
BIZSPEC: A BUSINESS-ORIENTED MODEL FOR

SPECIFICATION AND ANALYSIS OF OFFICE

INFORMATION SYSTEMS

Trent Jaeger and Atul Prakash
Software Systems Research Laboratory

Department of EECS
University of Michigan, Ann Arbor, MI 48109

E-MAIL: jaegert@eecs.umich.edu and aprakash@eecs.umich.edu

Abstract

Normally, domain-independent methods, such as
structure charts, data
ow diagrams, and entity-
relationship diagrams, are used to model the re-
quirements of a business. We propose a model,
called BizSpec, in which each logical business unit
is de�ned using business-oriented concepts: forms,
unit
ows, and policy. This model has three advan-
tages over domain-independent methods: 1) it uses
business-oriented concepts to improve communica-
tion between the end users and the systems analysts,
2) it represents each logical business unit indepen-
dently to help the end users examine their part of
the system, and 3) its speci�cations are executable,
so the end users and systems analysts can rapidly
generate and analyze prototype systems.

1 Introduction

Businesses rely on their application software to
gain a competitive advantage. Thus, the ability to
rapidly develop software which meets the needs of
the business is a key concern. Usually, business sys-
tems are speci�ed using domain-independent mod-
eling tools, such as structure charts [13], data
ow
diagrams [3], and entity-relationship models [6].
Many systems have been built using these models,
but they are di�cult for end users to assess in de-
tail. We believe that there are several reasons for
this limitation. First, the concepts on which these
models are based { data dictionaries, entity relation-
ship diagrams, etc. { are not always familiar to end
users. End users typically know their domain well,
but not the associated computer science terms for
concepts in their domain. Second, these models are
used to describe the system independent of the way
the business is organized, so it's hard for end users to
determine if all their tasks are de�ned. Also, speci�-
cations in these models are not executable. The end
users cannot check the accuracy of the �nal system
until it is nearly completed.

One common solution to help ease evaluation of
speci�cations by end users is to improve the user-
friendliness of the speci�cation process. Several re-
searchers have investigated the use of high-level in-
terfaces to collect user speci�cations. An example
of this research is the development of knowledge-
based speci�cation acquisition systems [9, 10, 12].
In these systems, user speci�cations are captured in
natural language statements or context diagrams.
Reasoning mechanisms transform the end user speci-
�cations into computable speci�cations. These com-
putable speci�cations are represented in domain-
independent paradigms, such as semantic networks
or logic. The knowledge used in the reasoning mech-
anisms must be powerful enough to transform the
user speci�cations to these internal representations
and translate them back, so that the end user can
approve the transformations. We believe that this
will be very di�cult to do in general, so we propose,
as an alternative, a formal speci�cation model for
system analysts and end users to improve their abil-
ity to work together at a formal speci�cation level.

This paper describes the Business-Oriented Model
for System Speci�cation and Analysis of O�ce Au-
tomation Systems (BizSpec), a model designed to
improve the process of developing business systems
in two ways: 1) improve the ability of end users to
understand the speci�cations, so that they can eval-
uate whether the system meets their business ob-
jectives and 2) develop prototype systems quickly,
so analyses of the system's performance and cor-
rectness can be made. Business-oriented speci�-
cation consists of two ideas: 1) familiar end user
concepts are used as formal speci�cation entities
and 2) the speci�cations are organized according
to the way that the business is organized. We be-
lieve business-oriented speci�cations will require less
translation to communicate to end users than previ-
ous domain-independent models. Prototypes can be

1

developed quickly because BizSpec speci�cations are
executable. We believe that this is a major advan-
tage of our approach because BizSpec speci�cations
can be executed and shown to an end user before the
�nal system is developed to make sure that speci�-
cations match the desired operation of a business.

The remainder of the paper focuses on our de�ni-
tion of a business-oriented speci�cation model which
addresses the issues outlined above. Section 2 de-
scribes our general approach. Sections 3 through 5
de�ne the business-oriented concepts which are used
in our approach. Section 6 discusses the automated
analysis of speci�cations using BizSpec. Section 7
lists the future work, and Section 8 concludes the
paper.

