failures in our
evaluation, and incur lower overhead than a state-of-the-art
record/replay system.
Offline Memory and Computational Overhead of ER.

The maximum amount of memory consumed by shepherded
symbolic execution and iterative constraint reduction is 10
GB, which we believe is a reasonable amount given the de-
creasing trends of memory cost [28, 62]. The largest con-
straint graph in our evaluation had about 40K nodes, from
which computing bottleneck sets and recording sets took at
most 15 seconds. The average and the maximum total shep-
herded symbolic execution time was 19 and 111 minutes,
respectively.

1165

PLDI ’21, June 20ś25, 2021, Virtual, Canada Gefei Zuo, Jiacheng Ma, AndrewQuinn, Pramod Bhatotia, Pedro Fonseca, and Baris Kasikci

 0% 20%

Pbzip2 0.9.4
Python 2.7.14

Bash 4.3.30
Libpng 1.2.5

Memcached 1.5.13
Matrixssl 4.0.1
Objdump 2.26
Nasm 0.98.34
SQLite 3.27.0
SQLite 3.8.11
SQLite 3.25.0

PHP 7.1.6
PHP 5.3.6

 50% 100% 150%
Normalized Overhead

ER
rr

Figure 6. Runtime performance overhead incurred by ER’s
control and data flow recording as well as recording using
rr [29]. The error bars display standard error.

5.4 Invariant-Based Failure Localization

ER allows software reliability tools across many domains
(e.g., security forensics, fuzzing, etc.) to leverage produc-
tion failures. In this case study, we show how ER provides
production-support to MIMIC [120], an invariant-based auto-
mated failure localization technique.MIMIC uses Daikon [52]
to calculate likely invariants, predicates which are observed
during successful executions. When presented with a failure,
MIMIC identifies the likely invariants that are violated by
the failure and proposes these as potential root causes. In
our case study, MIMIC gathers likely invariants offline, us-
ing existing integration and unit tests. When a production
failure occurs, ER reconstructs the failure and passes it to
MIMIC, which identifies potential root causes.

We test this approach using the coreutil bugs (od [3] and
pr [4]) fromMIMIC. For both applications, we generate likely
invariants using 4 successful executions. We then use ER to
reconstruct a failing execution that exhibits the bugs, and
pass the reconstructed execution to Daikon. Daikon identi-
fies the same potential root causes (i.e., invariant violations)
when using the reproduced execution from ER as it does
when using the failing test case directly.

As discussed in Fig. 1, existing techniques for reproducing
bugs cannot support tools like MIMIC in production sce-
narios (although they may help with the relatively simple
programs, od and pr, discussed above). Full record/replay sys-
tems, hybrid record/replay systems, and BugRedux are too
expensive for production deployment. Offline approaches
(e.g., ESD) and efficient record/replay cannot handle all pro-
duction bugs and are not guaranteed to reproduce the failure
to pass to MIMIC. Finally, REPT does not produce output
that MIMIC can execute to produce invariants. If MIMIC
could generate invariants from the inaccurate data values
recovered by REPT, MIMIC might identify root causes that

are both false positives (i.e. inaccurate values violate a likely
invariant that should be satisfied) and false negatives (i.e.
inaccurate values satisfy a likely invariant that should be
violated).

6 Related Work

Reverse execution of failed executions. REPT [111] is
the state-of-the-art approach to recover the data flow of a
program given the control flow. We compare our work with
REPT in ğ2 and subsequent sections, in particular, we discuss
its limitations in terms of effectiveness and accuracy. Simi-
larly, RETracer [47] reverse-executes a program to determine
the root causes of memory corruption. RETracer is efficient
in that it only uses a core dump, without data or control-flow
information, however its scope is limited to reasoning about
memory corruption bugs within a stack trace.
Record-replay. iDNA [36], PinPlay [94], ReVirt [51], rr [92]
and many others [32, 63ś65, 81, 82, 86, 88, 95, 98, 108] record
at run-time all non-deterministic events (i.e., system calls,
thread scheduling, etc.) that impact program execution. They
allow users to replay and analyze the execution afterwards.
Although useful during development, they are not com-
monly used in production due to high overheads, e.g., rr
has an overhead that can range from 49% to 685% [92]. Other
approaches [90] propose specialized hardware for record-
replay, but adoption is slow and difficult.
Schedule record-replay. Several approaches specifically
target the challenges posed by multi-threaded applications
[53], which depend not just on program input but also on the
thread interleavings. For instance, H3 [66] records the con-
trol flow of programs (with overheads between 1.4%-14.7%)
and uses this information to determine the thread interleav-
ings that lead to concurrency bugs. Notably, PRES [93] and
HOLMES [43] record select run-time information, such as the
total order of synchronization calls, system calls, or function
call invocations, to constrain the interleaving space explo-
ration during post-failure analysis. Unlike ER, these tools
assume that the failure-inducing input is already known by
employing uni-processor record-replay techniques, hence
these approaches are orthogonal to ours.
Symbolic execution. Symbolic execution techniques [79]
reason about programs symbolically using SMT solvers (e.g.,
Z3 [48]) and are often used to explore the input space of
programs and conduct path-sensitive analysis [40, 44, 59,
91]. To reproduce a particular failure, state-of-the-art ap-
proaches [41, 69, 114] take a stack trace where the program
crashed, and steer symbolic execution towards the failure lo-
cation, which traditionally leads to path explosion. Symbolic
backward execution [50, 84] is a variant technique that tries
to reason about programs from a source code location (e.g.,
an assertion) backwards to the initial program state. Such
approaches are not able to address the constraint complexity
challenges like ER. Concolic testing approaches augment

1166

Execution Reconstruction: Harnessing Failure Reoccurrences for Failure Reproduction PLDI ’21, June 20ś25, 2021, Virtual, Canada

symbolic execution with concrete executions to automat-
ically generate test cases [59, 85, 103]. Although concolic
testing can simplify the path constraints by recording con-
crete values from random testing, it is generally designed
for path exploration, and does not focus on a specific failure
trace like ER.
Failure analysis and diagnosis. A large body of work has
developed techniques for failure diagnosis and root cause
analysis [30, 33, 68, 70, 71, 73, 80, 100, 107, 110, 116, 119],
which can complement ER, since failure reproduction can as-
sist failure diagnosis. Other work [113] has explored different
approaches to analyze core dumps of failed executions and
extract useful information. Pensieve [118] reproduces the set
of events that are relevant to a failure in a distributed system.
ER can be used in conjunction with Pensieve to thoroughly
reason about failures in a single node.

