
Nothing relevant. nothing relevant

1



Undoing Actions in Collaborative Work1

Atul Prakash

Michael J. Knister

Software Systems Research Laboratory
Department of Electrical Engineering and Computer Science
University of Michigan, Ann Arbor, MI 48109-2122
Phone: (313) 763-1585
Email: aprakash@eecs.umich.edu, mknister@eecs.umich.edu

ABSTRACT

Due to lack of full awareness of other users' intentions, the
possibility of inadvertent mistakes is higher in collabora-
tive work, and yet most current collaborative systems fail
to provide adequate facilities for undoing actions. This
limitationoccurs because undo facilities of single-user sys-
tems do not readily apply to collaborative systems. In
this paper, we propose a general framework for undoing
actions in collaborative software systems. The framework
takes into account the possibility of conicts between dif-
ferent users' actions that may prevent a normal undo.
The framework also allows selection of actions to undo
based on who performed them, where they occurred, or
any other appropriate criteria.

1 Introduction

The ability to reverse, or undo, the e�ects of previous
actions has become a common feature in modern applica-
tion software. This ability is particularly valuable in col-
laborative applications, but it is technically much more
di�cult to implement than in a single-user system.

Numerous collaborative editors and other group appli-
cations have been constructed, such as GROVE [Elli90],
ShrEdit [CSMIL89,91], and DistEdit [Knis90], but most
lack undo capabilities. Those which provide undo gener-
ally provide only a global undo, in which the last change
made by anyone to a document is undone, rather than
allowing users to individually reverse their own changes.

Undo is important in collaborative applications be-
cause it provides freedom to interact and experiment in a
shared workspace. A shared document is often used as a
group blackboard during (possibly distributed) meetings.
If the current state of the document contains important
information, people may have inhibitions about making

changes because the work is not solely theirs. Knowing
that any previous state can be easily recovered may free
group members to demonstrate ideas in the document.
This freedom also applies to asynchronous sharing, where
group members work on a shared document at di�erent
times; tentative changes can be made to the section of a
document, and undone at a later time if needed.
Performing undo in collaborative applications provides

technical challenges three areas: choosing the operation
in choosing the action to be undone, determining where
the undo should occur, and resolving conicts between
di�erent users. First, choosing the action to undo in a
single-user system is usually easy: simply choose the most
recent action and use it to revert to the prior state of the
document. However, in a group environment, there are
many parallel streams of activity from di�erent users, and
the undo needs to be more selective about choosing what
to undo. Also, a return to a previous global state could
have undesirable e�ects because it would undo actions of
all users, instead of just one. Second, once the correct
operation is chosen to be undone, the location at which
the undo of an action should be performed may be di�er-
ent from the location at which the action was originally
performed due to the e�ects of other users' activity on
the document. Finally, if two or more users interleave
their work in the same portion of a document, it may not
make sense to undo one user's changes without undoing
the other users' changes. In this case, there are conicts
between the changes the users made.
The rest of the paper is organized into the following

sections:

� A review of previous work on undo.

� A discussion of how our approach extends undo ca-
pabilities, particularly for group environments.

� The requirements an application must meet to use

2



our undo framework, and an example for text editing.

� The undo algorithms.

� Several interface possibilities for using the undo al-
gorithms.

� Other issues relevant to group undo, including repli-
cation and the amount of undo state to store.

� Conclusions and future work.

2 Related Work

There are several basic methods for providing undo abil-
ities in single-user systems. We discuss them here. In
our discussion, we assume that the operations that can
be performed on a document are reversible, i.e., for ev-
ery operation A, we can determine an inverse operation
A that will undo the e�ect of A. For instance, in an edi-
tor, an INSERT operation can be undone by a DELETE
operation.
Note that, in general, the inverse operation of A may

depend on state of the document prior to A. For instance,
if a DELETE operation is done on a text document that
deletes three characters at position 10, then in order to
determine its inverse, we must know the three characters
that were deleted. The inverse operation then will be
an INSERT operation that inserts those three characters
back at position 10.

2.1 Single-step undo

Single-step undo is common in most Macintosh and Win-
dows applications, as well as editors such as vi. It allows
undo of the last operation. For instance, given a sequence
of operations

A B C D E

Single-step undo allows undoing of operation E, but
not a subsequent undo of operation D. Usually redo of
last undo is also allowed (often implemented as an undo
of the last undo) so that, in the above example, E can be
redone.

2.2 Linear undo model and US&R model

The Interlisp system [Teit78], one of the early systems
to provide undo, used the linear undo model. The linear
undo model allows undoing of a sequence of operations
and keeps a pointer which tracks the last operation un-
done. Operations can then be redone, after possibly doing
some new operations. For instance, suppose that there is
a sequence of operations

A B C D E

Operations E and D can be undone (in sequence), then
a new operation F done, and then D redone, giving the
following history list (list of operations done so far):

A B C F D
"
E

A pointer is used to keep track of next action to be
undone; in this example, the undone operation E would
be the next operation which could be redone. Note that
undo operations are not explicitly stored in the history
list. So, if one wants to back to the original sequence
without the F , it is not possible. One could undo F , but
then D and E must be done manually.
The Undo, Skip, Redo (US&R) model [Vitt84] sup-

ports redo like the linear undo model, but also allows a
more user-friendly skipping of some operations during the
redo. Instead of a linear list, US&R model keeps a tree
data structure for maintaining history so that it becomes
possible to restore state to any point in the history (un-
like the linear undo model). In the above example, F
would be stored on a di�erent branch of the tree from the
sequence D E so that F could be undone and then D and
E could be redone if the user so desired.
A limitation of both the linear undo model and the

US&R model is that in order to undo one operation O
several steps back in the history, all subsequent opera-
tions must �rst be undone and then redone (skipping O
during the redo). This is potentially disruptive in a group
environment; other users are likely to see their work un-
done for at least a short while with no apparent reason.
Furthermore, if the implementation is not careful, after
the redo, other users' context (cursor position, window
bu�er) may change unexpectedly from the original con-
text. Also, neither model addresses the problem of con-
icts { that redoing some operations may not semantically
make sense if an earlier operation is skipped.