2 Our Approach

Our approach has the following properties: 1)
business-oriented concepts are used as our formal
representation primitives, 2) the procedures and
constraints of each work unit are de�ned separately,
and 3) the speci�cation level is computable, so pro-
totype systems can be generated quickly. The term
work unit refers to a unit of the business (i.e., de-
partment).

The business processing is speci�ed using the fol-
lowing business-oriented concepts: forms, unit
ows,
and policy. A form stores and serves as a means
to communicate business data. A unit
ow is a
work unit's procedure which uses forms to complete
a transaction. A policy of a work unit is a constraint
which limits how the unit
ows are performed.

BizSpec uses forms as the base concept in the
model. Forms are used in a wide range of business
processes, so they are, by nature, a general repre-
sentation. Use of forms as a primitive has been pro-
posed in several systems [1, 14, 4]. In these systems,
the forms are de�ned in terms of the �elds on the
form and their derivations. A �eld is an item on
the form for which values are speci�ed. The deriva-
tions detail how the value can be computed. The
derivations are generally based on the values of the
other �elds in the form. Spreadsheets, which can
be considered as a special case of a form-based sys-
tem, have been popular business-oriented problem-
solving tools for both end users and programmers.
In BizSpec we also de�ne the ability to specify con-
straints on the �elds in the form.

A limitation of most, current form-based systems
is that they do not represent knowledge which is
broader than the scope of a form. A form may be
used in di�erent ways based on the transaction to be
processed. For example, a student's transcript may

be checked at several stages during his academic ca-
reer. He may use it for �nancial aid applications
or the university may use it to ensure that the stu-
dent is making satisfactory academic progress. The
constraints on and the processes which use the tran-
script are di�erent in these two cases, so they must
be speci�ed independently from the form.

Each work unit de�nes its set of business proce-
dures in unit
ows. A unit
ow consists of a se-
quence of steps to perform a task in a work unit.
A series of unit
ows to complete a single transac-
tion involving multiple work units is called a busi-
ness
ow. The features of unit
ows are that they:
1) include the processing of a single work unit, so
each work unit can manage its processes more di-
rectly; 2) use forms explicitly just as a normal busi-
ness process would; 3) provide a procedural repre-
sentation of the business process; and 4) can include
constraints on the process. Unit
ows identify the
work performed by each work unit and each work
units' interaction with other work units. The inter-
action between work units could be performed either
by broadcasting techniques, like blackboards [5], or
direct techniques, such as message passing [8]. We
prefer message passing because we believe that work
units will have a good idea who they want to com-
municate with.

Unit
ows present a procedural representation of
the transaction steps from a work unit's viewpoint.
Data
ow diagrams, on the other hand, show only
the data
ows, not the procedure which completes
the transaction. We believe that it will be easier for
the end users to follow the procedural representa-
tion. The basis for this belief is analogous to the be-
lief that people have an easier time identifying cases
than rules. It is easier outline a complete sequence
than to outline each of step in a sequence and the
conditions when they apply independently.

Policy represents the rules of the work unit that
are used in performing transactions. These con-
straints can be applicable to a speci�c form or unit

ow or to all forms and unit
ows used by the work
unit. For example, a work unit might want to make a
pro�t on all sales transactions. Since this constraint
applies to all unit
ows within the work unit, we
want this constraint to exist beyond the lifetime of
any speci�c form or unit
ow. The formal repre-
sentation entity, policy, has been provided to enable
each work unit to de�ne its own set of guidelines.

The speci�cations of a system using BizSpec can
be executed, so prototypes can be generated quickly.
This enables the systems analysts and end users to
evaluate the speci�cations early in the design pro-

ShippingSales Customer

Item−List Itemized−PO

Scheduled−PO

Order−Form

Items

Items

Payment

Complete−PO

1. 2.
Supplier

Itemized−Scheduled−PO

Figure 1: Sales and Shipping Example

cess. For example, di�erent variations of a policy
can be tested to see which is best for the work unit.
The types of evaluation we are interested in range
from correctness checking to performance improve-
ment. The development of mechanisms which auto-
matically perform these analyses is our future goal.
The remainder of this paper demonstrates the use

of the business-oriented concepts to specify a sys-
tem which solves the problem outlined below. A
sales department and a shipping department in a
parts distributorship work together to complete sale
transactions with customers. A data
ow diagram
of this process is shown in Figure. First, a sales-
person receives a request for a quote for a item-
list from a customer. The items and their prices
are computed which generates the itemized-PO. As
part of the quote, this distributorship also provides
information about the delivery of the items. The
shipping department computes the delivery schedule
and returns a scheduled-PO to the sales department.
If the customer approves the itemized-scheduled-PO
and provides payment for this order, the salesperson
forwards the completed-PO to the shipping depart-
ment. The shipping department sends or orders the
items based on their availability.

