
Copyright c 1996 IEEE. See full copyright notice at Table of Contents.

Preserving Integrity in Remote

File Location and Retrieval

Trent Jaeger * Aviel D. Rubin

jaegert@eecs.umich.edu rubin@bellcore.com

Software Systems Research Lab Security Research Group

EECS Department Bellcore

University of Michigan 445 South Street

Ann Arbor, MI 48105 Morristown, NJ 07960

Abstract

We present a service for locating and retrieving �les
from an untrusted network such that the integrity of
the retrieved �les can be veri�ed. This service enables
groups of people in geographically remote locations to
share �les using an untrusted network. For example,
distribution of an organization's software to all the or-
ganization's sites can be accomplished using this ser-
vice. Distribution of �les in an untrusted network is
complicated by two issues: (1) location of �les and
(2) veri�cation of �le integrity. ftp and World-wide
Web (WWW) services require some user intervention
to locate a �le, so they cannot be embedded in auto-
mated systems. Distributed systems have mechanisms
for automated �le location and retrieval, but they re-
quire trust in all system principals and do not provide
an appropriate balance between availability of �les and
retrieval cost for our applications. Veri�cation of the
integrity of a �le retrieved from an untrusted network
is necessary because the �le is subject to malicious
modi�cation attacks. Our service provides the capa-
bility to automatically locate, retrieve, and verify �les
speci�ed by a client using a single trusted principal.
We demonstrate our service by building a system shell
that automatically downloads remote software when
needed.

Keywords: Digital signatures, cryptographic di-
gests, remote procedure calls, wide-area network �le
location, trusted authorities, C-shells.

*This work was done while this author was a summer intern
at Bellcore.

1 Introduction

We present a service that automatically locates and
retrieves �les from an untrusted network and veri�es
that the �le retrieved is the �le requested. This ser-
vice enables users to share �les distributed over the
Internet. For example, a user may want to retrieve a
technical document with a speci�c document number
from a remote server in a geographically distributed
organization. A user can use this service to automat-
ically retrieve such a document, even if the user does
not know the identity of the machine that stores the
�le. In addition, the service provides a mechanism
that veri�es the authenticity of the document. The
service solves two major problems: (1) ensuring au-
thenticity of information obtained from an untrusted
network and (2) locating distributed information.

Many users already use tools such as ftp to down-
load and run software from the Internet, but this is a
very dangerous practice. For example, a malicious at-
tacker may replace software, either in transit or on a
compromisedmachine, with malicious software. Since
the malicious software is run with the user's access
rights, this software can: (1) access the user's pri-
vate data; (2) delete the user's data; (3) access sys-
tem information, such as a password �le; and (4) tie
up system resources. Even worse, the malicious soft-
ware may contain a virus or a Trojan horse. Bellcore's
Trusted Software Integrity (Betsi) system [14] enables
users to manually verify the integrity of a �le obtained
from the Internet. Betsi requires user involvement to
verify that the certi�cate is for the �le requested and
to compare cryptographic digests and digital signa-
tures to those in the certi�cate, so it cannot be inte-
grated with our service in its current form.

A second problem with �le retrieval from the In-
ternet is that it is di�cult to locate a speci�c �le

1



without knowledge of its speci�c location or signif-
icant user involvement. To retrieve a �le using ftp,
the user must know the name of the ftp site in addition
to the name of the �le. Also, current web searching
programs aid the user in performing keyword searches
of the Internet, but require users to guide the search
directly. Therefore, these systems are prone to user
errors and cannot be embedded within an applica-
tion. Distributed �le systems and shared virtual mem-
ory systems provide mechanisms for automated loca-
tion of �les, but they have the following limitations:
(1) they do not provide the proper trade-o� between
pushing �les to clients and pulling �les from servers
and (2) they require that too many system principals
are trusted.

The goal of our service is to automate the �le loca-
tion, retrieval, and authentication tasks of the client.
Using our service, a client can specify the �le to be
retrieved and expect the service to return a copy that
meets those speci�cations, if one is available. Files can
be located e�ciently without requiring trust in the lo-
cating services. In fact, only one trusted principal is
required for the protocol to succeed. We demonstrate
the types of tools that can be constructed from the ser-
vice by building a system shell that automatically lo-
cates and downloads software from remote machines.

In the next section, we de�ne the problem. In sec-
tion 3, we present the service architecture. In section
4, we describe the implementation of the service. In
section 5, we present an application of the service.

2 Problem Statement

Our service must solve two basic problems: (1) it
must be able to locate and retrieve the �le requested
by the client and (2) it must be able to verify that
the �le retrieved satis�es the client's request. In this
section, we formally de�ne these two problems.

2.1 File Location and Retrieval

Before de�ning the �le location and retrieval prob-
lem we de�ne the following concepts:

� De�nition 1: A �le identi�er is a tuple that
includes the identifying characteristics of a �le,
such as its name, its author, its date, etc 1.

� De�nition 2: A �le is a stream of bits referenced
by a �le identi�er.

1A detailed de�nition of the �le identi�er used is provided
in Section 4.2.