2.3 History undo

In the history undo scheme, one can undo any number (to
some limit) of past actions in a row. The GNU Emacs ed-
itor [FSF85] supports history undo. Once a user stops un-
doing his work (by doing something other than an undo,
e.g., inserting a character), the undone actions become
like any other actions { they can be subsequently undone
if desired. Consider the sequence of operations

A B C D E

Now, suppose E is undone. Then in the history undo,
the history list will be as follows, where E is the operation
that reverses the e�ects of E:

A B C D
"
E E

3



Notice that a pointer is used to keep track of the next
operation to be undone. On another undo, the history
list will be as follows:

A B C
"
D E E D

If one now breaks out of the undo mode by doing some
operation other than an undo, say F, the history list will
be:

A B C D E E D F
"

At this point, doing two more undo operations will re-
sult in:

A B C D E E
"
D F F D

History undo has the nice property that it is possible
to go back to any previous state, and the possibility of
conicts does not arise (in single-user applications) since
operations are never skipped.

3 Our Approach

Our approach is similar to history undo, but it allows
operations to be undone selectively and deals explicitly
with location shifting and conicts.
We use data structures similar to those used in history

undo; in particular, upon an undo, the inverse of an op-
eration is appended at the end of the history list. In our
experience, use of history is simple and intuitive for most
users. However, in a collaborative application, since the
last operation done by a user may not be globally last
(other users may have done operations subsequently), we
need to allow undoing of a particular user's last operation
from the history list. For example, consider the following
history list, where Ai's refer to operations done by user
A, and Bi's refer to operations done by other users:

A1 B1 A2 B2 B3

Now, suppose user A wishes to undo his/her last ac-
tion, A2. Normal history undo mechanisms in single-user
systems do not support it because they would require
undoing B2 and B3 as well. In the US&R model, it is
possible to undo the last three operations and then redo
B2 and B3, but as pointed out in the previous section,
that can be disconcerting to other users of the system.
Note that user A may not be aware that operations B2

and B3 have been carried out on the document by other
users, and the other users may not aware of activities of
user A.
In the above example, the operation to be undone, A2,

is selected based on the identity of the user. More gener-
ally, the operation selected for undoing from the history

list could be selected based on any other attribute, for
instance region, type, time, task, or anything else. Thus,
we term our scheme as selective undo, since the opera-
tion to be undone is not necessarily the last one, but is
selected using some attribute attached to the operation.
We would like to undo A2, but without undoing and then
redoing B2 and B3.

To selectively undo an operation, we cannot simply ex-
ecute the inverse of the operation because later operations
could have shifted the location where the undo must be
performed. For example, suppose the following two text
operations have been applied to the starting state `abcd':
INSERT (4;0 x0) followed by INSERT (1;0 yy0), resulting
in the state `yyabcxd'. The �rst operation inserted `x'
at position 4, and the second operation inserted `yy' at
position 1. Assume that these operations were done by
di�erent users. Now the user who did the �rst operation
wishes to undo the operation. However, we cannot simply
perform the �rst operation's inverse, DELETE(4; 1), be-
cause the second operation has moved the `x' to location
6. Our scheme takes this possibility of location shifting
into account, so that in this example, the �rst operation
will be undone by executing DELETE(6; 1).

We also take into account the possibility of conicts.
In the above example, B2 may have modi�ed the same
region of the document as A2, so that it no longer makes
sense semantically to undo A2 without �rst undoing B2.
We do not allow an operation to be undone until any prior
conicting operations have been undone.

4 Application Requirements

Our undo framework assumes an application model in
which all changes to a document are performed using a
set of primitive operations. As operations are performed,
they are archived in a history list to provide the basis for
undo. The operations must be reversible and capable of
being re-ordered when no conicts between the operations
exist.

This section describes in detail the model and require-
ments which our undo framework imposes upon applica-
tions. It also demonstrates how the model can be applied
to simple text documents.

4.1 Document Model

In our document model, we assume that applications
modify a document using only a well-de�ned set of prim-
itive operations which are reversible. For the purpose of
undo, we treat the document much like an object, for
which the primitive operations are the methods. Unlike
an object, however, we do not require that operations be
de�ned to retrieve information from the document state,
only to alter it.

4



At the user-interface level, primitive as well as more
powerful operations may be provided for modifying a doc-
ument. More powerful editing operations should always
map to a sequence of primitive operations. For exam-
ple, assume that INSERT(location, string) is one of the
primitive operations. The user-level action `indent para-
graph' might result in numerous INSERT operations. In
our scheme, undoing of these more powerful operations
will be implemented as a sequence of undo operations of
the primitive commands (see the Section 6.4 on multiple-
operation undo for more details).
All applications maintain a current state of the docu-

ment that is being edited. This state can be represented
in di�erent data structures, and our framework places no
restrictions on the representation. There should exist a
null state representing an empty document.
Primitive operations, or just operations, are the only

means by which the state of a document can be altered.
An operation applied to a state results in a new state.
Any given state is simply the result of a sequence of zero
or more operations applied in sequence to a null state.
Operations can also have parameters which specify ex-
actly what the operation is to accomplish and where it
is to be performed. For instance, a DELETE operation
would have parameters to indicate what is to be deleted.
Operations will be denoted using upper case letters,

and sequences of operations using sequences of upper case
letters. The operations are assumed to be performed in
left to right order (left-associative). We will use the letter
S to denote state prior to application of an operation. A
� placed between operations represents that the operation
is being applied. For example,