7 Conclusion

In this paper, we presented Execution Reconstruction (ER),
a technique to reproduce production failures. ER strives for
a sweet spot among efficiency, effectiveness and accuracy.
ER uses shepherded symbolic execution to leverage dynamic
control flow to eschew path explosion. In addition, to avoid
solver stalls, ER uses key data value selection, which an-
alyzes the constraints generated by shepherded symbolic
execution to identify a set of data values that can accelerate
symbolic execution. Using these techniques, ER will even-
tually generate concrete test cases that reproduce complex
failures. We have implemented an end-to-end prototype to
demonstrate the effectiveness of our approach based on Intel
PT and Klee. Real world applications show that ER is able to
reproduce failures with similar efficiency to state-of-the-art
efficient failure reproduction tools (on average 0.3%) while
providing similar accuracy/effectiveness as state-of-the-art
accurate/effective failure reproduction tools. In addition, we
show that ER allows software reliability tools to leverage
production failures.

Acknowledgements

We thank the anonymous reviewers and our shepherd, Ben
Liblit, for their valuable feedback. We thank Petros Maniatis
for his feedback on an earlier draft and Jörg Thalheim for his
initial prototype of the Intel PT recording tool. This work
is supported by the NSF CAREER award 1942218, the NSF
DGE award 1256260, a Google Faculty Award, and the Ap-
plications Driving Architectures (ADA) Research Center (a
JUMP Center co-sponsored by SRC and DARPA).

References
[1] 2004. CVE Detail. https://nvd.nist.gov/vuln/detail/CVE-2004-0597

[2] 2004. NASM 0.98.x - Error Preprocessor Directive Buffer Overflow.

https://www.exploit-db.com/exploits/25005

[3] 2007. Coreutils, Fault in OD. https://lists.gnu.org/archive/html/bug-

coreutils/2007-08/msg00034.html
[4] 2008. Coreutils, Fault in PR. https://lists.gnu.org/archive/html/bug-

coreutils/2008-04/msg00177.html

[5] 2012. Fixing Bugs - If You Can’t Reproduce a Bug, You Can’t Fix It -

DZone Agile. Retrieved 06/08/2019 from https://dzone.com/articles/

if-you-cant-reproduce-bug-you

[6] 2012. Free PHP Benchmark Performance Script. http://www.php-

benchmark-script.com

[7] 2012. Sec Bug #61065: Secunia SA44335 - arbitrary code execution.

https://bugs.php.net/bug.php?id=61065

[8] 2013. https://issues.apache.org/jira/browse/HBASE-10210

[9] 2013. https://issues.apache.org/jira/browse/HBASE-10237

[10] 2013. https://issues.apache.org/jira/browse/HDFS-5690

[11] 2013. pbzip2. https://github.com/jieyu/concurrency-bugs/tree/

master/pbzip2-0.9.4

[12] 2015. sr #108885: 4-byte script triggers null ptr deref and segfault.

https://savannah.gnu.org/support/index.php?108885

[13] 2017. Sec Bug #74194: a heap-buffer-overflow when serializing Ar-

rayObject. https://bugs.php.net/bug.php?id=74194

[14] 2018. Adverse interaction between .stats and .eqp in the CLI. https:

//www.sqlite.org/src/tktview/7be932d

[15] 2018. CVE-2018-1000030: Python 2.7 readahead feature of file objects

is not thread safe. https://bugs.python.org/issue31530

[16] 2018. CVE Detail. https://www.cvedetails.com/cve/CVE-2018-6323/

[17] 2019. Assertion fault when multi-use subquery implemented by

co-routine. https://www.sqlite.org/src/tktview/787fa71

[18] 2019. Crash on query using an OR term in the WHERE clause. https:

//www.sqlite.org/src/tktview/4e8e485

[19] 2019. CVE Detail. https://nvd.nist.gov/vuln/detail/CVE-2019-11596

[20] 2019. MatrixSSL < 4.0.2 - Stack Buffer Overflow Verifying x.509

Certificates. https://www.exploit-db.com/exploits/46435

[21] 2019. What does debugging a program look like? - Julia Evans.

Retrieved 07/04/2019 from https://jvns.ca/blog/2019/06/23/a-few-

debugging-resources/

[22] 2020. Retrieved 05/27/2020 from https://github.com/RedisLabs/

memtier_benchmark

[23] 2020. Retrieved 05/27/2020 from https://github.com/RazrFalcon/

resvg-test-suite/tree/master/png

[24] 2020. Retrieved 5/27/2020 from https://foss.heptapod.net/pypy/

benchmarks/-/tree/branch/default/unladen_swallow/performance

[25] 2020. CVE Database. https://www.cvedetails.com

[26] 2020. Exploit Database Archive. https://www.exploit-db.com/

[27] 2020. Intel® 64 and IA-32 Architectures Software Developer’s Man-

ual. https://software.intel.com/content/www/us/en/develop/articles/

intel-sdm.html

[28] 2020. Memory Prices Decreasing with Time. https://jcmit.net/

mem2015.htm

[29] 2020. rr. https://rr-project.org

[30] R. Abreu, P. Zoeteweij, and A. J. c. Van Gemund. 2006. An Evaluation

of Similarity Coefficients for Software Fault Localization. In 2006

12th Pacific Rim International Symposium on Dependable Computing

(PRDC’06). 39ś46. https://doi.org/10.1109/PRDC.2006.18

[31] Adil Ahmad, Sangho Lee, Pedro Fonseca, and Byoungyoung Lee.

2021. KARD: Lightweight Data Race Detection with Per-Thread

Memory Protection. In Proceedings of the International Conference

on Architecture Support for Programming Languages and Operating

Systems (ASPLOS’21).