� De�nition 3: A client is a principal that re-
quests a �le using a �le identi�er.

� De�nition 4: A distribution server is a principal
that can process a �le identi�er and determine if
it possesses a �le that maps to the identi�er.

When the client wants to retrieve a �le, it speci�es
a �le identi�er. The �le location problem is for a client
to identify a distribution server that can map the �le
identi�er to a �le that it possesses. The �le retrieval
problem is for the client to obtain an authentic version
of that �le from a distribution server.

Current �le location mechanisms can be divided
into two categories: (1) pull; and (2) push. Pull sys-
tems, such as V [4, 5] and shared virtual memory sys-
tems like Ivy [9] and Emerald [6], generate �le location
information on demand and cache the information lo-
cally. Location of new �les requires a broadcast, so
it can be expensive. V de�nes domain-wide caches,
called liaison servers, for storing location information
generated by all clients in a domain. Liaison servers
reduce the number of broadcasts that are necessary
since a �le that has been located once is stored by at
least one liaison server.

In push systems, such as Grapevine [3], DEC
Global Name Service [7], and Ameoba [17], servers
generate information about remote �les and distribute
that information to clients. The push model makes
retrieval more e�cient because the information about
the location of each remote �le is closer to the client.
However, the cost of forwarding change messages can
be high. In Ameoba, only `published' �les are made
available to the network, so only the location of these
�les needs to be known by remote machines. How-
ever, Ameoba requires that clients run server agent
processes on their machines to locate published �les.
We question the feasibility of this approach because:
(1) it is expensive to publish information to every ma-
chine in the Internet and (2) allowing processes to be
triggered by the actions of foreign machines presents
a potential security vulnerability, particularly when
these processes may a�ect the way that the local ma-
chine executes future processes. However, we expect
that people responsible for distribution servers will
know what �les they want to o�er, such as in the
WWW where users make �le URL's available, so the
push model is preferred.

Another problem with the systems described above
is the amount of trust that is required for their �le
location mechanisms to succeed. All these systems
assume that the distribution server has a valid copy
of the requested �le and that the location server is
trusted. For example, the V system requires that its

2



managers (i.e., distribution servers) sign all messages.
However, even if the data is signed, the compromise
of a distribution server may result in the use of in-
valid applications or data. Also, V assumes that its
liaison servers are trusted and the integrity of their
communicationswith clients is preserved. Trust in the
location server and its communications breaks down
if it is subject to compromise or communicates over
an untrusted network. We expect that distribution
servers and location servers connected to the Internet
will be attacked, so applications, replicated data, or
communications delivered from these machines cannot
be trusted.

Current systems assume that once a �le is found,
it is trivial to retrieve it. This assumption is not true
if the �le resides in an untrusted network. Malicious
attackers can modify the �le in transit. Resending a
�le may not be su�cient because the �le may have
been corrupted when a distribution server was com-
promised. The result is that a client may have to re-
trieve a �le from a distribution server multiple times
or from another distribution server.

2.2 File Authentication

The �le authentication problem is to prove that the
�le retrieved meets the requirements of a client's �le
request. For example, a client may request a software
package named X. However, if a distribution server
supplies a �le named X, that is not su�cient to ver-
ify to the client that the package is indeed software
package X. The distribution server could have just re-
named another �le X.

More formally, the �le authentication problem is for
a client to verify that the following statements about
a �le f are true:

� Statement 1: The identity of a �le f matches
the identity in the �le identi�er provided by the
client.

� Statement 2: The author of �le f matches one
of the authors in the �le identi�er for f.

� Statement 3: A cryptographic digest of �le f
matches a cryptographic digest of a �le whose
identity matches f.

� Statement 4: The expiration date of the cryp-
tographic digest, identity, and author of a �le f
has not passed.

Statement 1 says that the retrieved �le's identity
matches that of the request. Statement 2 says that the
�le is authored by an author approved by the client.

Statement 3 says that the retrieved �le's contents cor-
respond to the �le contents expected. Statement 4
says that the �le authentication information is cur-
rent.

We assume that a client believes any statement
made and digitally signed by a trusted authority.
Therefore, a client can compare the �le retrieved to
authentication information signed by a trusted au-
thority to determine if a �le is authentic. This is the
protocol implemented by the Betsi system [14].

In Betsi, a trusted certi�cation authority (CA) cre-
ates certi�cates that associate a registered author with
a �le identi�er and a cryptographic digest of the �le.
Betsi's author registration protocol prevents an at-
tacker from masquerading as another registered au-
thor. These certi�cates are digitally signed by the CA
to ensure their authenticity. Therefore, a user can ver-
ify that a �le is the one speci�ed in the certi�cate and
that its integrity is preserved. The following protocol
is used to verify �le authenticity. First, a user com-
pares the �le identi�er and author in the certi�cate
to the �le identi�er and author expected by the user.
Next, the user computes a cryptographic digest of the
�le (using a trusted hash program, such as MD5 [12])
and compares this digest to the cryptographic digest
in the certi�cate to verify the �le's integrity. If the
user trusts the CA and the two comparisons succeed,
then the �le satis�es the Betsi veri�cation protocol.
The requirement for the �le to be current is imple-
mented in Betsi via a certi�cate revocation list.