S �M �N

denotes the state resulting from application of opera-
tion M followed by operation N on a document in state
S. Sometimes, we will also use A �B to denote the com-
pound operation that �rst applies A and then applies B.
Two sequences of operations are equivalent if they pro-

duce the same state. Equivalence is represented by �.
For example,

S �M �N � S � P �Q

indicates that the two sequences produce the same state,
even though the operations in each sequence are not iden-
tical.
The parameters of an operation should fall into one

of two classes: operational data and positional data. The
operational data, combined with the primitive, should in-
dicate what the operation will accomplish. The positional
data indicates where in the document the operation is
to be performed. For a text editing primitive INSERT,
the operational data would be the text to be inserted,
and the positional information would contain a position

where the insert will occur. Generally, an operation could
be performed in a di�erent location by changing only its
positional data.

4.2 Operation History

To provide the raw ingredients for undo, the application
must maintain a history of the operations which have
been performed on a document. We assume that this
history will be stored as a a simple list, kept in the same
order as the operations were performed. Our undo al-
gorithms need to read this list, copy portions of it, and
alter the copy. Only operations stored in the history can
be undone.
Each item in the history list must contain:

� The operation which was performed.

� Any additional data required to immediately reverse
an operation (stored as part of that operation).

� The user who performed the operation, and other
criteria for selecting what to undo.

In order to selectively undo a particular user's opera-
tion, we must tag each operation in the history with the
identity of the user who performed it. Other tags could
be stored as well, such as the time of the operation or the
reason for the operation. Any such tag could be used to
select operations to undo.
Note that if the history is complete (contains every op-

eration ever performed on the document), then the cur-
rent state of the document could be reconstructed by per-
forming every operation in the list in sequence.

4.3 Conict, Re-ordering, and

Reversibility of Operations

Our model requires that the application supply func-
tions which can detect conicts between operations, re-
order operations, and create inverse operations. In a syn-
chronous group environment, these functions would usu-
ally be needed anyway to ensure predictable results when
parallel streams of activities are going on. For instance, if
two users are working simultaneously in a document, con-
ict checking may involve making sure that their changes
do not overlap. Mechanisms for reordering of parallel,
independent, operations are also needed because the or-
der in which two operations will be done may be unpre-
dictable. The editor must be prepared to accept the two
operations in either order with the same resulting e�ect.
The functions which the application must provide are:

� Conflict(Operation;Operation)) Boolean

� Transpose(Operation;Operation) )
(Operation;Operation)

5



� Inverse(Operation) ) (Operation)

The following sections provide descriptions and prop-
erties for these functions.

4.3.1 Conict

A conict between two adjacent operations A and B im-
plies that the second operation, B, a�ects what the oper-
ation A has done to the state; it destroys the \integrity"
of that �rst operation. A conict indicates that the two
operations could not have been performed in parallel with
a predictable result. A conict also arises if B depends
on A and is not meaningful without having performed A.
Suppose, for example, that a graphics document is be-

ing edited. Operation A creates a circle in the document,
and operation B resizes that circle. In this case, there is
a conict between A and B. If operation A had not been
done, operation B would make little sense.
The Conflict(A;B) function supplied by the applica-

tion must return True if there exists a conict when the
two operations are performed in sequence, and False if
no such conict exists. The importance of the notion of
a conict is that an operation cannot be undone if it con-
icts with a later operation, unless the later operation is
undone �rst.

4.3.2 Transpose

If no conict exists between two operations, we require
that it be possible to transpose them. That is, by making
some adjustments to the operations, it is possible to per-
form them in a di�erent order and still obtain the same
result.
The Transpose(A;B) function, given two non-

conicting operations A and B, will return two new op-
erations B0 and A0, which satisfy the following two prop-
erties:

Transpose Property 1: Performing S �A �B will give
the same result as executing S �B0 �A0, irrespective
of the initial valid state S.

Transpose Property 2: B0 is the operation that would
have been done to the document instead of B if op-
eration A had not been done before B.

Property 1 allows us to move operations around in the
history list and still be guaranteed that the resulting state
will be the same. Property 2 shows that A can meaning-
fully be undone, leaving only the e�ects of B. As we will
see, operation A will usually be identical to A0, and B to
B0, except that the position data may be di�erent.
Our notion of transpose is similar to the one described

in [Elli89]. However, we require transpose function to be
de�ned only when the operations do not conict.

4.3.3 Some useful properties

As stated earlier, an Inverse(Operation) function must
also be supplied by the application. Inverse returns a
new operation which can nullify the e�ects of its argu-
ment. Speci�cally, when the inverse of an operation is
performed immediately after that operation, the result-
ing state is the same as if neither operation had ever been
executed. Some properties that we will assume in our dis-
cussion are as follows:

Property 1: A �A � I

Property 2: A � A.

Property 3: A � B ) A � B

Property 4: If A and B have a conict, then B and A

also have a conict.

Property 5: If A �B can be transposed, then B �A can
also be transposed.