3 Forms

A form in BizSpec corresponds to a form in the
business. A person completing a form needs to
know: 1) the �elds on the form; 2) the way to derive
the values for the �elds; 3) the relations between
the �elds; and 4) any constraints between the �elds
which limit the way they can be used. A system
built to use a form must have the same information
about it that a person would have.
Consider the Purchase Order Form in Figure 2.

It has a set of �elds for which values can be entered.
These include: PO No., name, address, item, and
total-price. The speci�cation of the form must in-
clude these �elds. The system needs to know how
to derive the values for the �elds. For example, we

Purchase Order Form
Name:

Address:

Item Qty

Payment:

PO No.

Price/Item Price

Total Price:

Delivery Dates/Qty

0002
B. Smith

1111 X St.

10−1−93/1

147.50 Credit

A1000 3 20.00 60.00 9−1−93/2

AJ

CZXB3 10 8.75 87.50 4−15−93/10

Approved:

Figure 2: Purchase Order Form

Item Qty Price/Item Price

PO No. PaymentTotal PriceName Address

Delivery Date Sub−Qty

PO Items

Delivery Schedule

Purchase Order

Approved

PO items

delivery schedule

Figure 3: Purchase Order Form { Form Hierarchy

need to know how to compute the total-price from
the individual prices of the items. The system also
needs to know which �elds are related. It needs to
know that the price/item is dependent on the item.
Also, there may be limits on the values which �elds
can take. An obvious example, is that the qty of an
item must be greater than 0.

In BizSpec, we use a hierarchy of �eld aggrega-
tions to represent the structure of a form. The �eld
aggregations are called nodes and the hierarchy is
called a form hierarchy. The form hierarchy for the
Purchase Order Form is shown in Figure 3. There
are three nodes (Purchase Order, po-items, and de-
livery schedule) in this form's structure. The reason
that the �elds on the form are represented as a hier-
archy is that some �elds are non-normalized. That
is, for a speci�c relationship the one �eld's value may
be entered only once for a set of values of another
�eld. For example in the Purchase Order Form, the
PO No. �eld will have just one value even though
there may be several items on the form. The idea
of representing a form as a hierarchy of nodes was
used previously in [2] as an intermediate point in
the derivation of an entity-relationship model from
a form.

In BizSpec, each form is de�ned once for the entire
business to ensure consistency in completing busi-

ness
ows. For example, when the sales department
requests the delivery schedule for the Purchase Or-
der Form from the shipping department, it needs to
tell the shipping department what items to deliver.
A good way to do this is to include the Purchase
Order Form in the message which represents the re-
quest. Both the shipping and the sales departments
must have a consistent representation of the form, so
they can communicate to complete the transaction.

Each form may be de�ned by information from
several departments. In our example, the sales de-
partment has no idea how to compute the delivery
schedule for an item. Likewise, the shipping depart-
ment does not care about pricing of items. There-
fore, a combination of information from both the
shipping and the sales departments is used to de�ne
the Purchase Order Form. From a representation
standpoint, it is only important that we have a sin-
gle representation of the form in the business. Each
department must be able to provide its speci�cation
for the parts of the form its responsible for, how-
ever. We believe that this is primarily an interface
and speci�cation management problem, so we post-
pone the solution to this problem.

In BizSpec, a form is de�ned by its constituent
nodes in the form hierarchy. Each node is de�ned
separately using the de�ne-node macro. Each form
is linked to its nodes by giving the topmost node in
the form hierarchy the same name as the form. The
names of the de�ned forms are kept in a list. At
present, all the speci�cations are de�ned in an ex-
tended CommonLISP Object System (CLOS) syn-
tax. Conversion to a friendlier interface is part of
our future work. An example de�nition for the Pur-
chase Order node is shown in Figure 4.