The main limitationwith the Betsi approach is that
the user must validate the information in the certi�-
cate. This task is arduous and error-prone: (1) users
may not know the criteria for accepting a �le; (2) users
may misinterpret the certi�cate; and (4) users may
become inured to the process and accept �les without
checking them. However, it is possible to automati-
cally authenticate �les using the criteria for authenti-
cation given above.

3 Architecture

Our service's architecture is based on the following
assumptions. First, each client can securely obtain a
copy of the CA's public key. An o�-line mechanism
can be used to distribute this key. Second, we assume
that an attacker cannot certify �les using another au-
thor's identity. Betsi uses an o�-line mechanism to
verify an author's identity during registration of an
author's public key. We do not expect that Betsi's
mechanism will be used for this application, but we
require that some o�-line veri�cation is performed.

3



Third, we assume that trusted software for generating
cryptographic digests and for verifying digital signa-
tures are available at each client. Finally, denial-of-
service attacks are generally easy to detect and hard
to prevent, so we assume that they can be detected
by the system and are repaired o�-line.

The trust model includes the following principals:

� Clients: Principals that request �les

� Distribution Servers: Principals that store
and distribute �les

� Authors: Principals responsible for a �le (e.g.,
the system administrator of a server)

� Certi�cation authorities (CA): Principals
trusted by clients to certify authors' �les

� Location server: Principals that map �le iden-
ti�ers to distribution servers

CA's certify the authenticity of each �le. This con-
trasts with the PEM [2] model where a CA would cer-
tify the public key of each author, and authors would
certify �les directly. The advantages of CA's certify-
ing �les are that: (1) the certi�cation date of the �le
can be trusted; and (2) certi�cation using previously
revoked public keys is prevented. The authenticity of
some documents, such as legal documents, may de-
pend on the date that they were certi�ed. Since the
CA creates the certi�cate containing the certi�cation
date, this date can be trusted. Also, the CA generates
all certi�cates, so the CA can prevent certi�cation of
�les signed using a revoked key. In addition, our CA
can also support implementation of certi�cates based
on the PEM model, where appropriate.

The client need only trust a single CA in our archi-
tecture. At present, we assume that each organization
will have one CA. If a group of organizations wants to
share information, a web of trust between the CA's of
those organizations can be created using the mecha-
nism used for PEM [2] or PGP [18] 2.

Clients need not trust location servers nor distri-
bution servers. If a distribution server delivers an in-
correct or tampered �le, the client recognizes it. Any
change to the certi�cate is detected by signature ver-
i�cation, and any change to the �le is detected by
the digest comparison. If a location server is compro-
mised, the client can use another location server. At
worst, compromised distribution servers and location
servers can cause a denial of service.

2PGP is a trademark of Philip Zimmermann.

Location

Client

Server

Server
Distribution

12
3

4

5

Figure 1: Service Process: (1) distribution server
publishes a �le; (2) client requests a �le's location; (3)
location server returns a set of distribution servers for
a �le; (4) client requests a �le from a distribution
server; and (5) distribution server returns a �le and
its certi�cate for authentication.

The service architecture implements the process
shown in Figure 1. In step 1, distribution servers an-
nounce to location servers that they possess a speci�c
�le. In step 2, a client requests the locations of a
�le from a location server. In step 3, the location
server returns a list of distribution servers for the �le
to the client. In step 4, the client chooses a distri-
bution server and requests the speci�ed �le and its
certi�cate. In step 5, a distribution server returns a
copy of the �le and its certi�cate to the client. Steps
4 and 5 are repeated until the client receives an au-
thentic version of the �le.

The location and retrieval steps di�er from dis-
tributed operating system location services in a few
key ways. Unlike V, a push model is used by dis-
tribution servers, so all distributed �les are already
cached in the location servers. Therefore, broadcasts
to distribution servers for �les are not necessary. Un-
like Ameoba, no server agent processes are required
on the client's machine to �nd a �le. Thus, the need
for a client to run processes for a distribution server
is removed. We also expect that other types of �les,
such as documents, may be retrieved using our ser-
vice, so the number of server agents required would
be higher than Ameoba's designers anticipated.

Another di�erence between our architecture and
that of V and Ameoba is the number of trusted prin-
cipals. Clients in both Ameoba and V trust all the
location and distribution servers. In an untrusted net-
work, one of these machines is bound to be compro-
mised, so this assumption is not valid for the Inter-
net. In the architecture presented here, only the CA
is trusted. An implication of having only one trusted
principal is that each client is now required to per-
form veri�cation of retrieved �les. Thus, a client must
store the public key of a CA and possess trusted cryp-

4



tographic software.