Property 6: A �B � B �A

The only crucial properties that we really need to hold
in our algorithms are Properties 1 and 6. However, we will
assume that other properties also hold while discussing
the examples. Property 1 says that an operation A and
its inverse A be I, the null or identity operation, which
does not a�ect state, i.e. S � I = S. The operator �
denotes that the left-hand side and right-hand side are
equivalent in their e�ect on the document's state (ex-
cluding the history list). Property 6 states that to undo
two actions, undo them one by one. Not all of the above
properties are independent. For instance, Property 2 can
be derived from Property 1.

4.4 Document Model Applied to Text
Editing

We will now apply the document model to a speci�c type
of document: a plain text document (with no formatting).
First, the operations and state of a text document must
de�ned. Second, the storage in a history list must be
considered. Third, the Conict, Transpose, and Inverse
functions must be de�ned for the operations chosen.
The state of a text document can be modeled as a single

string of text, in which line breaks are represented by new-
line characters. Now we must de�ne the operations which
can be used to alter the state. We choose the primitives
INSERT and DELETE. INSERT is given two parameters:
the location of the character before which the insert will
occur, and the text to be inserted. DELETE shall also
have two parameters: the starting position from which to
delete, and the number of characters to be deleted. Lo-
cations are de�ned as the absolute position in the text,
with the leftmost position being one. The two primitive

6



operations are su�cient to make any change to a docu-
ment. Additional primitives, such as REPLACE, could
be added but are not necessary. Other representations
of position, such as line and column number, could also
be used, but the absolute positions we have chosen seem
simpler.
Note that the model does not dictate the actual data

structure which is used to store the document state. The
current state could be represented as a linked list of lines,
as a single array of characters, or any other way. The ap-
plication is responsible for correctly applying operations
so that its internal data structure represents the correct
state.
We will denote operations to be stored in the operation

history as follows:

� INSERT(position, `text')

� DELETE(position, `text')

Because the operation must store su�cient information
to be reversible, we cannot simply store the number of
characters for the DELETE operation. So, we store the
text which was actually deleted and can easily derive the
number of characters which were deleted.
Consider an example. Suppose that starting with an

empty state `', this sequence of operations is performed
by Mike, Atul, and Mike, respectively:

� INSERT(1, `abcde')

� DELETE(3, 2),

� INSERT(2, `xyz')

The resulting state after all three operations is performed
would be `axyzbe'. The history after performing these
three operations might be as follows, where each row is
an entry in a list, column one contains operations, column
two contains the user tag, and column three contains a
timestamp tag.

INSERT(1, `abcde') Mike 1:05:32
DELETE(3, `cd') Atul 1:05:37
INSERT(2, `xyz') Mike 3:55:27

Finally, we de�ne the Conict, Transpose, and Inverse
functions for the INSERT and DELETE primitives. We
begin with a simple utility function which determines
whether two regions of character positions overlap:

Overlap(pos1; len1; pos2; len2) = (pos2 + len2 � 1 � pos1)

AND (pos2 � pos1 + len1 � 1)

Now we show the Conict function, which, given two
operations, determines whether the second operation con-
icts with the �rst. An operation will conict with an

INSERT if it alters the text which was inserted. An op-
eration will conict with a DELETE if it alters the two
characters bordering the DELETE. The reason for us-
ing the border characters for DELETE is can be seen
in the following example. Suppose we begin with state
`abc' and perform DELETE(2, 1) followed by INSERT(2,
`x'), resulting in state `axc'. If we later wish to undo
the DELETE, it is not clear whether the `b' should be
placed before or after the `x'. Therefore, this is a con-
ict. This de�nition may be conservative in the case of
multiple deletes, but it is safe.

Conflict( INSERT (pos1; str1);
INSERT (pos2; str2)) = pos1 < pos2 < pos1 + jstr1j

Conflict( INSERT (pos1; str1);
DELETE(pos2; str2)) = Overlap(pos1; jstr1j; pos2; j

Conflict( DELETE(pos1; str1);
INSERT (pos2; str2)) = (pos2 = pos1)

Conflict( DELETE(pos1; str1);
DELETE(pos2; str2)) = Overlaps(pos1 � 1; 2; pos2;

Now we de�ne transpose. Note that the transpose func-
tion must be well-de�ned only when there are no conicts
between the two operations.

Transpose(INSERT (pos1 ; str1); INSERT (pos2; str2)) =

if(pos2 > pos1) then(INSERT (pos2 � jstr1j; str2); INSERT (po

else(INSERT (pos2 ; str2); INSERT (pos1 + jstr2

Transpose(INSERT (pos1 ; str1); DELETE(pos2; str2)) =

if(pos2 > pos1) then(DELETE(pos2 � jstr1j; str2); INSERT (po

else(DELETE(pos2 ; str2); INSERT (pos1 � jstr

Transpose(DELETE(pos1 ; str1); INSERT (pos2; str2)) =

if(pos2 > pos1) then(INSERT (pos2 + jstr1j; str2); DELETE(po

else(INSERT (pos2 ; str2); DELETE(pos1 + jstr

Transpose(DELETE(pos1 ; str1); DELETE(pos2; str2)) =

if(pos2 � pos1) then(DELETE(pos2 + jstr1j; str2); DELETE(p

else(DELETE(pos2 ; str2); DELETE(pos1 � jst

Finally, the inverse functions are:

Inverse(INSERT (pos; str)) = DELETE(pos; str)

Inverse(DELETE(pos; str)) = INSERT (pos; str)

5 Undo Algorithms

This section presents three algorithms: a simple undo al-
gorithm to demonstrate the basic concepts, a comprehen-
sive undo which handles multiple undo operations, and an
algorithm to derive all conicting operations which pre-
vent an undo.
All three algorithms assume that an operation has al-

ready been chosen to be undone. Methods of selecting
which operation to undo are described in Section 6 on
Undo Interfacing.