A form node consists of constraints and �eld de�-
nitions. The node constraints limit the values of the
�elds or the use of �elds. In Figure 4, we de�ne the
constraint that a purchase for more than $500 made
by credit must be approved by a manager. The syn-
tax and use of constraints is detailed in the Policy
Section.

A �eld de�nition consists of its default value, con-
straints, and derivations. A default value for a �eld
is speci�ed using the default attribute. For exam-
ple, we set the default total-price to 0. Constraints
are expressed in two ways: 1) the value-type-spec at-
tribute is used to supply the �eld's data type and 2)
the constraints attribute is used to declare ad hoc
constraints on the �eld. A typical constraint for the
�elds in the Purchase Order form states that the
value of the total-price �eld must be greater than
or equal to 0 (see the total-price �eld de�nition in

(de�ne-node purchase-order

:node-constraints

;; This constraint requires that a manager approve
;; credit purchases for more than $500
(when(and (> total-price $500)

(= payment credit)
unless(= approved^rank MANAGER)
then (surrender \Need manager's approval)))
;; A repair unit
ow which
;; gets a manager's approval goes here

:�elds

(po-no
;; This key is generated by the system
:value-type-spec integer)

(name
:value-type-spec string)

(address
:value-type-spec string)

(po-items
:value-type-spec po-items)

(total-price
:value-type-spec integer
:derivations

(iterate
:for item :in (select po-items)
:initial (sum = 0)
:body (sum = (+ sum item^price))
:return sum)

:default 0
:constraints (� 0))

(payment)
(approved
:value-type-spec person))

Figure 4: Purchase Order Node in the Purchase Or-
der Form

Figure 4).

A �eld's derivations de�ne the possible ways that
a �eld's value can be computed. For example, the
total-price in the Purchase Order node view is com-
puted by summing the value of the price �eld in the
po-items node for each item. This is done using the
select and iterate commands. The select command
collects all the po items in the Purchase Order Form.
The iterate command binds item to a new member of
po-items each time through the loop. Sum is incre-
mented by the price of each item each time through
the loop. The value computed by its derivation is
the value of the �eld.

Derivations imply dependencies between �elds. In
the style of form-based systems, the syntax of the
derivations are structured such that the �elds upon
which the derivation is dependent can be identi�ed.

The derivation for total-price is based on the po-
items �eld and the price of each po-items entry.

To reference the value of a �eld in a derivation,
we traverse the form hierarchy. In the total-price
derivation, we need to access the price �eld of the
item. The `^' identi�er signi�es a chain of �elds in
the form hierarchy, so it is used to refer to the price
of item. We do not need to use the ` ^ ' to get the
po-items in the select command because po-items is
de�ned in this node. Therefore, any of the �elds in
a node can be used in a derivation in another �eld
in the same node.

4 Unit Flows

Because a formmay be used di�erently in the con-
text of di�erent transactions, we de�ne unit
ows to
describe how forms are used to complete transac-
tions. Recall the example in the Introduction Sec-
tion about the student transcripts. Transcripts are
used for several purposes. For example, a student's
transcript may be used as part of a check for an aca-
demic violation or as an application for �nancial aid.
For each transaction, a unit
ow is de�ned which
describes the procedure for completing the transac-
tion. Therefore, each of the two uses of a student
transcript would be outlined in two separate unit

ows.

A unit
ow is a sequence of steps taken by a work
unit to process a transaction. Recall that each work
unit de�nes it own processing speci�cations, so each
work unit de�nes its own unit
ows. Since it is pos-
sible that several work units may interact to com-
plete a transaction, a business
ow contains the set
of unit
ows which are necessary to complete one
transaction.

Recall our example sale transaction from the Our
Approach Section. It is detailed graphically in Fig-
ure 5. The steps are shown as vertices in the graph,
and the directed arcs show the dependencies be-
tween steps. In this unit
ow, the sales depart-
ment makes two requests of the shipping depart-
ment: schedule the items and deliver the items.
The communication is performed by the two send
commands (steps E and J). A separate unit
ow in
the shipping department would be de�ned to handle
each case. The business
ow consists of the execu-
tion of all three unit
ows.

The unit
ows are de�ned using a macro called
de�ne-unit-
ow which is similar in style to the
macros used to de�ne forms. Figure 6 shows an ex-
ample unit
ow de�nition.