4 Implementation

Our service is implemented as a set of communi-
cating principals distributed in an untrusted network.
There are six types of principals in the implementa-
tion: (1) CA's; (2) location servers; (3) distribution
servers; (4) publishers; (5) authors; and (6) clients.
The actions of CA's and authors are assumed to take
place o�-line, so their implementation is not detailed.
Location servers and distribution servers handle re-
quests from clients and maintain permanent state.
The publisher is added to perform the task of upload-
ing information about �les available on a distribution
server's �le system to the location server and to the
distribution server itself.

The instances of the six principals are distributed
in the following manner. At present, we have imple-
mented only one trusted CA. There is no reason that
others cannot be added to the implementation, how-
ever. There can be an unlimited number of distribu-
tion servers, publishers, clients, and location servers
in the network. At present, we have implemented only
a single location server, however.

The only cryptographic keys that are needed in this
implementation are the CA's public/private key pair.
Only the CA has access to its private key. We assume
that the CA is on a secure machine. Clients are the
only principals that need the CA's public key. They
store the CA's public key in a read-only �le. In the
future, the use of secure hardware (e.g., smart cards)
should be considered.

In our implementation, all digital signatures are
generated using the Digital Signature Algorithm
(DSA) [1]. DSA was developed and patented by the
National Security Agency (NSA) and is the proposed
standard digital signature algorithm of the National
Institute of Standards and Technology (NIST). DSA
is a public key algorithm whose security is based on
the hardness of the discrete logarithm problem. Our
choice of DSA may be somewhat controversial given
that a large majority of digital signature applications
use the RSA [13] algorithm. However, DSA has the
advantage that NIST claims that DSA can be ex-
ported and that it is royalty-free 3. On the other
hand, the exportation of RSA is tightly controlled and
its use requires royalty payments to the patent hold-
ers. Since there is no known way to break DSA, it is
a viable alternative with fewer restrictions on its use.

3It is currently unresolved as to whether a patent by Schnorr
covers DSA, however.

The version of DSA used in our implementa-
tion is part of the Long Integer Package (LIP) [8]
developed by Arjen Lenstra. LIP provides a li-
brary of functions for computing with arbitrarily
long integers. For example, LIP can generate
1024-bit integer DSA keys and perform the mod-
ular exponentiation operations necessary for signa-
ture generation and veri�cation. A free version of
LIP is available via ftp from the site ox.ac.uk

at /pub/math/freelip/freelip 1.0.tar.gz. This
version contains all the functionality of the Bellcore-
proprietary version of LIP we used, except for the
DSA code itself. However, the DSA algorithm is
widely published [15], and it can implemented using
the basic LIP functions.

The MD5 [12] hash algorithm is used to generate
cryptographic digests. MD5 has the following fea-
tures: (1) it is a one-way function because it is thought
to be computationally infeasible to derive the input to
an MD5 calculation given the output and (2) it is a
collision-free function because, given an input and an
output, it is possible to �nd another input that hashes
to that same output with only a negligible probabil-
ity. These features and the fact that the code is in
the public domain have made MD5 an RFC standard
one-way hash function.

Interaction between principals is implemented us-
ing the Sun RPC mechanism [16]. Each of the steps
shown in Figure 1 correspond to an RPC request and
reply. The publisher and client principals make RPC
requests to the appropriate server principal as neces-
sary. The server then responds with a result. For
example, to locate a �le, a client makes an RPC
request that includes a �le identi�er to a location
server. The location server returns an array of dis-
tribution servers to the client. The location servers
and distribution servers are implemented as Inter-
net services. To make these Internet services avail-
able, they must be registered. Registration of Inter-
net services is accomplished by adding the appropri-
ate entries to /etc/inetd.conf, /etc/services, and
/etc/rpc �les. Below, we detail the contents of the
RPC requests and the actions taken upon receipt of
such requests.

4.1 Initial Conditions

Before detailing the implementation, we identify
the initial conditions assumed by the implementation.
First, we assume that a publisher wants to make a �le
accessible to clients. This publisher may or may not
be the author (e.g., developer) of the �le.

Registered authors certify their �les with a CA
trusted by those clients who will want to use the �le.

5



This enables clients to verify the contents of the �le,
its identifying attributes, and its certi�cation date.
The CA provides the author with an authentication
certi�cate for the �le. We assume that the publisher
obtains a copy of the �le and its authentication cer-
ti�cate o�-line.

E�ectively, a �le authentication certi�cate asso-
ciates an author with a cryptographic digest of a spec-
i�ed �le. Digests are used in the place of �les because
hashes have a small, �xed size (e.g., 128 bits for MD5).
Clients can compare a digest of the �le to the digest
provided in the certi�cate to verify the integrity of the
�le. The integrity of the certi�cate is guaranteed by
the signature of the trusted CA.

Other information is needed in the certi�cate to
verify that the requested �le was retrieved. Therefore,
a certi�cate has the following �elds:

� Identity of CA

� Author Name

� Author's Organization

� Author's E-Mail Address

� Name of the File

� Version Number

� Machine

� Machine ID

� O/S

� O/S version

� Cryptographic Digest

� Expiration Date

� Latest Version?