[32] Gautam Altekar and Ion Stoica. 2009. ODR: Output-Deterministic

Replay for Multicore Debugging. In Proceedings of the ACM SIGOPS

22nd Symposium on Operating Systems Principles (SOSP ’09). Asso-

ciation for Computing Machinery, New York, NY, USA, 193ś206.

https://doi.org/10.1145/1629575.1629594

1167

https://nvd.nist.gov/vuln/detail/CVE-2004-0597
https://www.exploit-db.com/exploits/25005
https://lists.gnu.org/archive/html/bug-coreutils/2007-08/msg00034.html
https://lists.gnu.org/archive/html/bug-coreutils/2007-08/msg00034.html
https://lists.gnu.org/archive/html/bug-coreutils/2008-04/msg00177.html
https://lists.gnu.org/archive/html/bug-coreutils/2008-04/msg00177.html
https://dzone.com/articles/if-you-cant-reproduce-bug-you
https://dzone.com/articles/if-you-cant-reproduce-bug-you
http://www.php-benchmark-script.com
http://www.php-benchmark-script.com
https://bugs.php.net/bug.php?id=61065
https://issues.apache.org/jira/browse/HBASE-10210
https://issues.apache.org/jira/browse/HBASE-10237
https://issues.apache.org/jira/browse/HDFS-5690
https://github.com/jieyu/concurrency-bugs/tree/master/pbzip2-0.9.4
https://github.com/jieyu/concurrency-bugs/tree/master/pbzip2-0.9.4
https://savannah.gnu.org/support/index.php?108885
https://bugs.php.net/bug.php?id=74194
https://www.sqlite.org/src/tktview/7be932d
https://www.sqlite.org/src/tktview/7be932d
https://bugs.python.org/issue31530
https://www.cvedetails.com/cve/CVE-2018-6323/
https://www.sqlite.org/src/tktview/787fa71
https://www.sqlite.org/src/tktview/4e8e485
https://www.sqlite.org/src/tktview/4e8e485
https://nvd.nist.gov/vuln/detail/CVE-2019-11596
https://www.exploit-db.com/exploits/46435
https://jvns.ca/blog/2019/06/23/a-few-debugging-resources/
https://jvns.ca/blog/2019/06/23/a-few-debugging-resources/
https://github.com/RedisLabs/memtier_benchmark
https://github.com/RedisLabs/memtier_benchmark
https://github.com/RazrFalcon/resvg-test-suite/tree/master/png
https://github.com/RazrFalcon/resvg-test-suite/tree/master/png
https://foss.heptapod.net/pypy/benchmarks/-/tree/branch/default/unladen_swallow/performance
https://foss.heptapod.net/pypy/benchmarks/-/tree/branch/default/unladen_swallow/performance
https://www.cvedetails.com
https://www.exploit-db.com/
https://software.intel.com/content/www/us/en/develop/articles/intel-sdm.html
https://software.intel.com/content/www/us/en/develop/articles/intel-sdm.html
https://jcmit.net/mem2015.htm
https://jcmit.net/mem2015.htm
https://rr-project.org
https://doi.org/10.1109/PRDC.2006.18
https://doi.org/10.1145/1629575.1629594

PLDI ’21, June 20ś25, 2021, Virtual, Canada Gefei Zuo, Jiacheng Ma, AndrewQuinn, Pramod Bhatotia, Pedro Fonseca, and Baris Kasikci

[33] Joy Arulraj, Po-Chun Chang, Guoliang Jin, and Shan Lu. 2013.

Production-Run Software Failure Diagnosis via Hardware Perfor-

mance Counters. In Proceedings of the Eighteenth International Confer-

ence on Architectural Support for Programming Languages and Operat-

ing Systems (ASPLOS ’13). Association for ComputingMachinery, New

York, NY, USA, 101ś112. https://doi.org/10.1145/2451116.2451128

[34] Mona Attariyan, MIchael Chow, and Jason Flinn. 2012. X-ray: Au-

tomating Root-Cause Diagnosis of Performance Anomalies in Pro-

duction Software. In 10th USENIX Symposium on Operating Systems

Design and Implementation (OSDI 12). USENIX Association, Holly-

wood, CA, 307ś320.

[35] Roberto Baldoni, Emilio Coppa, Daniele Cono D’elia, Camil Deme-

trescu, and Irene Finocchi. 2018. A Survey of Symbolic Execu-

tion Techniques. Comput. Surveys 51, 3 (May 2018), 50:1ś50:39.

https://doi.org/10.1145/3182657

[36] Sanjay Bhansali, Wen-Ke Chen, Stuart de Jong, Andrew Edwards,

Ron Murray, Milenko Drinić, Darek Mihočka, and Joe Chau. 2006.

Framework for Instruction-Level Tracing and Analysis of Program

Executions. In Proceedings of the 2nd International Conference on

Virtual Execution Environments (Ottawa, Ontario, Canada) (VEE ’06).

Association for Computing Machinery, New York, NY, USA, 154ś163.

https://doi.org/10.1145/1134760.1220164

[37] Derek Bruening, Timothy Garnett, and SamanAmarasinghe. 2003. An

Infrastructure for Adaptive Dynamic Optimization. In International

Symposium on Code Generation and Optimization, 2003. CGO 2003.

IEEE Comput. Soc, San Francisco, CA, USA, 265ś275. https://doi.

org/10.1109/CGO.2003.1191551

[38] Bryan Buck and Jeffrey K. Hollingsworth. 2000. An API for Runtime

Code Patching. Int. J. High Perform. Comput. Appl. (2000). https:

//doi.org/10.1177/109434200001400404

[39] Stefan Bucur, Vlad Ureche, Cristian Zamfir, and George Candea. 2011.

Parallel Symbolic Execution for Automated Real-World Software

Testing. In Proceedings of the Sixth Conference on Computer Systems.

https://doi.org/10.1145/1966445.1966463

[40] Cristian Cadar, Daniel Dunbar, and Dawson Engler. 2008. KLEE:

Unassisted and Automatic Generation of High-Coverage Tests for

Complex Systems Programs. In Proceedings of the 8th USENIX Con-

ference on Operating Systems Design and Implementation (OSDI’08).

USENIX Association, Berkeley, CA, USA, 209ś224. http://dl.acm.org/

citation.cfm?id=1855741.1855756.

