
SPAN: A Unified Framework and Toolkit for Querying
Heterogeneous Access Policies

Swati Gupta1∗, Kristen LeFevre2, and Atul Prakash2†

1 Indian Institute of Technology, Delhi 2 University of Michigan, Ann Arbor, MI

Abstract
Incorrect policy configurations are a major cause of secu-
rity failures in large-scale systems. Policy analyzers and
testing tools can help with this, but often the tools are spe-
cific to one type of policy (e.g., firewalls). In contrast,
the most insidious security problems often require under-
standing the interactions of policies across systems (e.g.,
firewalls, SSH, file systems, etc.). Currently, much of this
analysis must be done manually. In this paper, we pro-
pose a common framework called SPAN (Security Pol-
icy Analyzer) to help analyze policies from heterogeneous
systems. On the front-end, SPAN presents administrators
with a simple, unified, abstraction and flexible query lan-
guage. Internally, policies and queries are implemented
compactly and efficiently using decision diagrams.

1 Introduction
Security experts and system administrators agree that
good security policies are essential to protecting their sys-
tems. However, it can be difficult to set security policies
correctly, without making mistakes. Many system admin-
istrators recount experiences in which a system resource
(e.g., a computer or file) was accessed inappropriately, not
by hacking, but due to misconfiguration. Similarly, users
may be improperly denied access to resources.

Unfortunately, it can be difficult to troubleshoot and fix
security policies. In today’s complex systems, requests
for system resources must often pass through multiple ser-
vices, each with its own access policy. For example, con-
sider a web application and a user who requests access to
a particular entry in a back-end database (DBMS). This
request will likely need to pass through a firewall policy,
policies used by the web application server, the DBMS
policy, and the access control policies in place in the un-
derlying file system that stores DBMS tables.

Often, gaps in security arise at the boundaries between
system policies, which are often written by different peo-
ple, making implicit assumptions about the guarantees
provided by other policies. Detecting and fixing errors
requires system administrators to examine multiple poli-

∗Work done while author was visiting the University of Michigan.
†Supported in part by NSF Grant 0705672.

Firewall ssh nfs DB samba

Internal Policy Representation

Presentation Policy Model

Analysis Queries Constraints

Native Security Policies

Policy Wrappers (Parsers)

Input Policy Model

Figure 1: SPAN System Components

cies, analyzing the flow of requests between them in order
to determine the cause of a problem. In heterogeneous
environments, this task can be difficult and error-prone.

Clearly, there is a need for better solutions. In this
paper, we propose a novel framework and system called
SPAN (Security Policy Analyzer). The main distinguish-
ing design insight behind SPAN is a three-tiered approach
to policy abstraction and analysis (shown in Figure 1):

• At the bottom level, policies are consumed in their
various native formats (i.e., configuration files).

• At the top level, policies are presented to system ad-
ministrators in terms of a unified presentation pol-
icy model, which abstracts away the numerous se-
mantic and syntactic differences between input poli-
cies. To understand a set of heterogeneous policies,
a system administrator can now write simple queries,
expressed in terms of the presentation model, rather
than attempting to reason about the input policies.

• Finally, in the middle, policies are represented us-
ing an internal policy representation selected for ef-
ficiency. (In the current implementation, this repre-
sentation is a form of decision diagram.) Queries,
which are specified in terms of the presentation pol-
icy model, are converted automatically to operations
on the internal policies. Thus, the internal policy
model is completely hidden from view.

1

Proto Source SPort Dest. DPort Action
* 192.168.*.* * *.*.*.* * ACCEPT
* dom(Source)− {192.168.*.*} * *.*.*.* * DROP

(a) Firewall presentation policy (fw)

Username Action
root ACCEPT
alice ACCEPT
bob ACCEPT

dom(Username)− {root, alice, bob} DROP
(b) SSH presentation policy (ssh)

Proto Source fw.Action Username ssh.Action
* 192.168.*.* ACCEPT alice ACCEPT
* 192.168.*.* ACCEPT bob ACCEPT
* 192.168.2.4 ACCEPT root ACCEPT

(c) Policy join result under the constraint that Username ∈ {root} →
Source ∈ {192.168.2.4}

Figure 2: Example integrating heterogeneous policies

2 SPAN - Users’ View
SPAN provides a surprisingly simple and powerful model
for analyzing security policies; users are presented a re-
lational view of policies, even though the underlying im-
plementation is very different from a relational database.
The “rows” in the relational view describe (exhaustively)
the relationships between inputs and access control deci-
sions. For example, Figure 2 shows a relational-style view
of sample firewall and SSH policies1. Users can query
these policies as if they were relational tables.