7



In our description of the algorithms, we assume that
only one (centralized) history list is maintained for all
users. We will discuss issues related to replication of edi-
tor state and history list in Section 7.1.
We also assume that all operations will be done, as

requested by the users; There are no failures and no un-
intended e�ects. If necessary, editor should provide some
sort of locking scheme so that two users do not perform
conicting operations in parallel.

5.1 Data De�nitions

The following data types are used by the algorithms:

Operation A primitive operation, including the opera-
tional data and positional data.

History List A list of operations, including tag infor-
mation such as user and time.

Figure 1 shows the structure of the history list in more
detail. History List is a list of records in which each record
contains an operation and the information used to locate
operations, such as the user who performed the operation,
the time at which it was executed, and any other infor-
mation which will be used to select operations to undo.
The algorithms are not concerned with the details of op-
eration records such as the location and other internal
data; the Inverse, Conflict, and Transpose operations
are used to manipulate operations. The Perform routine
performs an operation, altering the document state, and
appends the operation to the end of the history list.

5.2 Simple Undo

To demonstrate the principals of our undo technique, we
�rst present an algorithm for the simple undo, in which
only one previous operation can be undone. Since the op-
eration to be undone is not necessarily the one at the end
of the history list, the operation to be undone is passed
to the algorithm. The algorithm is given in Figure 2.
The basic idea is to use the transpose function to shift

the operation all the way to the end of the history list.
If it cannot be shifted to the end due to a conict along
the way, it cannot be undone. If the operation can be
shifted to the end, we can simply execute the inverse of
the shifted operation to undo it. By shifting the opera-
tion, we have e�ectively determined where the undo must
be performed. Note that the the history list is not being
altered in the algorithm; the shifting is simulated.
An example will help demonstrate the algorithm. As-

sume we want to undo A given the history list:

A B C

Suppose A conicts with B. Then the Conflicts(A;B)
will be true, and the undo will fail, as it should. If A does
not conict with B, the result after one loop cycle will be:

type Operation = record

prim: Primitive;
locationData: Application-dependent-type;
operationData: Application-dependent-type;

end

HistoryRec= record

operation: Operation;
user: User;
time: Timestamp;
next: HistoryRec;
/* any other desired tags go here */

end

var

HistoryList : HistoryItem; /* Stored history for the document */

function Perform(op: Operation): HistoryRec
/* Performs operation on the document, returns the new element
* added to the history list
*/

Figure 1: Data types used in the undo algorithms

procedure SimpleUndo(UndoItem: HistoryItem)
/* Undo the UndoItem, which is a pointer into the HistoryList */
var ShiftOp: Operation

HistPtr: HistoryRec; /* Pointer into the history list */
begin

ShiftOp := UndoItem.operation;
HistPtr := UndoItem.next;
while HistPtr.next <> nil do

if Conicts(ShiftOp, HistPtr.next.operation) then
return ('Sorry. Undo conicts with ', HistPtr.next)

else

/* Transpose returns two operations; store the 2nd in Sh
( , ShiftOp) := Transpose (ShiftOp, History[i])

endif

endwhile

Perform(Inverse(ShiftOp))
return ('Undo successful')

end

Figure 2: Single-step undo in collaborative applications

8



B0 A0 C

where (B0; A0) = Transpose(A;B). Now, if
Conflicts(A0; C) is true, the undo will fail. Otherwise,
another shift will occur, resulting in:

B0 C0 A00

where (C0; A00) = Transpose(A0; C). To see that this
is correct, consider what would happen if we perform A00

on the altered list, giving:

B0 C0 A00 A00

Since B0 � C0 � A00 is equivalent (�) to A � B � C (by
Transpose Property 1) and B0 �C0 �A00oA00 � B0 �C0 (by
Property 1), we �nd:

A �B �C �A00 � B0 �C0 �A00 �A00 � B0 �C0

Thus, performing A00 at the end of the original history
gives the same result as if operation A had never been
performed (by Transpose Property 2); the undo has suc-
ceeded!
While the simple algorithm is correct, it is unable to

deal with the results of prior undo operations. For exam-
ple, suppose the history contains A �B �C, where A and
B conict but neither conicts with C. A user, wanting
to undo both A and B, �rst does a simple undo of B, re-
sulting in the history A B C B0. Then, the user attempts
to undo A. Simple undo determines that A conicts with
B, and is unable to shift A to the end of the history.
However, since B is undone, we should be able to undo
A.

5.3 Comprehensive Undo

We now give a comprehensive undo algorithm which is
not blocked by prior undo operations. Furthermore, we
demonstrate that the algorithm will work for undoing
undo operations.
To perform a comprehensive undo, we must know when

one operation is the undo (inverse) of another. We can
detect this condition by, whenever an undo is performed,
placing a pointer into the history list that links an op-
eration to its undo. Thus, upon undoing B from the
sequence A B C, the history list would appear as follows;
note that the oval line beneath the sequence indicates a
do-undo pointer:

A B C B0


 	