[41] N. Chen and S. Kim. 2015. STAR: Stack Trace Based Automatic Crash

Reproduction via Symbolic Execution. IEEE Transactions on Software

Engineering 41, 2 (2015), 198ś220. https://doi.org/10.1109/TSE.2014.

2363469

[42] Yaohui Chen, Peng Li, Jun Xu, Shengjian Guo, Rundong Zhou, Yulong

Zhang, Tao Wei, and Long Lu. 2020. Savior: Towards Bug-Driven

Hybrid Testing. In 2020 IEEE Symposium on Security and Privacy (SP).

1580ś1596. https://doi.org/10.1109/SP40000.2020.00002

[43] Trishul M. Chilimbi, Ben Liblit, Krishna Mehra, Aditya V. Nori, and

Kapil Vaswani. 2009. HOLMES: Effective Statistical Debugging via

Efficient Path Profiling. In Proceedings of the 31st International Con-

ference on Software Engineering (ICSE ’09). IEEE Computer Society,

USA, 34ś44. https://doi.org/10.1109/ICSE.2009.5070506

[44] Vitaly Chipounov, Volodymyr Kuznetsov, and George Candea. 2011.

S2E: A Platform for In Vivo Multi-Path Analysis of Software Systems.

In International Conference on Architectural Support for Programming

Languages and Operating Systems (Newport Beach, California, USA).

https://doi.org/10.1145/1950365.1950396

[45] Marcello Cinque, Catello Di Martino, and Alessandro Testa. 2012.

Analyzing and modeling the failure behavior of wireless sensor net-

works software under errors. InWireless Communications and Mobile

Computing Conference (IWCMC), 2012 8th International. IEEE, 1136ś

1141. https://doi.org/10.1109/IWCMC.2012.6314366
[46] Matthew Tan Creti. 2015. Software and hardware approaches for record

and replay of wireless sensor networks. Ph.D. Dissertation. Purdue

University.

[47] Weidong Cui, Marcus Peinado, Sang Kil Cha, Yanick Fratantonio, and

Vasileios P. Kemerlis. 2016. RETracer: Triaging Crashes by Reverse

Execution from Partial Memory Dumps. In International Conference

on Software Engineering. https://doi.org/10.1145/2884781.2884844

[48] Leonardo De Moura and Nikolaj Bjùrner. 2008. Z3: An Efficient SMT

Solver. In Proceedings of the Theory and Practice of Software, 14th

International Conference on Tools and Algorithms for the Construction

and Analysis of Systems (Budapest, Hungary) (TACAS’08/ETAPS’08).

Springer, Berlin, Heidelberg, 337ś340. http://dl.acm.org/citation.

cfm?id=1792734.1792766

[49] David Devecsery, Michael Chow, Xianzheng Dou, Jason Flinn, and

Peter M. Chen. 2014. Eidetic Systems. In 11th USENIX Symposium on

Operating Systems Design and Implementation (OSDI 14).

[50] Peter Dinges and Gul Agha. 2014. Targeted Test Input Generation

Using Symbolic-Concrete Backward Execution. In Proceedings of the

29th ACM/IEEE International Conference on Automated Software En-

gineering (Vasteras, Sweden) (ASE ’14). Association for Computing

Machinery, New York, NY, USA, 31ś36. https://doi.org/10.1145/

2642937.2642951

[51] George W Dunlap, Samuel T King, Sukru Cinar, Murtaza A Basrai,

and Peter M Chen. 2002. ReVirt: Enabling intrusion analysis through

virtual-machine logging and replay. ACM SIGOPS Operating Sys-

tems Review 36, SI (2002), 211ś224. https://doi.org/10.1145/1060289.

1060309

[52] Michael D Ernst, Jake Cockrell, William G Griswold, and David

Notkin. 2001. Dynamically Discovering Likely Program Invariants to

Support Program Evolution. IEEE Transactions on Software Engineer-

ing 27, 2 (February 2001), 99ś123. https://doi.org/10.1109/32.908957

[53] Pedro Fonseca, Cheng Li, and Rodrigo Rodrigues. 2011. Finding

Complex Concurrency Bugs in Large Multi-threaded Applications.

In Proceedings of the 6th European Conference on Computer Systems

(EuroSys’11).

[54] Pedro Fonseca, Cheng Li, Vishal Singhal, and Rodrigo Rodrigues.

2010. A study of the internal and external effects of concurrency

bugs. In 2010 IEEE/IFIP International Conference on Dependable Systems

Networks (DSN). https://doi.org/10.1109/dsn.2010.5544315

[55] Pedro Fonseca, Rodrigo Rodrigues, and Björn B. Brandenburg. 2014.

SKI: Exposing Kernel Concurrency Bugs Through Systematic Sched-

ule Exploration. In Proceedings of the 11th USENIX Conference on

Operating Systems Design and Implementation (OSDI’14).

[56] Vijay Ganesh and David L. Dill. 2007. A decision procedure for

bit-vectors and arrays. In CAV.

[57] Xinyang Ge, Weidong Cui, and Trent Jaeger. 2017. GRIFFIN: Guard-

ing Control Flows Using Intel Processor Trace. In Proceedings of

the Twenty-Second International Conference on Architectural Support

for Programming Languages and Operating Systems (ASPLOS ’17).

ACM, New York, NY, USA, 585ś598. https://doi.org/10.1145/3037697.

3037716

[58] Kirk Glerum, Kinshuman Kinshumann, Steve Greenberg, Gabriel Aul,

Vince Orgovan, Greg Nichols, David Grant, Gretchen Loihle, and

Galen Hunt. 2009. Debugging in the (Very) Large: Ten Years of Imple-

mentation and Experience. In Proceedings of the ACM SIGOPS 22Nd

Symposium on Operating Systems Principles (SOSP ’09). ACM, New

York, NY, USA, 103ś116. https://doi.org/10.1145/1629575.1629586

[59] Patrice Godefroid, Michael Y. Levin, and David Molnar. 2012. SAGE:

Whitebox Fuzzing for Security Testing. Queue 10, 1, Article 20 (Janu-

ary 2012), 8 pages. https://doi.org/10.1145/2090147.2094081

[60] Wei Guan and KJ Ray Liu. 2012. Mitigating error propagation for

wireless network coding. IEEE Transactions on Wireless Communi-

cations 11, 10 (2012), 3632ś3643. https://doi.org/10.1109/TWC.2012.