Given such a model, the following are examples of the
types of analysis that SPAN can do on the policies.

What requests are accepted? The first example is the
simplest; it requests the set of all source IP addresses
such that policy fw accepts some requests from these ad-
dresses via the TCP protocol.

SELECT Source, Action FROM fw
WHERE Action = accept AND Proto = TCP

Change analysis: Using the query language, it is also
easy to express change analysis. Suppose that we have
two versions of the same policy, P1 and P2, and we want
to know which requests are accepted by P2, but not by P1.
This query is easily expressed as follows:

SELECT F1, ..., Fn, Action FROM P2

WHERE Action = accept
EXCEPT
SELECT F1, ..., Fn, Action FROM P1

WHERE Action = accept

Comparing with a reference policy: Often, an organiza-
tion will develop a reference policy, expressing best secu-
rity practices. Using a similar query as for change anal-
ysis, it is easy to check whether a policy P accepts any
requests that are not accepted by the reference policy R.

Querying Heterogeneous Policies While our query lan-
guage can express common analysis and verification tasks
for policies of a single type (e.g., firewall policies), much

1For ease of presentation, we have not enumerated all of the requests
in the example. For example, in Figure 2(b), the SSH policy accepts
requests from users root, alice, and bob, but drops all other requests.

of the language’s power actually lies in its ability to com-
bine policies expressed in terms of different input types
(schemas). For example, we can write a query to find in-
puts that will be accepted by both a firewall and an SSH
policy:

SELECT fw.Proto, fw.Source, fw.Action,
ssh.Username, ssh.Action FROM fw, ssh
WHERE fw.Action = accept
AND ssh.Action = accept

The variables in different schemas can be associ-
ated through a set of (user-provided) instance-level con-
straints. An example set of constraints (which con-
tains only one constraint) is {Username ∈ {root} →
Source ∈ {192.168.2.4}}. Let’s say the user gives this
a name “SSHConstraints”. This defines a relationship be-
tween fw and ssh, indicating that authentication creden-
tials for username root (e.g., private key) are only avail-
able at IP address 192.168.2.4. The modified query under
the instance-level constraint is:

SELECT fw.Proto, fw.Source, fw.Action,
ssh.Username, ssh.Action
FROM fw, ssh WHERE fw.Action = accept
AND ssh.Action = accept AND SSHConstraints

The result of such a query contains the set of all re-
quests that, in light of the constraints, could possibly be
accepted by both policies. Figure 2(c) shows the query
results. Notice that requests with Username = root
from arbitrary addresses are ruled out by the constraint.
SSH requests from IP addresses other than 192.168.*.*
are ruled out by the firewall.

3 Related Work
Security policy analysis and verification is a growing area
of research. Most related to our work is Margrave [2],
developed as a verification toolkit for XACML policies.
XACML is a single policy language, but it is capable
of expressing various policy semantics. (That is, poli-
cies can be viewed as a sequence of rules, and XACML
supports various rule combining algorithms such as first-
applicable, deny-override, etc.) Margrave is built around

2

two policy representations: multi-terminal binary deci-
sion diagrams (MTBDDs) and binary decision diagrams
(BDDs). Initially, each policy is represented as a reduced
MTBDD. Margrave provides several operations that can
be used to combine and query policies, and the results of
these operations are expressed as BDDs.

While the internal policy representation used in SPAN
is similar to that of Margrave, and the two systems sup-
port a similar set of query operators, SPAN provides a
simple and unified presentation policy abstraction, which
allows the user to think of policies in terms of simple
tables and make queries in a familiar SQL-like syntax.
In contrast, Margrave requires users to understand and
manipulate MTDDs and BDDs. Furthermore, Margrave
does not provide a natural operator for combining poli-
cies expressed in terms of different vocabularies (what we
will call schemas). For example, firewall policies are ex-
pressed in terms of IP addresses, and file system policies
are expressed in terms of users. SPAN permits a user to
combine such heterogeneous policies in a natural way us-
ing a join operation.