� Date

The �elds in the certi�cate have the following
meanings. The identity of CA is used so the client
can determine which public key to use to verify the
authenticity of the certi�cate. Author information en-
ables the client to verify the author of the �le. The
version number of the �le enables the client to ver-
ify that the �le is the proper version. The machine
and O/S information are used to verify that the �le
is appropriate for a speci�c platform. These �elds
are applicable to software. As described above, the
cryptographic digest is used to verify the integrity
of the �le. The expiration date indicates the date

when the certi�cate becomes invalid. The latest

version? �eld speci�es that the author claims that
this �le is the latest version at the date the certi�cate
was created. The date is the date of certi�cation. The
protocol for verifying the authenticity of a �le using
these certi�cates is detailed in the File Authentication
Section below.

4.2 File Publication

Clients can locate a �le on a particular distribu-
tion server because it is `published' to the network.
The act of `publishing' was �rst used in the Ameoba
system [17] as a way to advertise that a particular ser-
vice resides on a particular server. In Ameoba, a �le
publication protocol activates server agents on client
machines to catch and forward service requests. In
contrast, our implementation has a publisher process
that uploads �le location information to both location
servers and distribution servers.

An important consideration in �le publication is
the speci�cation of a �le. A �le must be speci�ed in
a way that it can be uniquely referenced. A unique
�le is speci�ed using a �le identi�er. A �le identi�er
consists of the following �elds:

� File Name

� Author Set

� Version Number (optional)

� Machine (required for compiled software only)

� Machine version (required for compiled software
only)

� O/S (required for compiled software only)

� O/S version (required for compiled software only)

� Latest Version? (optional)

A client is required to know the execution platform
for compiled software. The execution platform can ei-
ther be entered by the client or stored in a �le. Oth-
erwise, these values are not required. If the version
is not speci�ed, then it is assumed that the latest

version? of the �le is requested.
Location servers store a map of �le identi�ers to

the set of servers that provide them. Our implementa-
tion allows for a distributed model of location servers,
similar to the model of liaison servers in the V operat-
ing system [5]. Liaison servers update their database
as they ful�ll client requests. In our implementation,
only published �les can be retrieved and the location
of these �les is uploaded to location servers.

6



LocationPublisher

#1

#2

Server

Distribution

Server

Figure 2: The �le publication protocol: (1) Pub-
lisher uploads a �le identi�er-to-pathname mapping
to distribution server; (2) Publisher uploads a �le
identi�er-to-distribution server mapping to location
server.

Distribution servers store a map from a �le identi-
�er to the �le pathname and the �le's certi�cate path-
name on the distribution server's �le system. This
enables a distribution server to quickly locate a �le
requested by a client.

The �le publication protocol is shown in Figure 2.
The protocol steps are as follows:

1. The publisher informs the distribution server to
update its �le identi�er-to-pathname database.
Each distribution server database entry has the
following �elds:

� File Identi�er

� File Pathname

� Certi�cate Pathname

2. The publisher tells a location server to update its
�le identi�er-to-server database. Each location
server database entry has the following �elds:

� File Identi�er

� Distribution Server

The results of the �le publication protocol are: (1)
the location server can list the set of distribution
servers that claim to possess a �le that matches a �le
identi�er and (2) the distribution server can locate
that �le and the �le's certi�cate given a �le identi�er.

In this implementation, it is possible for attackers
to publish false �les on a location server. This at-
tack will not result in a client accepting a �le that
is not authentic, but can result in a denial-of-service
if the location server database becomes full of false
�le locations. Attackers can be prevented from pub-
lishing false �les if the location server also requires
a publisher to present a certi�cate for the �le upon

Client
Location .

.

.

Other
Location

#1

#4

#3

#3

#2

#2

Server

Server

Other
Location
Server

Figure 3: The �le location protocol: (1) Client
sends a �le identi�er to the client's location server to
�nd the distribution servers that possess a �le; (2)
Client's location server requests that other location
servers �nd the distribution servers that possess a �le
(optional); (3) Other location servers return to the
client's location server a set of distribution servers
that possess a �le; (4) Client's location server returns
a set of distribution servers that possess the �le.

publishing. This does not prevent an attacker from
publishing legitimate �les, however. O�-line veri�ca-
tion of published software by system administrators
can be used to limit the number of false entries.

4.3 File Location

The �le location protocol provides a client with a
set of distribution servers that claim to possess a �le
that matches a �le identi�er. If a client already knows
a distribution server with the desired �le, then the �le
location protocol is not necessary.

The �le location protocol is shown in Figure 3. The
steps in the protocol are as follows:

1. A client sends a �le identi�er to the client's lo-
cation server. The �le identi�er is de�ned in the
File Publication Section above.

2. (Optional) The client's location server sends the
�le identi�er to some number of the other loca-
tion servers. This is only done if the client's loca-
tion server has no knowledge of any distribution
servers that possess the �le.

3. (Optional) These other location servers return lo-
cation structure messages to the client's location
server. The location structure messages have the
following format:

� An Array of Distribution Servers

� The Number of Distribution Servers

7



Client

#2

#1

Distribution

Server

Figure 4: The �le retrieval protocol: (1) client
sends a �le identi�er to a distribution server; (2) the
distribution server returns the corresponding �le and
its certi�cate.