083112.112053

[61] Haryadi S Gunawi, Mingzhe Hao, Tanakorn Leesatapornwongsa,

Tiratat Patana-anake, Thanh Do, Jeffry Adityatama, Kurnia J Eliazar,

1168

https://doi.org/10.1145/2451116.2451128
https://doi.org/10.1145/3182657
https://doi.org/10.1145/1134760.1220164
https://doi.org/10.1109/CGO.2003.1191551
https://doi.org/10.1109/CGO.2003.1191551
https://doi.org/10.1177/109434200001400404
https://doi.org/10.1177/109434200001400404
https://doi.org/10.1145/1966445.1966463
http://dl.acm.org/citation.cfm?id=1855741.1855756
http://dl.acm.org/citation.cfm?id=1855741.1855756
https://doi.org/10.1109/TSE.2014.2363469
https://doi.org/10.1109/TSE.2014.2363469
https://doi.org/10.1109/SP40000.2020.00002
https://doi.org/10.1109/ICSE.2009.5070506
https://doi.org/10.1145/1950365.1950396
https://doi.org/10.1109/IWCMC.2012.6314366
https://doi.org/10.1145/2884781.2884844
http://dl.acm.org/citation.cfm?id=1792734.1792766
http://dl.acm.org/citation.cfm?id=1792734.1792766
https://doi.org/10.1145/2642937.2642951
https://doi.org/10.1145/2642937.2642951
https://doi.org/10.1145/1060289.1060309
https://doi.org/10.1145/1060289.1060309
https://doi.org/10.1109/32.908957
https://doi.org/10.1109/dsn.2010.5544315
https://doi.org/10.1145/3037697.3037716
https://doi.org/10.1145/3037697.3037716
https://doi.org/10.1145/1629575.1629586
https://doi.org/10.1145/2090147.2094081
https://doi.org/10.1109/TWC.2012.083112.112053
https://doi.org/10.1109/TWC.2012.083112.112053

Execution Reconstruction: Harnessing Failure Reoccurrences for Failure Reproduction PLDI ’21, June 20ś25, 2021, Virtual, Canada

Agung Laksono, Jeffrey F Lukman, Vincentius Martin, et al. 2014.

What bugs live in the cloud? a study of 3000+ issues in cloud systems.

In Proceedings of the ACM Symposium on Cloud Computing. 1ś14.

https://doi.org/10.1145/2670979.2670986

[62] Jim Handy. 2019. DRAM Prices Hit Historic Low. https://

thememoryguy.com/dram-prices-hit-historic-low/.

[63] Nima Honarmand and Josep Torrellas. 2014. Replay Debugging:

Leveraging Record and Replay for Program Debugging. SIGARCH

Comput. Archit. News 42, 3 (June 2014). https://doi.org/10.1145/

2678373.2665737

[64] Derek R. Hower and Mark D. Hill. 2008. Rerun: Exploiting Episodes

for Lightweight Memory Race Recording. In Proceedings of the 35th

Annual International Symposium on Computer Architecture (ISCA ’08).

IEEE Computer Society, USA, 265ś276. https://doi.org/10.1109/ISCA.

2008.26

[65] Jeff Huang, Charles Zhang, and Julian Dolby. 2013. CLAP: Recording

Local Executions to Reproduce Concurrency Failures. SIGPLAN Not.

48, 6 (June 2013). https://doi.org/10.1145/2491956.2462167

[66] Shiyou Huang, Bowen Cai, and Jeff Huang. 2017. Towards Production-

Run Heisenbugs Reproduction on Commercial Hardware. In 2017

USENIX Annual Technical Conference (USENIX ATC 17). USENIX As-

sociation, Santa Clara, CA, 403ś415.

[67] Intel Corporation. 2013. Intel Processor Trace. https://software.intel.

com/en-us/blogs/2013/09/18/processor-tracing.

[68] Guoliang Jin, Aditya Thakur, Ben Liblit, and Shan Lu. 2010. Instru-

mentation and sampling strategies for cooperative concurrency bug

isolation. In International Conference on Object Oriented Programming

Systems Languages and Applications. https://doi.org/10.1145/1869459.

1869481

[69] Wei Jin and Alessandro Orso. 2012. BugRedux: Reproducing Field

Failures for in-House Debugging. In Proceedings of the 34th Interna-

tional Conference on Software Engineering (Zurich, Switzerland) (ICSE

’12). IEEE Press, 474ś484. https://doi.org/10.1109/ICSE.2012.6227168

[70] James A. Jones and Mary Jean Harrold. 2005. Empirical Evaluation of

the Tarantula Automatic Fault-localization Technique. In IEEE/ACM

International Conference on Automated Software Engineering. https:

//doi.org/10.1145/1101908.1101949

[71] Baris Kasikci, Weidong Cui, Xinyang Ge, and Ben Niu. 2017. Lazy

Diagnosis of In-Production Concurrency Bugs. In SOSP. Shanghai,

China. https://doi.org/10.1145/3132747.3132767

[72] Baris Kasikci, Cristiano Pereira, Gilles Pokam, Benjamin Schubert,

Malandal Musuvathi, and George Candea. 2015. Failure Sketches:

A Better Way to Debug. In 15th Workshop on Hot Topics in Oper-

ating Systems (HotOS XV). USENIX Association, Kartause Ittingen,

Switzerland.

[73] Baris Kasikci, Benjamin Schubert, Cristiano Pereira, Gilles Pokam,

and George Candea. 2015. Failure Sketching: A Technique for Au-

tomated Root Cause Diagnosis of In-Production Failures. In SOSP.

Monterey, CA. https://doi.org/10.1145/2815400.2815412

[74] Baris Kasikci, Cristian Zamfir, and George Candea. 2012. CORD: A

Collaborative Framework for Distributed Data Race Detection. In

Eighth Workshop on Hot Topics in System Dependability (HotDep 12).

USENIX Association, Hollywood, CA.