The Comprehensive Undo algorithm (Figure 3) is same
as the simple undo algorithm, except that it uses a more

type HistoryRec = record

operation: Operation;
next: HistoryRec;
undoneBy: HistoryRec; /* This �e

end

procedure Undo(UndoItem: HistoryItem)
var

HistTemp: HistoryRec; /* A copy
HistPtr: HistoryRec; /* Pointer
ShiftOp: Operation;
NewItem: HistoryRec;

begin

/* Make a copy of the history list from the UndoItem forward */
HistTemp := CopyTailofList(UndoItem);
ShiftOp := HistTemp.operation;
HistPtr := HistTemp.next;
/* Shift UndoItem forward, removing all paired do/undo operatio
while HistPtr.next <> nil do

if TrulyConict(HistPtr) then
return (`Sorry. Conicts with', HistPtr.next)

else

/* Transpose returns two operations; store the 2nd in Sh
( , ShiftOp) := Transpose (ShiftOp, History[i])

endif

endwhile

NewItem := Perform(Inverse(ShiftOp));
UndoItem.undoneBy := NewItem;
return ('Undo successful');

end

Figure 3: Comprehensive undo

sophisticated conict-checking algorithm, TrulyConict
(Figure 4). The undo algorithm works by making a copy
of the end of the history list, from the operation to undo
onward. The operation to undo is shifted until it reaches
the end of the list. Before each shift, TrulyConict is
called to check if there is a conict between the operation
and the next operation. If a conict is found with an
operation which has been later undone (i.e. there is re-
ally no conict), that operation and its undo are removed
from the history list by RemoveDoUndoPair (Figure 5).

The RemoveDoUndoPair subroutine, given an opera-
tion X which is later undone by X , shifts X until it is
adjacent to X , and then removes both operations. This
is valid because X �X is an identity operator (Property
1). X will not conict with another operation Y in the
history between it and X , unless Y itself has been undone
(otherwise, X could not have been undone). In the case

9



function TrulyConict(HistPtr: HistoryRec): boolean
/* This function determines whether the operation in HistPtr
* conicts with the following operation, ignoring any operations
* which have been undone, and stripping them from the history
* list. Like Conict(), returns True/False
*/

begin

while Conict(HistPtr.operation, HistPtr.next.operation) do
if HistPtr.next.undoneBy <> nil then

RemoveDoUndoPair(HistPtr.next)
else return (False)
endif

endwhile

return (True)
end

Figure 4: Check if there is a genuine conict between an
operation and the following operation

procedure RemoveDoUndoPair(doPtr: HistoryRec)
/* This subroutine, given a pointer to an operation which is
* later undone, physically shifts it forward in the HistTemp
* list until it meets its undo, then removes both operations.
* Assume: doPtr.undoneBy points to the undo operation.
* Any intervening conicts have been undone,
* otherwise doPtr could not have been undone.

*/
begin

while doPtr.next <> doPtr.undoneBy do
if Conicts(doPtr.operation, doPtr.next.operation) then

/* if there is a conict, it must have been undone, so can be removed */
RemoveDoUndoPair(doPtr.next)

else

/* Transpose the two operations, logically and physically */
(doPtr.next.operation, doPtr.operation) =

Transpose(doPtr.operation, doPtr.next.operation);
ListSwap(doPtr, doPtr.next)

endif

endwhile

/* The operation is now adjacent to its undo; remove them both from HistTemp list */
ListDelete(HistTemp, doPtr.next);
ListDelete(HistTemp, doPtr)

end

Figure 5: Remove an operation and its Undo from the
temporary copy of the history list

of such an intervening Y , RemoveDoUndoPair is called
recursively to �rst eliminate Y from the history list.

5.3.1 An Example of Comprehensive Undo

Suppose the history list at some point is as follows:

A B C D

Assume that operations B and C conict and other than
that, there are no conicts. If the operation C is undone,
the history list will be a follows, where C0 is the operation
that results from shifting C past D:

A B C D C0


 	

Now, suppose operationB is to be undone. The algorithm
will �rst copy HistoryList will be copied into TempHisto-
ryList so that the original list is not a�ected by shifting
operations. Then, TrulyConict() will be called to check
for conict between B and C. TrulyConict() will de-
tect a conict between B and C, but will notice that C
has a pointer to its undo operation C0. It will therefore
call RemoveDoUndoPair() to remove the C and C0 pair.
The resulting (temporary) history list will be as follows,
where (D0; C0) = Transpose(C;D):

A B D0

TrulyConict() continues to check for conict between B
and the following operation and returns false to Com-
prehensiveUndo() because there is no conict between B

and D0. After completion of the shifting operation (while
loop) inComprehensiveUndo(), the temporary history list
will be as follows:

A D00 B0

where (D00; B0) = Transpose(B;D0).

Now that operation B has been shifted to the end of the
list, it can be successfully undone using the operation B0.
This operation is carried out and appended to the original
history list, with the appropriate do-undo pointers added,
giving the result:

A B C D C0 B0

� �� 

Note that in this con�guration, it is not possible to redo C
(by undoing C0) because, assuming Property 5, C0 would
conict with B0, an operation that has not been undone.
However, it is possible to undo B0 and then undo C0 with-
out any problems. It is also possible to undo D if it does
not conict with C0 or B0.

10



5.4 Conict List Generation

The Conict List Generation algorithm computes a list
of all operations which must be undone prior to undoing
a given operation This capability can be very useful in
creating the user interface for undo.
Based on the comprehensive undo algorithm, conict

list generation algorithm, FindConict, works by shifting
the input operation A to the end of a copy of the history
list (Figure 6. However, when a conicting operation C

prevents a shift, C is undone. Should C conict with
any later operations, those too are recursively undone.
The undo operations are not actually performed on the
document, only simulated, and each conict is added to
a list. And, operations which have already been undone
are ignored for the purpose of conicts.
If each item in the resulting list is actually undone,

most recent operation being undo �rst, the input opera-
tion will have no conicts in the history and can be un-
done.