4. The client's location server returns a location
structure message to the client.

The result is that the client collects a set of distri-
bution servers (possibly empty) that the client's loca-
tion server claims possess the requested �le. We have
no requirement that location servers are consistent,
so if a location server has no entry that matches a �le
identi�er then it can request the help of other loca-
tion servers. The client's location server caches any
new information it obtains from these other location
servers. Therefore, the next time a client requests
the same �le, the location server can provide the set
of distribution servers found previously. We expect
in future implementations that location servers will
publish new �les among one another at regular in-
crements (e.g., daily) or after a threshold number of
updates have been made to them. Protocols for this
activity are beyond the scope of the paper.

At present, we have implemented only messages 1
and 4 of the �le location protocol although we see no
reason why the implementation of messages 2 and 3
should be problematic.

The main attack against �le location is for an at-
tacker to modify the location server's return messages
(the location structure messages) with a false reply.
Again this attack will only result in a denial-of-service,
so client retries can overcome this attack.

4.4 File Retrieval

The �le retrieval protocol uses the set of servers
obtained in the �le location protocol to retrieve a �le
and its certi�cate. The �le retrieval protocol is fairly
straightforward, but it may need to be rerun if the
�le authentication fails. Because �le authentication
can fail, the client treats the �le location information
as a hint to the possible locations of the �le. The
�le retrieval protocol determines how these hints are
used.

The base �le retrieval protocol is shown in Figure 4.
The client sends the same �le identi�er it sent to the

location server in the �le location protocol to a dis-
tribution server. The distribution server returns the
corresponding �le and its certi�cate. A null �le indi-
cates that the distribution server does not possess the
�le. If a �le and its certi�cate are returned, the �le
authentication protocol described in the next section
is run.

If �le authentication fails, then the client must de-
termine what the next action should be. The client
has four options: (1) retry the retrieval using the
same distribution server; (2) try the retrieval using
another distribution server; (3) obtain a new distri-
bution server set from the same location server; and
(4) obtain a new distribution server set from another
location server. Since we expect relatively few fail-
ures, we use a simple, round-robin algorithm to lo-
cate a distribution server with an authentic copy of
the �le. First, each distribution server in the distri-
bution server set are tried in succession. If all the
distribution servers fail (the client can specify a limit
for the number of failures), another location server is
queried for a new set of distribution servers and the
algorithm is repeated. If a client detects a failure, it
noti�es the server's system administrator. Veri�ca-
tion of server state and failure repair are performed
o�-line.

4.5 File Authentication

Once a client receives a �le and its certi�cate, the
client needs to verify that the �le was the one re-
quested. The �le authentication protocol compares
the �le identi�er generated by the client and the �le
itself to the information in the �le's certi�cate. The
result is that the client veri�es that the �le is authen-
tic or discards the �le.

The �le authentication protocol consists of two
steps: (1) verifying the CA's signature and (2) verify-
ing the information in the certi�cate. The veri�cation
of the CA's signature is necessary to ensure that the
certi�cate has not been modi�ed. Any change to the
certi�cate will cause the digital signature veri�cation
process to fail.

Once the CA's signature is veri�ed, the informa-
tion in the certi�cate is checked to ensure that the
correct �le has been retrieved. The �le and its identi-
�er are compared to the following components of the
certi�cate:

1. Expiration Date of the Certi�cate

2. File Name

3. File Author

8



4. Version Number (optional)

5. Latest Version Number (optional)

6. Machine (optional)

7. Machine Version (optional)

8. O/S (optional)

9. O/S Version (optional)

10. Cryptographic Digest of the File

First, the expiration date of the certi�cate is
checked. The expiration date indicates the time at
which a certi�cate becomes invalid. An author can
use this capability to register �les until a certain date.
Then, the author can either re-certify the �le or certify
a new version of the �le. This is useful for releasing
updated versions of documents or software. A de-
tailed example of this is provided in the Applications
Section.

Next, the �le identi�er information (e.g., �le name,
author, etc.) can be veri�ed. This is accomplished
by matching the �le identi�er information supplied
by the client against the values of the �le identi�er
attributes in the certi�cate. The author �eld veri�-
cation is satis�ed if the author matches one of the
author's in the �le identi�er's author set.

Lastly, the integrity of the �le itself is checked by
computing the cryptographic digest of the �le using
MD5 and comparing that value to the cryptographic
digest in the certi�cate. If the digests match, the in-
tegrity of the software is assured with a large degree
of con�dence. This assurance is possible because the
CA's signature guarantees that the validity of the di-
gest and the probability that MD5 computes the same
digest for two distinct inputs is negligible.

Even if the hashes match, it is possible that the
author may have certi�ed malicious software in the
�rst place. In this case, the author is directly linked to
the software, so any malicious actions by the software
can be attributed to the author.