A unit
ow is de�ned by its: 1) steps and 2) con-
straints. Constraints in unit
ows are added to val-

Sale Unit Flow

A B C

D

E

F G

H

I

J

Shipping Department

A: Create a new purchase order.
B: Get the information for this order (e.g. PO items, name).
C: Fork because D and E can be accomplished in parallel.
D: Compute the value for the cost field for each item.
E: Ask the shipping department for the delivery schedule for this PO.
F: Input the payment field based on the customer’s payment method.
G: Branch: If the total price is above $500 and the purchase is by
 credit, we need a special approval.
H: Manager approves purchase.
I: Any employee can approve the purchase.
J: Ask the shipping department to deliver the order.

Figure 5: Sale Unit Flow { Process Graph

ues of the constraints attribute. The unit
ow steps
attribute contains a procedure which describes how
to complete the transaction in terms of a sequence
of steps. The steps are de�ned using primitive oper-
ations which include: 1) create which creates a new
instance of a form, 2) input which accepts user in-
put, 3) compute which propagates values using the
form derivations, 4) send which sends a message to
another work unit, 5) send-receive which sends a
message and waits for a message to be sent from an-
other work unit before proceeding, and 6) fork which
declares that the order of computation between se-
quences of steps is unimportant.

The progress of the unit
ow is maintained by
validating that the goals of the steps have been met.
Both input and compute are required to get values
for the �elds listed in their �elds argument. There-
fore, for the unit
ow to make satisfactory progress,
the required �elds must have values at the comple-
tion of the step. The goal argument in the send-
receive command is used for a similar purpose. It
ensures that the receiving work unit knows what the
result of handling this message must be. In our ex-
ample, the shipping department must return the de-
livery schedule for the po-items in order for the unit

ow to continue.

Constraints can either be speci�ed in the form of
conditional statements in the unit
ow or declara-
tively by using one of the constraints attributes of a
form or unit
ow. This is demonstrated by the con-
dition that the branch step enforces in the unit
ow
in Figure 6. This condition forces a manager to ap-
prove any credit purchase whose value is more than
$500. The same condition is enforced by the node

(de�ne-unit-
ow SALE

:work-unit sales
:unit-
ow-steps

(create purchase-order)
(input purchase-order
:�elds name address po-items)

(fork
((compute purchase-order :�elds total-price))
((send-receive purchase-order :who shipping
:goal purchase-order^po-items^delivery-schedule)))

(input purchase-order :�elds payment)
(branch

(and (> purchase-order^total-price $500)
(= purchase-order^payment credit))

((input purchase-order :�elds approved
:who manager))

((input purchase-order :�elds approved)))
(send purchase-order :who shipping)
:constraints

;; Indicates when a sale is for a loss
(when purchase-order^po-items
if (< purchase-order^total-price
(iterate

:for item1 :in (select purchase-order^po-items)
:initial (cost = 0)
:body (cost = (+ cost
(* item1^qty
(select cost-form^item^cost
:for item = item1))))

:return cost))
then (inform \Sale is NOT pro�table")
;; This repair unit
ow records that the policy has
;; failed on the unpro�table-sales form
and do (add unpro�table-sales
:�eld (po-no purchase-order^po-no))))

Figure 6: Sale Unit Flow De�nition

constraint in the form node de�nition in Figure 4.
Since the node constraint applies to all uses of this
form it must met in the execution of this unit
ow.
Therefore, it is not really necessary to add the con-
ditional to the unit
ow. We added the conditional
to show how the branch command is used.

5 Policy

In our de�nitions of forms and unit
ows, we al-
low the speci�cation of constraints. There are some
constraints which may apply beyond the scope of a
single form or unit
ow, however. Some other ex-
amples of constraints which apply to a wide variety
of processes are listed below.