[75] Baris Kasikci, Cristian Zamfir, and George Candea. 2012. Data Races

vs. Data Race Bugs: Telling the Difference with Portend. In ASPLOS.

London, UK. https://doi.org/10.1145/2150976.2150997

[76] Baris Kasikci, Cristian Zamfir, and George Candea. 2013. RaceMob:

Crowdsourced Data Race Detection. In SOSP. Farmington, PA. https:

//doi.org/10.1145/2517349.2522736

[77] Baris Kasikci, Cristian Zamfir, and George Candea. 2015. Automated

Classification of Data Races Under Both Strong and Weak Memory

Models. ACM Trans. Program. Lang. Syst. (2015). https://doi.org/10.

1145/2734118

[78] Ali Kheradmand, Baris Kasikci, and George Candea. 2014. Lockout:

Efficient Testing for Deadlock Bugs.. In 5th Workshop on Determinism

and Correctness in Parallel Programming. Salt Lake City, UT.

[79] James C. King. 1976. Symbolic Execution and Program Testing. Com-

mun. ACM 19, 7 (July 1976), 385ś394. https://doi.org/10.1145/360248.

360252

[80] Benjamin Robert Liblit. 2004. Cooperative Bug Isolation. Ph.D. Disser-

tation. University of California, Berkeley.

[81] Hongyu Liu, Sam Silvestro, Wei Wang, Chen Tian, and Tongping

Liu. 2018. iReplayer: In-situ and Identical Record-and-replay for

Multithreaded Applications. SIGPLAN Not. 53, 4 (June 2018). https:

//doi.org/10.1145/3192366.3192380

[82] Peng Liu, Xiangyu Zhang, Omer Tripp, and Yunhui Zheng. 2015.

Light: Replay via Tightly Bounded Recording. SIGPLAN Not. 50, 6

(June 2015). https://doi.org/10.1145/2737924.2738001

[83] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur

Klauser, Geoff Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim

Hazelwood. 2005. Pin: Building Customized Program Analysis Tools

with Dynamic Instrumentation. ACM SIGPLAN Notices 40, 6 (June

2005), 190ś200. https://doi.org/10.1145/1064978.1065034

[84] Kin-Keung Ma, Khoo Yit Phang, Jeffrey S. Foster, and Michael Hicks.

2011. Directed Symbolic Execution. In Proceedings of the 18th Interna-

tional Conference on Static Analysis (Venice, Italy) (SAS’11). Springer-

Verlag, Berlin, Heidelberg, 95ś111.

[85] R. Majumdar and K. Sen. 2007. Hybrid Concolic Testing. In 29th

International Conference on Software Engineering (ICSE’07). 416ś426.

https://doi.org/10.1109/ICSE.2007.41

[86] Ali José Mashtizadeh, Tal Garfinkel, David Terei, David Mazieres,

and Mendel Rosenblum. 2017. Towards Practical Default-On Multi-

Core Record/Replay. In Proceedings of the Twenty-Second International

Conference on Architectural Support for Programming Languages and

Operating Systems (ASPLOS ’17). https://doi.org/10.1145/3037697.

3037751

[87] Steve McConnell. 2004. Code Complete, Second Edition. Microsoft

Press, Redmond, WA, USA.

[88] Pablo Montesinos, Luis Ceze, and Josep Torrellas. 2008. DeLorean:

Recording and Deterministically Replaying Shared-Memory Multi-

processor Execution Efficiently. In International Symposium on Com-

puter Architecture. https://doi.org/10.1145/1394608.1382146

[89] Madanlal Musuvathi, Shaz Qadeer, Thomas Ball, Gerard Basler, Pi-

ramanayagam Arumuga Nainar, and Iulian Neamtiu. 2008. Finding

and Reproducing Heisenbugs in Concurrent Programs. In Proceed-

ings of the 8th USENIX Conference on Operating Systems Design and

Implementation (OSDI’08).

[90] Satish Narayanasamy, Gilles Pokam, and Brad Calder. 2005. BugNet:

Continuously Recording Program Execution for Deterministic Replay

Debugging. SIGARCH Comput. Archit. News 33, 2 (May 2005), 284ś295.

https://doi.org/10.1145/1080695.1069994

[91] Ian Neal, Ben Reeves, Ben Stoler, Andrew Quinn, Youngjin Kwon,

Simon Peter, and Baris Kasikci. 2020. AGAMOTTO: How Persistent

is your Persistent Memory Application?. In 14th USENIX Symposium

on Operating Systems Design and Implementation (OSDI 20). USENIX

Association.

[92] Robert O’Callahan, Chris Jones, Nathan Froyd, Kyle Huey, Albert

Noll, and Nimrod Partush. 2017. Engineering Record and Replay for

Deployability. In 2017 USENIX Annual Technical Conference (USENIX

ATC 17). USENIX Association, Santa Clara, CA, 377ś389.

[93] Soyeon Park, Weiwei Xiong, Zuoning Yin, Rini Kaushik, Kyu H. Lee,

Shan Lu, and Yuanyuan Zhou. 2009. PRES: Probabilistic Replay with

Execution Sketching on Multiprocessors. In SOSP. https://doi.org/10.