5 We Sell C-Shells

We have implemented a shell interpreter that ob-
tains remote software on demand and ensures that the
retrieved software is the software requested before ex-
ecuting it. This shell, called the Secure sofTware RE-
Trieval SHell or stretsh, automatically retrieves and
authenticates software from the network, such that it
appears that �les made available on the network are in
the normal execution path of the client. Therefore, no

Figure 5: A form for publishing �les to a location
server.

user involvement is necessary to execute applications
whose software resides on remote �le systems. Also,
stretsh enforces software version control by automat-
ically downloading new versions of software when the
previous version's certi�cates expire.

Stretsh is a shell language developed for Unix 4.
Although the functionality of this shell language is not
Unix-speci�c, our prototype implementation is spe-
ci�c to Unix. Stretsh extends the csh scripting lan-
guage by placing a wrapper around command execu-
tion that locates a command before it is executed.
Unix-speci�c utilities are used to locate commands.

As an example, consider an employee accounts ap-
plication in a geographically distributed organization.
This application has a main program that provides ac-
cess to a set of utility software for timesheets, expense
reports, account management, etc. Stretsh scripts
can download these utilities and verify their authen-
ticity automatically. In addition, when new versions
of utilities are published these can be downloaded as
well.

System administrators announce new software is
available using the �le publication protocol described
above. A form is de�ned for system administrators to
enter the publication information. This form is cre-
ated using Tcl/Tk [11] and shown in Figure 5. The
location server �eld in the form speci�es the do-
main name of the location server. The file path

�eld indicates the �le name and the location of the
�le. The certificate path �eld indicates the loca-
tion of the �le's certi�cate. The �le identi�er attribute
values are obtained from the certi�cate. The com-
mand Load Remote Procedure initiates execution of
the �le publication protocol.

Once a software package is published, stretsh can
retrieve it. Stretsh retrieves software requested by
its shell programs if it is not already in the execution
path of the user. When a program is to be executed,
stretsh �rst checks to determine if the program is
in the local execution path using which 5. The pro-

4Unix is a registered trademark of the Unix Open Founda-
tion, Inc.

5
Which is a Unix command that locates a command if it is

one of a set of speci�ed directories.

9



totype stretsh implementation only checks the �rst
entry in the command line, but all executable soft-
ware could be checked during the construction of the
execve command. If the software is present, then the
program is executed in the normal fashion. If not,
stretsh attempts to retrieve the �le. First, stretsh
builds a �le identi�er for the �le. The �le identi�er
attribute values are obtained in the following manner:

� File Name: Name of software

� Author Set: From .trusted authors

� Version Number: In <script name>.pre or
Null

� Machine: From .platform

� Machine version: From .platform

� O/S: From .platform

� O/S version: From .platform

� Latest Version?: True unless a version is spec-
i�ed in <script name>.pre

The set of authors trusted to write software that
can be retrieved are listed in a .trusted authors

�le maintained by the system administrators. Thus,
the name of a software package must be unique to
an author. Author names are suggested by the au-
thors, but approved by the CA. The platform infor-
mation is stored in a .platform �le for each machine
(set at login time). Both the .trusted authors and
.platform �les reside on the local machine. Unless
a version speci�cation is provided for the software in
<script name>.pre, the latest version of the soft-
ware is obtained by stretsh. The location server
then returns a set of distribution servers to stretsh.
Stretsh uses the same �le identi�er to retrieve a copy
of the software and its certi�cate from a distribution
server. Software and their certi�cates are copied to
the directories indicated by the environment variables
$STRETSH DIR and $STRETSH CERT, respectively. The
�le authentication protocol is then executed on these
�les as described above. If �le authentication is suc-
cessful, the software can be executed.

Consider the employee accounts application again.
If a new expense report program, called expenser,
is added to the application script, it can be auto-
matically downloaded by stretsh for a user. The
set of trusted authors would include a set of people
authorized to certify the organization's software. In
this case, the latest version is preferred, so no ver-
sion information is required in <script name>.pre.

The rest of the �le identi�er information is obtained
from .platform. When request, stretsh locates and
downloads a copy of the new expenser software and
its certi�cate to the appropriate directories. The �le
authentication is then performed on this software. If
the authentication succeeds, expenser is executed.

In addition, stretsh can support software version
control. Recall that �le certi�cates have expiration
dates. An author can use these expiration dates to
specify when a software package becomes obsolete.
When the certi�cate expires, stretsh retrieves the
new version of the software. In general, the author
should specify the earliest date for which the next ver-
sion of the software may appear. In our example, if
a new version of the expenser software is released no
more often than once per month, then the expiration
date should be set at one month after the certi�ca-
tion date. If no succeeding version is released by that
date, a new certi�cate can be created to extend the
expiration date of the current version.

At present, we have just begun the implementation
of the version control mechanism, so below we de-
scribe its design. We de�ne a version controller prin-
cipal that maintains information about what software
has been downloaded, the location of that software
and its certi�cate, and when its certi�cate expires.
When the version controller detects that a certi�cate
has expired it simply deletes the expired software and
certi�cate. When the software is requested stretsh

automatically retrieves the current version (may be
the same version which has been recerti�ed). If an
old version is required, then it can be re-downloaded
by explicitly requesting that version. The version con-
troller should be run once per day since the expiration
granularity is one day.