Other than Margrave, the vast majority of work is secu-
rity policy verification and testing has focused on a single
type of policy, and is thus unable to reason about miscon-
figurations spanning heterogeneous systems.

One particular area of focus has been in analyzing and
testing firewall policies. Two of the first systems were
Fang [7] and Lumeta [9], which support a specific class
of queries over multiple firewalls in a network. Queries in
Fang are described by triples of the form (set of source IP
addresses, set of destination IP addresses, set of services),
asking “Which Source IP addresses can send which ser-
vices to which destination IP addresses?”. Lumeta ex-
tends Fang by automatically selecting queries. In both
cases, however, query evaluation is implemented by sim-
ulating the behavior of all packets described by the query,
rather than through static analysis.

In contrast to the simulation approach, a variety of tools
have recently been proposed that use static verification
(specifically, tools built on decision diagrams) to verify
or query one or more firewall policies:
• ITVal [6, 5] Marmorstein and Kearns provide an

analysis tool for one or more firewalls, with an im-
plementation built on multi-way decision diagrams
(MDDs). The system provides a simple firewall-
specific query language for asking questions about
which packets are accepted.

• Structured Firewall Query Language (SFQL) [4] Liu
et al. proposed a simple SQL-like language for spec-
ifying queries on a single firewall policy. These
queries are implemented using a structure the authors
refer to as a firewall decision tree. However, the sys-
tem does not support queries on multiple firewalls or
queries on other types of policies.

• Fireman [10] Yuan et al. propose a tool based on bi-
nary decision diagrams (BDDs) to check for miscon-
figurations and inconsistencies in one or more fire-
walls. While the system can process some of the
same analyses as SPAN, it is designed specifically
for firewalls, and it is not clear whether it would gen-
eralize to other classes of policies.

Finally, Gouda et al. proposed using (reduced) interval-
based decision diagrams to produce consistent, compact,
and complete firewall policies [3]. However, the tool pro-
vides no support for user-specified querying.

4 Preliminaries
4.1 Input Policy Model
We begin by describing (in abstract terms) the kinds of in-
put policies that we will support. It is common in many
domains to express access policies in terms of a set of
rules, each of which is expressed in terms of input and de-
cision variables.2 The set of variables can vary by policy
type. For example, a firewall policy is specified in terms of
source and destination IP addresses, among other things,
while SSH policies are specified in terms of usernames.
We capture this idea through the idea of a policy schema,
borrowing the terminology from relational databases.

Definition 1 (Policy Schema) A policy schema S con-
sists of a set of input variables F1, ..., Fn and a decision
variable D, each with a finite domain denoted dom().

Consider firewall policies, for example. In this case,
the input variables describe packets; we might have F1 =
Source IP , F2 = Source Port, etc. The decision vari-
able describes the decisions that can be made for a partic-
ular packet (i.e., dom(D) = {accept, drop}).3

Definition 2 (Input Policy Instance) An input policy in-
stance I is defined by an ordered sequence of policy rules,
each expressed in terms of policy schema S, and a rule
combining algorithm. Each rule is a statement of the form
predicate → decision, where predicate is a boolean ex-
pression of the form F1 ∈ S1 ∧ ... ∧ Fn ∈ Sn, such that
each Si ⊆ dom(Fi), and decision ∈ dom(D).

Policies are applied to requests, which are tuples of
the form (f1, ..., fn) ∈ dom(F1) × ... × dom(Fn). For
example, firewall requests are individual packets. A re-
quest is said to match a particular policy rule R if f1 ∈
S1 ∧ ... ∧ fn ∈ Sn.

In this work, we consider two specific rule combining
algorithms. In the first applicable algorithm (similar to

2Our input policy abstraction does not inherently distinguish between
properties of requests (e.g., usernames) and properties of the resources
being requested (e.g., computers or files). Both concepts are simply in-
corporated as input variables.

3Technically, it is not required that the policy produce a decision for
every input (i.e.., dom(D) could include a value no decision).

3

typical firewalls), the decision rendered for a particular
request is determined by the first policy rule to match the
request. The decision precedence algorithm assigns a to-
tal order to all values in dom(D), and if multiple rules
match a particular request, it takes the value of D with
the highest precedence. Examples of the latter algorithm
include accept override and deny override.