5.5 Performance of Algorithms

The Comprehensive Undo and Conict List Generation
algorithms have worst case run times of O(n2), where n
is the number of operations between the operation to be
undone and the end of the history list. For the undo, a
worst case example would be undoing A for the sequence:

A B1 ... BnBn ... B1� �
 	� 

and where A conicts with every Bi. In this case, B1

must be transposed until it is before B1, and the same
for every Bi. A similar situation exists for the Conict
List algorithm.

6 Undo Interfacing

Before undo algorithms given above can be used, a means
must be provided for a user to select the operation he
wishes to undo. There are many user interfaces possible
using our undo framework and algorithms. Following are
some sample interface methods.

6.1 Individual History Undo

The Emacs-style history undo described in Section 2.3
can, with minor modi�cations, be made to work in our
framework, allowing each user to undo his most recent
operations one by one.
The �rst time a user does an undo, the system searches

backward from the end of the history list until an opera-
tion tagged with that user's identity is located; a pointer
to that history record is stored for later use by the user.
The comprehensive undo algorithm is then applied to the

procedure FindConicts(UndoItem: HistoryItem)
var

HistTemp: HistoryRec; /* A copy
Conicts:HistoryRec;

begin

/* Make a copy of the history list from the UndoItem forward */
HistTemp := CopyTailofList(UndoItem);
Conicts := NIL;

RecFindConicts(HistTemp);
/* Return all conicting operations, with UndoItem at the end of
return (Conicts)

end

procedure RecFindConicts(doPtr: HistoryRec)
/* Recursively undo doPtr operation, and undo all conicts,
* storing the conicts and not actually performing operations
*/

begin

while doPtr.next <> nil do

if TrulyConict(doPtr) then
RecFindConicts(doPtr.next)

else

/* Transpose operations logically and physically */
(doPtr.next.operation, doPtr.operation) =
Transpose(doPtr.operation, doPtr.next.operation)
ListSwap(doPtr, doPtr.next)

endif

endwhile

/* Moved it to end of history. Add to conict list & delete */
ListAppend(Conicts, doPtr)
ListDelete(HistTemp, doPtr)

end

Figure 6: Conict List Generation Algorithm

11



operation. Should the user immediately do another undo,
the history search continues backward from the stored
pointer. Thus, the user can proceed back through his
most recent changes. When an operation other than an-
other undo if performed, the stored pointer is deleted,
making the undo operations appear as normal operations
which can be undone.
If the undo algorithm fails due to a conict, the Conict

List Generation algorithm can be used to locate all the
conicting operations, which must belong to other users.
At this point, the interface can inform the user of the
problem and show whose work must be undone. He might
then be given a choice canceling or proceeding to undo the
operations of those other users. In the latter case, each
further undo would operate on an item in the conict list.

6.2 History Undo with Selection Filters

The history undo process need not be restricted to un-
doing one users changes. Any arbitrary �ltering criteria
can be used to select the next operation to undo while
searching back through the history, as long as the neces-
sary information is stored in the history list.
For example, history undo could use a �lter to repeat-

edly undo actions for a set of users, for a time range, for
a region of the document, for a particular task, or for any
combination of these parameters.
The Individual History Undo is simply history undo

with a �lter which selects only operations of one user.

6.3 Regional Undo

Another useful criterion for selecting undo operations is a
region in the document. For example, a user may want to
undo his most recent changes to the abstract of a paper,
but not any other changes.
Using a region as a selection criterion is slightly more

di�cult than using user-id or timestamps, because op-
erations performed historically on a region refer to the
location where the region used to be, rather than where
it is now.
To locate an operation which a�ect a region R, we start

by de�ning a new operation S which we know will conict
with any operation performed in R. For instance, S might
be an operation which deletes all of R; certainly any op-
eration a�ecting R would conict with this. We place S
at the end of the history list, and use transpose to shift
it backward. If it cannot be transposed due to a conict,
that conicting operation must be within the region, and
can now be undone.
To implement repeated undo operations, it may be use-

ful to de�ne a new primitive for regional undo; otherwise
a repeated undo will fail. The issue is there because after
the �rst undo, the region could change. What is needed
is a region-identifying primitive that can be transposed
with any operation even if an overlap in region exists.

6.4 Multi-operation actions

Situations may arise in which the application may wish
to treat a group of primitive operations as a single, high-
level, operation. For instance, consider the following sce-
narios:

� One user-level action (e.g. IndentParagraph) could
result in numerous primitive operations (a bunch of
INSERTs). Users would expect to be able to undo
the high-level operation in entirety using one undo
operation rather than having to undo the primitive
operations one by one.

� Inverse of a primitive operation may not be a prim-
itive operation, but a collection of primitive opera-
tions. Again, that collection has to be treated as a
single, high-level, operation in case it needs to un-
done.

� Undoing many steps at once can also be useful for
returning to a known previous state. For example, a
user may wish to revert chapter 15 of a paper back
to the way it was at 5PM last Tuesday (i.e., undo all
operations for the region covering chapter 15 with
timestamps after 5PM last Tuesday), assuming suf-
�cient history with appropriate tags is kept.

Multiple-operation undo is similar to the notion of
transactions in databases. Either they should all be un-
done collectively, or conicts should be reported and un-
done �rst. For instance, suppose that a paragraph is in-
dented and then modi�ed so that conicts arise, it would
not be desirable to allow a partial undo { its e�ect would
be hard to understand for the user.

Multi-operation undo can be implemented in our
framework with the following extensions:

1. The history list needs to be extended to keep su�-
cient information around so that the set of operations
that constitute a high-level operation can be deter-
mined.

2. When undoing a high-level operation, all the primi-
tive operations that constitute the high-level opera-
tion need to be shifted to the end and then undone
collectively (using Property 6). If conicts arise dur-
ing shifting, undo should not be permitted without
undoing the conicts �rst. The collection of opera-
tions that are used to undo need to be treated as a
high-level operation.

