Efficient Tracing of Cold Code via
Bias-Free Sampling

Baris Kasikci*, Thomas Ball’,

George Candea®, John Erickson”,
Madanlal Musuvathi’

_ Gl

"ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE

B Microsoft
. Research




Why Should We Sample Cold Code?

e Cold code is not well tested

— Bugs lurk in cold code [Marinescu et al., Cristian et al.]

* Cold vs. hot code is not known a priori

— Cold code is rarely executed during program execution

We need to be able to efficiently sample cold code



Current Dynamic Sampling Approaches

e Static instrumentation (e.g., Gcov, bbcover)

— Incurs lots of overhead (>2x)
— Requires separate builds

* Dynamic instrumentation (e.g., Pin-based)

— Do not handle multithreaded programs efficiently

 Temporal sampling (e.g., CBI [Liblit et al.])

— Less overhead per-execution
— Need lots of executions to catch cold code

Current approaches are inefficient and do not scale



How to Efficiently Sample Cold Code?

® Breakpoint

l"
L

* Use code breakpoints

One breakpoint per basic block
Present in all modern CPUs
O cost once removed

e Sample instruction

Mark as “executed”
Record the accessed memory
address




Challenges

Don’t change behavior of
— Instrumented programs
— Services such as debuggers

Number of breakpoints

— In the worst case, a breakpoint for every block
— Existing frameworks cannot handle such volume

Multithreaded code

JIT and managed code
— Cannot be handled like normal code due to optimization



Bias-Free Sampling (BfS)

* Design
* Implementation
e Evaluation

Native/managed, kernel/user space, x86/ARM
Ran on 679 programs, incurs overheads of 1-6%



BfS’s Design Goal

 Sample cold instructions without
over-sampling hot instructions

 Sample all the other instructions
independently of their execution frequency

for (1=0; 1<1,000,000; ++1)

it (.) Executes once every
statement_1 one million iterations
else

Statement_Z



BfS Parameters - Definitions

e K: Desired sample count per-instruction

— Ensures first K executions are sampled
— Bounds the overhead
— O cost after K breakpoints

e P: Sampling distribution
— Can be uniform or biased

* R: Sampling rate
— Number of samples generated per second
— Controls the overhead



BfS Parameters - Examples

Application Count (K) | Distribution (P) Rate (R)



Bias-Free Sampling

* Implementation
e Evaluation



Breakpoints Primer

 Hardware support
— int 3 on x86 traps into the OS

* Breakpoint instructions are not larger than
any instruction in the ISA

— Allows overwriting only a single instruction
— Atomic add/removal
— Helps lower the overhead



Debugger Interplay

Program

® BfS breakpoint Regular breakpoint

BfS framework is invisible to the debugger,
allowing transparent breakpoint processing



Multi-Shot Breakpoints

* Debuggers processing a breakpoint
— Restore original instruction
— Single step
— Restore the breakpoint

e BfS framework

Resumed instruction copy
Sampled instruction In thread-local buffer

with breakpoint ¢ Set PC
w
.\
Jmp to return to

the instruction after
the sampled one




Managed Code Support

e BfS uses CLR debugging APIs

— Bypassing the APIs does not work
— CLI (interpreter) performs introspection
— Cannot modify the binary without the CLR’s knowledge

* May need to disable JIT optimizations for

some tasks
— E.g., to have exact coverage results



Bias-Free Sampling

* Design
* Implementation
e Evaluation

679 programs:
All Windows system binaries, Z3 constraint solver,
SPECint benchmark suite, and C# benchmarks




Use Case 1 —/Z3 Coverage

Coverage Measurement
Runtime [sec]

300 ,
- A BfS’s coverage

bbegver [No overhead (1%) is
200 N .2 overhead

' S o independent of
0 S program behavior,
wo o, A BB it is a function of
ooa program size

50 100 150 200
Runtime with no coverage

measurement [sec]



Use Case 2 — Coverage in Testing
Windows 8 Binaries

* Coverage with BfS and bbcover

— 665 system binaries: 32 and 64 bit, x86 and ARM
— 70 to 1,000,000 basic blocks

— A total of 4 hours on 17 machines
 bbcover failed for 45 binaries due to timeout

* For all but 40 tests, BfS reports more
coverage

— Less coverage cases are due to non-determinism
Coverage overhead is always less than 6%



Use Case 3 — 73 Cold Code Tracing

Function id
1800 6. output,
~-freeing.,
1600

1400

1200

1000

800

600

400

200

0 AT S E——
0 500 1000 1500 2000 2500 3000 3500 4000 4500
Index in event log

Cold-code tracing identifies sets of related functions



Bias-Free Sampling

Low overhead technique to identify cold code

Leverages breakpoint support
— Ideal for multithreaded code
— No need for a separate build

Implementation on various platforms

— 32 and 64 bit, x86 and ARM, kernel and user space, native
and managed

Comprehensive evaluation

— 1-6% overhead for coverage and cold block tracing