Of course, notice that two input policies that are syn-
tactically different may in fact yield the same decisions
for all requests, in which case we will say that the two
policies are semantically equivalent.

4.2 Presentation Policy Model

In even this abstract view of input policies, there can be
considerable semantic heterogeneity. For example, fire-
wall policies typically use a first-applicable rule com-
bining algorithm, but SSH typically uses deny-override,
which makes it difficult to compare different policies, or
reason about them in combination. For these reasons,
we developed a unified presentation policy model, which
masks the heterogeneity in input policies without losing
information. The system administrator / analyst interacts
with a set of presentation policies, each of which has a
unique policy name.

Definition 3 (Presentation Policy) A presentation pol-
icy P consists of two parts: a policy schema S =
{F1, ..., Fn, D}, and a policy instance, which is a set of
unique tuples in dom(F1)× ...× dom(Fn)× dom(D).

Observe that every input policy instance can be ex-
pressed as a unique canonical presentation policy (that
is, a presentation policy in which each unique value of
F1, ..., Fn is associated with a single unique value of D).
Conceptually, this can be done by enumerating all re-
quests in dom(F1) × ... × dom(Fn) and applying the
policy to each. Of course, we do not advocate actually
enumerating such requests, or materializing the full pre-
sentation policy. We will return to the internal policy rep-
resentation in Section 6.

5 SPAN-QL Query Language
To query policies, we propose a simple query language
called SPAN-QL, the syntax and semantics of which are
inspired by (a subset of) the relational database query lan-
guage SQL, which is familiar to most system administra-
tors. In order to provide a uniform interface, all queries
are expressed in terms of presentation policies.

5.1 Algebra Operators

It is straightforward to define the relational algebra op-
erators atop the presentation policy model: Selection
(σC(P)); Projection (πprojection list(P)); Set Difference
(P1 − P2, where P1 and P2 have the same schema); Set
Intersection (P1 ∩ P2, where P1 and P2 have the same
schema); Union (P1 ∪ P2, where P1 and P2 have the

same schema). We also define the policy Cross Product
(P1 × P2) and Conditional Join (P1 ./C P2), which al-
low us to combine two or more policies with different
schemas. Like relational algebra, the algebra of presen-
tation policies is closed. That is, each operator takes one
or more presentation policies as input, and produces a pre-
sentation policy as output. Thus, algebra operators can be
composed. Further, the operators have the same algebraic
properties as relational algebra and can be reordered fol-
lowing the same rules.

5.2 SPAN-QL and Constraints

System administrators interact with SPAN by issuing sim-
ple queries, which are specified in terms of the presenta-
tion policies using a subset of the SQL syntax. Like SQL,
queries are expressed declaratively in SPAN-QL, but then
translated into algebra expressions. The basic form of a
query is as follows, which is equivalent to the algebra ex-
pression πA1,...,Am

(σH(P1 ./C P2)).

SELECT A1, ..., Am FROM P1, P2

WHERE C AND H

In this example, C is a standard boolean condition. In
addition, in order to easily relate schemas, we incorpo-
rate named constraint sets, denoted H , where constraints
are instance-level rules of the form F1 ∈ {f1

1 , ..., f1
m} →

F2 ∈ {f2
1 , ..., f2

n}, where F1 ⊆ schema(P1) and F2 ⊆
schema(P2) and each f1

i ∈ dom(F1) and each f2
i ∈

dom(F2). This is just syntactic sugar, but the idea is that
a set of constraints can be loaded from file and used re-
peatedly. Another form of constraints that SPAN supports
are equality constraints, where a variable in one policy
schema is always equal to a variable in another policy
schema. Such constraints are useful for handling network
connectivity.

In addition, we use SQL syntax to express set opera-
tions. In each of the following, P1 and P2 are two pre-
sentation policies expressed in terms of the same schema:
Set Difference (P1 EXCEPT P2); Set Intersection (P1 IN-
TERSECT P2); Union (P1 UNION P2).

6 Internal Policy Representation
Returning to the system architecture (Figure 1), the re-
maining challenge is bridging the gap between input poli-
cies and presentation policies. A naive approach would
take each input policy and actually enumerate all possible
requests. However, this is clearly not satisfactory. Con-
sider, for example, a 32-bit IP address that is being used
to make firewall decisions. Enumerating a list of all IP
addresses is extremely space-consuming.