1. Whenever a business transaction is made, make
sure it is for a pro�t.

2. Always let a customer know the conditions of
an agreement.

3. Do not ever take more than 2 months to deliver
an order.

Rather than having to associate these constraints
with all unit
ows involved, we would like to supply
these constraints only once. In BizSpec, this type
of constraint is considered to be part of the policy
of the work unit. The concept of policy has been
created to enable these constraints to be added in-
dependently from any unit
ow or form.
In general, all constraints in the system are con-

verted to the same representation, so the discussion
in this section subsumes the de�nition of all con-
straints in BizSpec. For simplicity, this discussion
is based on the constraints de�ned in the forms and
unit
ows above. Note that policy and constraint
have the same meaning. The main example we will
use is the constraint in Figure 6 which signals when a
sale is not for a pro�t (see the constraints attribute).
A policy is de�ned is its: 1) context, 2) condition,

and 3) response. The context de�nes the situation in
which the condition can be executed in terms of the
forms and unit
ows which are active, (i.e., instan-
tiated within the business unit
ow). The context
of a constraint is indicated by the when statement
in the constraint de�nition. By this statement, the
constraint in Figure 6 does not need to be tested
until the Purchase Order Form has a value for the
po-items �eld.
The condition of the constraint is the predicate

to be tested. The condition is de�ned in the unless
statement. The inputs to that predicate must be
available before it can be run. In our constraint, the
inputs we need are the po-items and the total-price.
The predicate compares the total price against the
total cost of each item. If the total cost is greater
than the total price, then the predicate is false and
the constraint's response is run.
In a production rule system, such as OPS5 [7], the

context and the conditions comprise the antecedent
(or left-hand side) of the rule. We separate the state-
oriented antecedents from the predicate antecedents
for two reasons: 1) to more easily distinguish state-
based antecedents from the predicates and 2) to re-
duce the amount of run-time rule maintenance by
\compiling" the rules into the positions in the unit

ows where their contexts are active.
The response is used to specify an action to take

when the constraint is violated (its condition is
false). The response consists of two parts: the sever-
ity information and the repair unit
ow. The sever-

ity information is contained in the then statement
and includes a severity and a severity message. The
severity is a symbol (e.g. surrender, inform, etc.)
which designates the importance that the policy not
be violated. The severity message is a note which
provides some immediate feedback to the user about
the violation. The repair unit
ow lists the actions
which should be taken when a constraint is violated.
The repair unit
ow is indicated by the and do state-
ment. For the case of the sale not being pro�table,
the unit
ow just records the unpro�table sale cases,
so that they can be analyzed to determine which
prices should be adjusted.
The speci�cation of policy is not typically identi-

�ed as an individual dimension in the speci�cation
of a business system. As we saw in the de�nition of
sale unit
ow, there was an option for representing
the policy as part of the unit
ow, a constraint on
the unit
ow, or as a general constraint in the de-
partment. If this constraint is a general constraint
in the department, the maintenance of such a con-
straint will be eased considerably if it is only repre-
sented in one place. De�ning constraints as policy
enables us to do this.

6 Analysis of Speci�cations

A key goal in the design of BizSpec has been that
the speci�cations should be analyzable for internal
consistency and executable for evaluating work unit
behavior. Below are several types of analysis that
can be done on BizSpec speci�cations:

� Communication consistency: This analysis al-
lows us to answer questions such as: are there
classes of messages (forms or requests) that are
sent by one work unit to another work unit, but
not handled by the receiving work unit? Or are
there classes of messages that are expected by
a work unit from other speci�c work units but
not sent by those work units?

For instance, in Figure 6, Purchase Order Form
is sent by sales department to the shipping de-
partment. This form should be handled by
some unit
ow in the shipping department.

� Potential communication inconsistency: Are
there classes of messages that are expected by
a work unit but no work unit is sending them?
This may be an inconsistency, but not always.
The work unit that is supposed to send them
may be external to the system and thus not
speci�ed. In any case, warning should be given
so that the analyst is aware of the potential in-
consistency.

� Form completeness: There should be a way of
computing each �eld on a form { either as an
input, by initialization, or by deriving its value
from other �elds.

While the above types of analyses can give valu-
able feedback about the speci�cations, even more
important, in our view, is that BizSpec speci�ca-
tions are executable. They can be executed and
an end user can see whether the speci�cations cor-
rectly model a work unit or a collection of work
units. We have prototyped an execution environ-
ment for BizSpec speci�cations in CLOS that we
are currently using to predict whether the proposed
system will meet the timing constraints of the busi-
ness. Typically, businesses have goals for how long
transactions should take, so it will be useful if a sim-
ulation of the speci�cations can predict whether the
proposed system will meet the desired performance
goals. To do that, we extended BizSpec speci�ca-
tions to allow execution time estimates to be at-
tached to individual steps. Concept of resources is
also added to model resources that are needed to
execute steps. A common example of a resource is
people (who do a step, etc.). The simulator gives
information on average, peak, and standard devia-
tion of utilization of resources, time required to ex-
ecute an instance of a business
ow, and time spent
by each step waiting for resources. We believe that
such insight from speci�cations can be very useful
in planning.