1145/1629575.1629593

[94] Harish Patil, Cristiano Pereira, Mack Stallcup, Gregory Lueck, and

James Cownie. 2010. PinPlay: A Framework for Deterministic Replay

and Reproducible Analysis of Parallel Programs. In Proceedings of the

8th Annual IEEE/ACM International Symposium on Code Generation

and Optimization (Toronto, Ontario, Canada) (CGO ’10). Association

1169

https://doi.org/10.1145/2670979.2670986
https://thememoryguy.com/dram-prices-hit-historic-low/
https://thememoryguy.com/dram-prices-hit-historic-low/
https://doi.org/10.1145/2678373.2665737
https://doi.org/10.1145/2678373.2665737
https://doi.org/10.1109/ISCA.2008.26
https://doi.org/10.1109/ISCA.2008.26
https://doi.org/10.1145/2491956.2462167
https://software.intel.com/en-us/blogs/2013/09/18/processor-tracing
https://software.intel.com/en-us/blogs/2013/09/18/processor-tracing
https://doi.org/10.1145/1869459.1869481
https://doi.org/10.1145/1869459.1869481
https://doi.org/10.1109/ICSE.2012.6227168
https://doi.org/10.1145/1101908.1101949
https://doi.org/10.1145/1101908.1101949
https://doi.org/10.1145/3132747.3132767
https://doi.org/10.1145/2815400.2815412
https://doi.org/10.1145/2150976.2150997
https://doi.org/10.1145/2517349.2522736
https://doi.org/10.1145/2517349.2522736
https://doi.org/10.1145/2734118
https://doi.org/10.1145/2734118
https://doi.org/10.1145/360248.360252
https://doi.org/10.1145/360248.360252
https://doi.org/10.1145/3192366.3192380
https://doi.org/10.1145/3192366.3192380
https://doi.org/10.1145/2737924.2738001
https://doi.org/10.1145/1064978.1065034
https://doi.org/10.1109/ICSE.2007.41
https://doi.org/10.1145/3037697.3037751
https://doi.org/10.1145/3037697.3037751
https://doi.org/10.1145/1394608.1382146
https://doi.org/10.1145/1080695.1069994
https://doi.org/10.1145/1629575.1629593
https://doi.org/10.1145/1629575.1629593

PLDI ’21, June 20ś25, 2021, Virtual, Canada Gefei Zuo, Jiacheng Ma, AndrewQuinn, Pramod Bhatotia, Pedro Fonseca, and Baris Kasikci

for Computing Machinery, New York, NY, USA, 2ś11. https://doi.

org/10.1145/1772954.1772958

[95] Gilles Pokam, Cristiano Pereira, Shiliang Hu, Ali-Reza Adl-Tabatabai,

Justin Gottschlich, Jungwoo Ha, and Youfeng Wu. 2011. CoreRacer:

A Practical Memory Race Recorder for Multicore x86 TSO Processors.

In IEEE/ACM International Symposium on Microarchitecture. https:

//doi.org/10.1145/2155620.2155646

[96] Andrew Quinn, Jason Flinn, and Michael Cafarella. 2018. Sledge-

hammer: Cluster-Fueled Debugging. In 13th USENIX Symposium on

Operating Systems Design and Implementation (OSDI 18). USENIX

Association, Carlsbad, CA, 545ś560.

[97] Vaibhav Rastogi, Zhengyang Qu, Jedidiah McClurg, Yinzhi Cao, and

Yan Chen. 2015. Uranine: Real-time privacy leakage monitoring

without system modification for android. In International Conference

on Security and Privacy in Communication Systems. Springer, 256ś276.

https://doi.org/10.1007/978-3-319-28865-9_14

[98] Michiel Ronsse and Koen De Bosschere. 1999. RecPlay: A Fully

Integrated Practical Record/Replay System. ACM Trans. Comput. Syst.

17, 2 (May 1999). https://doi.org/10.1145/312203.312214

[99] Caitlin Sadowski and Jaeheon Yi. 2014. How Developers Use Data

Race Detection Tools. In Workshop on Evaluation and Usability of

Programming Languages and Tools. https://doi.org/10.1145/2688204.

2688205

[100] Swarup Kumar Sahoo, John Criswell, Chase Geigle, and Vikram Adve.

2013. Using Likely Invariants for Automated Software Fault Local-

ization. SIGPLAN Not. 48, 4 (March 2013). https://doi.org/10.1145/

2490301.2451131

[101] Tony Savor, Mitchell Douglas, Michael Gentili, Laurie Williams, Kent

Beck, and Michael Stumm. 2016. Continuous deployment at Facebook

and OANDA. In 2016 IEEE/ACM 38th International Conference on

Software Engineering Companion (ICSE-C). IEEE, 21ś30. https://doi.

org/10.1145/2889160.2889223

[102] Julian Schütte, Dennis Titze, and José María De Fuentes. 2014. App-

caulk: Data leak prevention by injecting targeted taint tracking into

android apps. In 2014 IEEE 13th International Conference on Trust, Se-

curity and Privacy in Computing and Communications. IEEE, 370ś379.

https://doi.org/10.1109/TrustCom.2014.48

[103] Koushik Sen. 2007. Concolic Testing. In Proceedings of the Twenty-

Second IEEE/ACM International Conference on Automated Software

Engineering (Atlanta, Georgia, USA) (ASE ’07). Association for Com-

puting Machinery, New York, NY, USA, 571ś572. https://doi.org/10.

1145/1321631.1321746

[104] Matthew Tancreti, Mohammad Sajjad Hossain, Saurabh Bagchi, and

Vijay Raghunathan. 2011. Aveksha: A hardware-software approach

for non-intrusive tracing and profiling of wireless embedded systems.

In Proceedings of the 9th ACM Conference on Embedded Networked

Sensor Systems (Sensys). ACM, 288ś301. https://doi.org/10.1145/

2070942.2070972

[105] Matthew Tancreti, Vinaitheerthan Sundaram, Saurabh Bagchi, and

Patrick Eugster. 2015. TARDIS: Software-only system-level record

and replay in wireless sensor networks. In Proceedings of the 14th

International Conference on Information Processing in Sensor Networks.

ACM, 286ś297. https://doi.org/10.1145/2737095.2737096

[106] David Trabish, AndreaMattavelli, Noam Rinetzky, and Cristian Cadar.