For these reasons, we are currently using an internal
policy representation based on binary decision diagrams
(BDDs) [1]. Input policies are initially imported, and
then translated into their canonical BDD representations.

4

fw:src1:192

fw:src2:168

T

fw:action:drop

F

fw:action:accept

T F

True

T

False

F T F

(a) Firewall policy fw

ssh:uname:root

ssh:action:accept

T

ssh:uname:alice

F

True

T

False

F

Tssh:uname:bob

F

T

ssh:action:drop

F

T F

(b) SSH policy ssh

Figure 3: Sample policy decision diagrams

SPAN-QL queries are automatically translated into oper-
ations on BDDs.

In each BDD, the terminal nodes (true and false) can be
interpreted to indicate whether the particular request and
decision obtained from traversing the diagram from root
to terminal is valid in the policy. For clarity, we will use
the following naming convention for nodes in the decision
diagrams: PolicyName : AttrName : V alueRange.
For example, a node named Firewall1 : SPort : [80, 80]
refers to the policy called Firewall1, variable SPort, with
value 80. For example, Figure 3(a) shows a decision di-
agram for the firewall policy in Figure 2(a). Notice that
packets from source IP 192.168.∗.∗ and decision = accept
is valid, while all other requests with decision = drop are
valid. Due to space constraints, we omit the details of
how input policies are translated to BDDs of this form;
however, the process is similar to that used by Margrave
[2].

We implement the following set of operations on
BDDs: logical operations (i.e., P1 ∧ P2, P1 ∨ P2, ¬P);
the restriction operation restrict(P,C), which removes
nodes from the diagram that do not satisfy condition C;
rename(P, P1, < F ′

1, ..., F
′
n >), which renames the the

policy P and the variables contained therein; finally, the

Query Expression Decision Diagram Operation
P1 ∪ P2 rename(P1, P, < F1, ...Fn >)

∨rename(P2, P, < F1, ..., Fn >)

P1 ∩ P2 rename(P1, P, < F1, ...Fn >)
∧rename(P2, P, < F1, ..., Fn >)

P1 − P2 rename(P1, P, < F1, ...Fn >)
∧¬rename(P2, P, < F1, ..., Fn >)

P1 × P2 P1 ∧ P2

P1 ./C P2 P1 ∧ P2 ∧ C

σC(P) P ∧ C

Figure 4: Implementing query operators using operations
on decision diagrams

canonicalization operator reduce().

6.1 SPAN-QL Operator Implementation

The core set of decision diagram operations is sufficient to
implement most of the query algebra operations we have
defined on presentation policies4. For each query opera-
tor, Figure 4 shows one corresponding sequence of opera-
tions on the decision diagram representation. Notice that
before performing a set operation on policies P1 and P2,
we need to rename both policies in terms of the same new
policy name, and same set of variable names.
Example: Consider again the example combining a fire-
wall and an ssh policy, shown in Figure 2 and the cor-
responding decision diagram representations in Figure 3,
and consider again the following query, where H is the
named constraint set {ssh.Username ∈ {root} →
fw.Source ∈ {192.168.2.4}}.

SELECT * FROM fw, ssh
WHERE fw.Action = ACCEPT
AND ssh.Action = ACCEPT AND H

This query can be translated to the following algebra
expression:

σfw.action=ACCEPT (fw)
./H={ssh.uname∈{root}→fw.Source∈{192.168.2.4}}

σssh.action=ACCEPT (ssh)

The selection conditions S1 and S2 and the constraint
H are converted to decision diagrams (omitted for space),
and the algebra query is translated into the following
expression involving operations on decision diagrams
fw, ssh, S1, S2 and H:

(fw ∧ S1) ∧ (ssh ∧ S2) ∧H

The resulting (reduced) decision diagram is shown in
Figure 5. Notice that the result can be converted to the
presentation policy model, provided that the resulting tab-
ular form is not too large. Alternatively, the diagram itself
can be returned to the user as an alternate expression of
the query result.

4Unlike selections and joins, mapping projection to BDDs is prob-
lematic, but it can often be ignored except as a last step in the presenta-
tion of the results.