3. Do-undo pointers need to go between corresponding
operations, which could be high-level.

Transaction processing may lead to ine�ciencies in a
group environment because it hinders tight interactions

12



between users [Elli91, Elli89]. However, for a multi-
operation undo, it is highly desirable to ensure atomic-
ity, perhaps through use of locks, so that an undo has a
predictable e�ect.
We are still exploring whether there are important se-

mantic or e�ciency issues that may sometimes make it
more appropriate to consider a high-level operation as a
new primitive operation, rather than a collection of ex-
isting primitives.

7 Other Issues

7.1 Replication Issues

In a distributed environment, it is highly desirable to
replicate the document, maintaining a copy at each users'
site, to keep response time short. If the data were kept
only at a central site, each time someone merely navi-
gated through the document, they would have to wait for
a round-trip network delay before getting feedback. Also,
central data storage provides a single point of failure.
When a program replicates data, it must provide a

means of concurrency control which ensures that all
copies of the document are the same (or nearly so, within
some bounds). This generally involves broadcasting oper-
ations to all users in combination with some form of lock-
ing or re-sequencing. [Elli91] discusses various approaches
to concurrency control which vary in their response time,
exibility, and consistency guarantees.
Replication raises several questions with respect to

undo:

� Should the history list be replicated?

� What messages should be broadcast for replication?

� Can replicated histories di�er between users?

Deciding whether to replicate history is a trade-o�
between performance, storage requirements, and fault-
tolerance. Because undo is probably less commonly used
and less critical compared to most other operations, it
might be practical to store the history at an undo server,
if some delay can be tolerated.
If the history information is replicated, a decision must

be made whether the semantics of an undo will be broad-
cast to the group, or just the results of the undo opera-
tion. If the undo itself is not broadcast for an operation,
other users will not be able to ignore the undone oper-
ation in executing further undo operations. Thus, it is
probably preferable to broadcast undo semantics.
Replicated histories may or may not be kept identi-

cally for all users at all times; for example, the ordering
of operations might vary between di�erent users' history
lists. If the histories are not identical, the same undo op-
erations may work di�erently at each location, but must

guarantee the same result. Thus, concurrency control is-
sues arise for replicating history which are very similar to
and dependent upon concurrency techniques used for the
actual document state.

7.2 Length of History List

In both single-user and collaborative applications, the
length of the history list would dictate how far back op-
erations can be undone. However, in single-user systems,
it is easy to provide a guarantee that the user will be able
to undo at least his last operation with a bounded num-
ber of operations on history list { the history list needs
to only keep one operation, the last one. In collaborative
applications, on the other hand, providing such a guar-
antee is di�cult with a bounded number of operations on
the history list. Say user X does an operation. Then,
user Y does a sequence of operations. Now, in order to
guarantee that X is able to undo his operation, the X's
operation as well as all the Y's operations have to be kept
on the history list. Either the history list has to be al-
lowed to grow as needed, or the users have to be prepared
to, occasionally, not be able to undo their last operation if
other users have been active and they haven't been active
for a while.

8 Conclusions

We have presented a framework for group undo which is
simple and generally applicable to a variety of documents.
The techniques proposed in this paper are presently be-
ing implemented in DistEdit toolkit [Knis90]. Hope-
fully, the framework and prototype will lead to behav-
ioral science work exploring the right interfaces for car-
rying out undo operations in collaborative applications.
We are also exploring whether our shifting and conict-
checking strategy could be applied to carry out an opera-
tion retroactively to have the same e�ect as an hundo,do
new operations,redoi sequence, but without necessarily
doing an undo-redo cycle as in the linear and US&R mod-
els. For situations where shifting is di�cult to carry out,
say due to too much dependence of Transpose and In-
verse functions on prior state, we are investigating the
integration of undo-redo schemes with our model.
In addition, we are investigating the uses of the his-

tory list in other contexts, particularly to keep track of
evolution of a document at a �ne level of granularity.

References

[CSMIL89,91] Cognitive Science and Machine Intelli-
gence Laboratory, \ShrEdit, A Multi-user Shared
Text Editor: User Manual," The University of Michi-
gan, 1989 and 1991.

13



[Elli89] C.A. Ellis and S.J. Gibbs, \Concurrency Con-
trol in Groupware Systems", Proceedings of the ACM
SIGMOD '89 Conference on the Management of
Data, Seattle, Washington, May 1989.

[Elli90] C.A. Ellis, S.J. Gibbs, and G.L. Rein, \De-
sign and Use of a Group Editor," in Engineering
for Human-Computer Interaction, G. Cockton, Ed.,
North-Holland, Amsterdam, 1990, pp. 13-25.

[Elli91] C.A. Ellis, S.J. Gibbs, and G.L. Rein, \Group-
ware: Some Issues and Experiences", Communica-
tions of the ACM, January 1991, pp. 38-58.

[FSF85] R. Stallman, GNU Emacs Manual, 1985.

[Knis90] M. Knister and A. Prakash, \DistEdit: A
Distributed Toolkit for Supporting Multiple Group
Editors", Proceedings of the Third Conference on
Computer-Supported Cooperative Work, Los Ange-
les, California, October 1990, pp. 343-355.

[Teit78] W. Teitelman, Interlisp Reference Manual, Xe-
rox Palo Alto Research Center, 1978.

[Vitt84] J.S. Vitter, \US&R: A New Framework for Re-
doing", IEEE Software, October 1984, pp. 39-52.

14