2018. Chopped symbolic execution. In Proceedings of the 40th In-

ternational Conference on Software Engineering. 350ś360. https:

//doi.org/10.1145/3180155.3180251

[107] Joseph Tucek, Shan Lu, Chengdu Huang, Spiros Xanthos, and

Yuanyuan Zhou. 2007. Triage: Diagnosing Production Run Fail-

ures at the User’s Site. SIGOPS Oper. Syst. Rev. 41, 6 (October 2007).

https://doi.org/10.1145/1294261.1294275

[108] Kaushik Veeraraghavan, Dongyoon Lee, Benjamin Wester, Jessica

Ouyang, Peter M. Chen, Jason Flinn, and Satish Narayanasamy. 2011.
DoublePlay: Parallelizing Sequential Logging and Replay. In Interna-

tional Conference on Architectural Support for Programming Languages

and Operating Systems. https://doi.org/10.1145/1950365.1950370

[109] Peipei Wang, Hiep Nguyen, Xiaohui Gu, and Shan Lu. 2016. RDE:

Replay DEbugging for Diagnosing Production Site Failures. In 2016

IEEE 35th Symposium on Reliable Distributed Systems (SRDS). 327ś336.

https://doi.org/10.1109/SRDS.2016.050

[110] Yan Wang, Harish Patil, Cristiano Pereira, Gregory Lueck, Rajiv

Gupta, and Iulian Neamtiu. 2014. DrDebug: Deterministic Replay

Based Cyclic Debugging with Dynamic Slicing. In Proceedings of

Annual IEEE/ACM International Symposium on Code Generation and

Optimization (CGO ’14). https://doi.org/10.1145/2544137.2544152

[111] Xinyang GeWeidong Cui, Baris Kasikci, Ben Niu, Upamanyu Sharma,

Ruoyu Wang, and Insu Yun. 2018. REPT: Reverse Debugging of

Failures in Deployed Software. In OSDI.

[112] Mingyuan Xia, Lu Gong, Yuanhao Lyu, Zhengwei Qi, and Xue Liu.

2015. Effective real-time android application auditing. In 2015 IEEE

Symposium on Security and Privacy. IEEE, 899ś914. https://doi.org/

10.1109/SP.2015.60

[113] Jun Xu, Dongliang Mu, Xinyu Xing, Peng Liu, Ping Chen, and Bing

Mao. 2017. Postmortem program analysis with hardware-enhanced

post-crash artifacts. In 26th USENIX Security Symposium (USENIX

Security 17). 17ś32.

[114] Cristian Zamfir and George Candea. 2010. Execution Synthesis:

A Technique for Automated Software Debugging. In Proceedings

of the 5th European Conference on Computer Systems (EuroSys ’10).

https://doi.org/10.1145/1755913.1755946

[115] Cristian Zamfir, Baris Kasikci, Johannes Kinder, Edouard Bugnion,

and George Candea. 2013. Automated Debugging for Arbitrarily

Long Executions. In 14th Workshop on Hot Topics in Operating Systems

(HotOS XIV). USENIX Association, Santa Ana Pueblo, NM.

[116] Andreas Zeller and Ralf Hildebrandt. [n.d.]. Simplifying and Isolating

Failure-Inducing Input. Transactions on Software Engineering ([n. d.]).

https://doi.org/10.1109/32.988498

[117] Wei Zhang, Junghee Lim, Ramya Olichandran, Joel Scherpelz, Guo-

liang Jin, Shan Lu, and Thomas Reps. 2011. ConSeq: Detecting Con-

currency Bugs Through Sequential Errors. SIGARCH Comput. Archit.

News 39, 1 (March 2011). https://doi.org/10.1145/1950365.1950395

[118] Yongle Zhang, Serguei Makarov, Xiang Ren, David Lion, and Ding

Yuan. 2017. Pensieve: Non-intrusive failure reproduction for dis-

tributed systems using the event chaining approach. In Proceed-

ings of the 26th Symposium on Operating Systems Principles. 19ś33.

https://doi.org/10.1145/3132747.3132768

[119] Yongle Zhang, Kirk Rodrigues, Yu Luo, Michael Stumm, and Ding

Yuan. 2019. The inflection point hypothesis: a principled debugging

approach for locating the root cause of a failure. In Proceedings of

the 27th ACM Symposium on Operating Systems Principles. 131ś146.

https://doi.org/10.1145/3341301.3359650

[120] Daniele Zuddas, Wei Jin, Fabrizio Pastore, Leonardo Mariani, and

Alessandro Orso. 2014. MIMIC: Locating and Understanding Bugs by

Analyzing Mimicked Executions. In Proceedings of the 29th ACM/IEEE

International Conference on Automated Software Engineering (ASE ’14).

Association for Computing Machinery, New York, NY, USA, 815ś826.

https://doi.org/10.1145/2642937.2643014

1170

https://doi.org/10.1145/1772954.1772958
https://doi.org/10.1145/1772954.1772958
https://doi.org/10.1145/2155620.2155646
https://doi.org/10.1145/2155620.2155646
https://doi.org/10.1007/978-3-319-28865-9_14
https://doi.org/10.1145/312203.312214
https://doi.org/10.1145/2688204.2688205
https://doi.org/10.1145/2688204.2688205
https://doi.org/10.1145/2490301.2451131
https://doi.org/10.1145/2490301.2451131
https://doi.org/10.1145/2889160.2889223
https://doi.org/10.1145/2889160.2889223
https://doi.org/10.1109/TrustCom.2014.48
https://doi.org/10.1145/1321631.1321746
https://doi.org/10.1145/1321631.1321746
https://doi.org/10.1145/2070942.2070972
https://doi.org/10.1145/2070942.2070972
https://doi.org/10.1145/2737095.2737096
https://doi.org/10.1145/3180155.3180251
https://doi.org/10.1145/3180155.3180251
https://doi.org/10.1145/1294261.1294275
https://doi.org/10.1145/1950365.1950370
https://doi.org/10.1109/SRDS.2016.050
https://doi.org/10.1145/2544137.2544152
https://doi.org/10.1109/SP.2015.60
https://doi.org/10.1109/SP.2015.60
https://doi.org/10.1145/1755913.1755946
https://doi.org/10.1109/32.988498
https://doi.org/10.1145/1950365.1950395
https://doi.org/10.1145/3132747.3132768
https://doi.org/10.1145/3341301.3359650
https://doi.org/10.1145/2642937.2643014

	Abstract
	1 Introduction
	2 Motivation
	2.1 Efficiency
	2.2 Effectiveness
	2.3 Accuracy
	2.4 Summary

	3 Design
	3.1 Online Monitoring
	3.2 Shepherded Symbolic Execution
	3.3 Key Data Value Selection
	3.4 Handling Concurrency

	4 Implementation
	5 Evaluation
	5.1 Experimental Setup
	5.2 Effectiveness and Accuracy of ER
	5.3 Efficiency of ER
	5.4 Invariant-Based Failure Localization

	6 Related Work
	7 Conclusion
	References