5

fw:src1:192

fw:src2:168

T

False

F

fw:action:accept

T

F

ssh:uname:root

T

F

fw:src3:2

T

ssh:uname:alice

F

fw:src4:4

T

F

ssh:uname:bob

F

ssh:action:accept

T

T

F

T

F

True

T F

Figure 5: Query result, expressed as a decision diagram

7 Implementation Status
The current prototype of SPAN is based on a Python im-
plementation of range-oriented binary decision diagrams
(6,000 lines of code), which exposes the operations de-
scribed in Section 6. Our system architecture supports
the easy addition of policy parsers using wrappers. Cur-
rently, we have implemented a useful collection of pol-
icy types, each of which is obtained from the configura-
tion files of services running on Unix machines: iptables
firewall policies (/etc/sysconfig/iptables); sshd policy con-
figuration (/etc/ssh/sshd config); nfs policy configuration
(/etc/exports).

The SPAN-SQL query engine and optimizer is cur-
rently under construction. We have observed, through
several examples, that like relational database queries [8],
selecting a good (equivalent) operation plan is important
for providing good performance. (The tradeoffs are, of
course, different because the operators are evaluated in
decision diagrams.) We are considering how we might
apply cost-based to this problem.

8 Future Research Directions
Cross-system policy configuration is a difficult problem in
modern security. In this paper, we described our progress
to date in designing and building SPAN, a cross-platform
policy verification and query tool. We are currently work-
ing to build out the SPAN infrastructure and to evaluate a
corpus of real policies for possible misconfigurations.

The SPAN work bridges ideas from databases and the
work on decision diagram representations of security poli-

cies and suggests that users can analyze many aspects of
security policies using a familiar and well-understood re-
lational model. We were able to show that policies can
be naturally mapped to relational schemas and their in-
stances. We were also able to show that queries across
different policies, even heterogenous ones, can be ex-
pressed as queries on multiple tables in the relational view.
This also suggests that some performance optimizations
may be possible by reordering algebra operations [8]. Of
course, the performance tradeoffs are different from tra-
ditional query optimization because the underlying repre-
sentation of policies are not tables, but decision diagrams.

While SPAN simplifies the task of expressing queries
on poicies by providing a familiar model and query lan-
guage, there is still an open challenge in how best to
present the results of queries to the user. Presenting the re-
sults as tables is difficult as a fully-instantiated table (e.g.,
Figure 2) may be too large. Currently, SPAN generates
decision diagrams and also can generate examples.

Another area of investigation is using queries as part
of organization-level checks as to whether policies satisfy
certain restrictions. For example, an organization may al-
low users to modify policies on their individual machines,
but apply checks to make sure that the individual poli-
cies do not collectively violate corporate policies. These
checks can be potentially expressed as comparisons of
queries across policies and the expected result. This also
helps address the user-interface problem. Users would fo-
cus on specifying the checks and making sure that their
policies are compliant with those checks.

Finally, we are investigating extensions that would al-
low SPAN to be applied to more complex input policies
(e.g., firewalls with state, or policies like file system ACLs
that involve resource containment).
References

[1] R. E. Bryant. Graph-based algorithms for boolean function
manipulation. IEEE Transactions on Computers, 1986.

[2] K. Fisler, S. Krishnamurthi, L. Meyerovich, and M.Tschantz.
Verification and change-impact analysis of access-control poli-
cies. In ICSE, 2005.

[3] M. Gouda and X. Liu. Firewall design: Consistency, complete-
ness, and compactness. In ICDCS, 2004.

[4] A. Liu, M. Gouda, H. Ma, and A. Ngu. Firewall queries. In
OPODIS, 2005.

[5] R. Marmorstein and P. Kearns. An open source solution for
testing NAT’d and nested iptables firewalls. In LISA, 2005.

[6] R. Marmorstein and P. Kearns. A tool for automated iptables
firewall analysis. In USENIX, 2005.

[7] A. Mayer, A. Wool, and E. Ziskind. Fang: A firewall analysis
engine. In Oakland, 2000.

[8] P. Selinger, M. Astrahan, D. Chamberlin, R. Lorie, and T.Price.
Access path selection in a relational database system. In SIG-
MOD, 1979.

[9] A. Wool. Architecting the lumeta firewall analyzer. In USENIX
Security, 2001.

[10] L. Yuan, J. Mai, Z. Su, H. Chen, C. Chuah, and P. Mohapatra.
FIREMAN: A toolkit for firewall modeling and analysis. In
Oakland, 2006.

6