7 Future Work

In addition to the static and simulation analyses of
the speci�cations mentioned above, the other major
areas for future work are listed below.

� Database design: Forms provide us with a fa-
miliar concept in the business which identi�es
the �elds used in the business and their de�ni-
tions. Our goal is to de�ne the concept of forms
such that a physical data model can be derived.
In [2], they demonstrate the issues involved in
deriving a data model from speci�cations.

� Speci�cation interface: Higher-level interfaces
which support the entry of speci�cations by
both end users and systems analysts is an area
of interest. End users may be able to supply
some basic information including forms, exam-
ples of processing using the forms, and high-
level descriptions of policy.

8 Conclusions

The goal of any speci�cation formalism is to
be able to collect the speci�cations of the domain
quickly and accurately. In the development of
BizSpec, we concentrate on improving the accuracy
of the speci�cation process for o�ce information
systems. This is done in three ways: 1) by using
business-oriented representational concepts as for-
mal representation entities; 2) by making the struc-
ture of the speci�cation of unit
ows and policy mir-
ror to the structure of the business; and 3) by mak-
ing the speci�cations executable. Business-oriented
speci�cation will require less translation between
system concepts and business concepts. Because the
translation process will be simpli�ed the addition of
speci�cation interfaces should reduce the time re-
quired to capture the speci�cations as well.
The ability to evaluate and adapt a business sys-

tem is also becoming a vital part of the business sys-
tem development process. In BizSpec, the results of
changes are immediate because the speci�ed busi-
ness system is executable. Since business-oriented
concepts are used to de�ne the system, we hope that
BizSpec will allow end users and systems analysts to
work together to evaluate and update their business
system as desired.

References

[1] M. Burnett and A. Ambler. Generalizing event
detection and response in visual programming
languages. Technical report, Michigan Techno-
logical University, 1991.

[2] J. Choobineh, M. Mannino, and V. Tseng.
A form-based approach for database analysis
and design. Communications of the ACM,
35(2):108{120, February 1992.

[3] T. DeMarco. Structured Analysis and System
Speci�cation. Yourdon Press, 1979.

[4] W. Du and W. Wadge. A 3d spreadsheet based
on intensional logic. IEEE Software, 7(3):78{
89, May 1990.

[5] L. Erman, F. Hayes-Roth, V. Lesser, and
R. Reddy. The hearsay-ii speech-understanding
system: Integrating knowledge to resolve uncer-
tainty. ACM Computing Surveys, 12(2), 1980.

[6] M. Flavin. Fundamental Concepts of Informa-
tion Modeling. Yourdon Press, 1981.

[7] C. Forgy. Ops5 user's manual. Technical report,
Carnegie-Mellon University, July 1981.

[8] L. Gasser, C. Braganza, and N. Herman. Imple-
menting distributed arti�cial intelligence sys-
tems using mace. In Proceedings of the Third
IEEE Conference on Arti�cial Intelligence Ap-
plications, pages 315{320, 1987.

[9] W. Johnson and M. Feather. Using evolution
transformations to construct speci�cations. In
Automating Software Design, chapter 4, pages
65{91. AAAI Press, 1991.

[10] V. Kelly and U. Nonnenmann. Reducing the
complexity of formal speci�cation acquisition.
In Automating Software Design, chapter 3,
pages 41{64. AAAI Press, 1991.

[11] A. M. Law and W. D. Kelton. Simulation Mod-
eling and Analysis. McGraw-Hill, 1982.

[12] M. Lubars. The rose-2 strategies for supporting
high-level software design reuse. In Automat-
ing Software Design, chapter 5, pages 93{118.
AAAI Press, 1991.

[13] M. Page-Jones. The Practical Guide to Struc-
tured Systems Design. Yourdon Press, 1980.

[14] G. Viehstaedt and A. Ambler. Visual represen-
tation and manipulation of matrices. Journal of
Visual Language and Computing, 3(3), Septem-
ber 1992.