6 Conclusions and Future Work

We have presented a service that automatically lo-
cates and retrieves �les from an untrusted network
and veri�es whether the �le retrieved is the �le re-
quested. The service relies on only one trusted prin-
cipal, called a certi�cation authority (CA), to enable
a client to authenticate a �le. CA's generate and sign
certi�cates that associate an author with a �le and
a cryptographic digest of the �le. Using these cer-
ti�cates, a client can verify that a �le is the one re-
quested and that it was certi�ed by a speci�c author.
Therefore, malicious attackers cannot spoof a client
into accepting a modi�ed version of the �le, and all
content and behavior of an authenticated �le can be
traced to its author.

10



Automated location is possible because all remote
�les are published with location servers available to
clients. Clients can query a location server for the
identity of the distribution servers that possess a copy
of a �le. Clients then retrieve a copy of the �le from
one of the distribution servers. Clients control the
location and retrieval protocols, which enables a client
to retrieve a �le without having to trust either the
location servers or the distribution servers.

We demonstrate the application of this service with
a new system shell that can utilize remote software.
The system shell, called stretsh, enables software on
an untrusted network to be made available to appli-
cations. Application scripts written for stretsh can
download software published in the location servers
automatically for the client. This enables clients to
run applications whose software resides on multiple
�le systems.

In the future, we plan to add features that make
the service more useful and reduce the degree to which
client's must trust the CA. Administration of �les
downloaded from the network may become a problem.
If other applications use a di�erent software package
that performs similar functions, then the client's �le
system will become a mess. Determination of whether
to permanently store retrieved �les and how to orga-
nize related �les would help. Another issue is that the
service's security is based on the trust in the CA's.
However, it would be preferable to not require trust
in any system principal. Merkle [10] de�nes a mech-
anism by which malicious action on the part of a CA
can be detected by outside observers. With this en-
hancement, the requirement for complete trust in the
CA is eliminated.

Acknowledgements

We thank the anonymous referees for their many
valuable comments.

References

[1] NIST FIPS PUB XX, Digital Signature Standard,
February 1993. National Institute of Standards and
Technology, U.S. Department of Commerce DRAFT.

[2] D. Balenson. Privacy enhancement for Internet elec-
tronic mail: Part III: algorithms, modes, and identi-
�ers, February 1993. Internet RFC 1423.

[3] A. D. Birrell, R. Levin, R. M. Needham, and M. D.
Schroeder. Grapevine: An exercise in distributed
computing. Communications of ACM, 25(4):260{274,
April 1982.

[4] D. R. Cheriton. The V distributed system. Commu-

nications of ACM, 31(3):314{333, March 1988.

[5] D. R. Cheriton and T. P. Mann. Decentralizing a
global naming service for improved performance and
fault-tolerance. ACM Transactions on Computer Sys-

tems, 7(2):147{183, May 1989.

[6] E. Jul, H. Levy, N. Hutchinson, and A. Black. Fine-
grained mobility in the Emerald system. ACM Trans-

actions on Computer Systems, 6(1):109{133, Febru-
ary 1988.

[7] B. Lampson. Designing a global name service. In
Proceedings of the Fifth ACM Symposium on Princi-

ples of Distributed Computing, pages 1{10, 1986.

[8] A. K. Lenstra. Documentation of LIP,
March 1995. Bellcore TM-24936. Available via
anonymous ftp from flash.bellcore.com (soon
ftp.bellcore.com).

[9] K. Li and P. Hudak. Memory coherence in shared vir-
tual memory systems. ACM Transactions on Com-

puter Systems, 7(4):321{359, November 1989.

[10] R. C. Merkle. Protocols for public key cryptosystems.
In Proceedings of IEEE Symposium on Security and

Privacy, pages 122{133, 1980.

[11] J. Ousterhout. Tcl and the Tk Toolkit. Addison-
Wesley, 1994.

[12] R. Rivest. The MD5 message digest algorithm, April
1992. Internet RFC 1321.

[13] R. Rivest, A. Shamir, and L. Adleman. On digital
signatures and public-key cryptosystems. Communi-

cations of the ACM, 21(2):120{126, February 1978.

[14] A. Rubin. Trusted distribution of software over the
Internet. In Proc. Symposium on Network and Dis-

tributed System Security, 1995.

[15] B. Schneier. Applied Cryptography. Wiley & Sons,
1994.

[16] R. Srinivasan. RPC: Remote procedure call protocol
speci�cation version 2, August 1995. Internet RFC
1831.

[17] A. S. Tannenbaum, R. van Renesse, H. van Staveren,
G. Sharp, S. Mullender, J. Jansen, and G. van Rus-
som. Experiences with the Ameoba distributed oper-
ating system. Communications of ACM, 33(12):46{
63, December 1990.

[18] P. Zimmermann. PGP user's guide. Distributed by
the Massachusetts Institute of Technology, May 1994.

11


