DACIA.
A Mobile Component Framework

for Building Adaptive Distributed
Applications

Radu Litiu
University of Michigan, EECS

v

Design Goals

= Manage heterogeneity and adapt to variability

= Runtime reconfiguration of the application

= Support for application and user mobility

m Persistent connectivity between mobile components
= | ocation- and context-aware components

= | ow overhead for both local and remote
Inter-component communication

v

An Adaptlve Application

An application is a graph of connected components.

Possible changes:
» Execute the computation on the client machine
» Store computed images instead of raw data
» Place data caches at various points in the network
» Add compress/decompress modules

v

DACIA* Archltecture

IMONITOR IMONITOR

TCP

PROC - Processing and Routing Component
» Communication through ports
» Synchronous/asynchronous communication
» Message gqueue
> Mobile components

> Unique identifier
*Dynamic Adjustment of Component InterActions

v

DACIA Architecture (contd)

= Engine
» Maintains the list of PROCs and their connections
» Partial knowledge about PROCSs running on other hosts
» Migrates PROCs
» Establishes and maintains connections between hosts
» Communicates between hosts

= Monitor - monitors the application performance and
makes reconfiguration decisions

= Component mobility

» Transfer the PROC's state, including the messages in the
gueue, and the state of its connections

» Java serialization - efficient implementation
» Message integrity
» Locating a mobile component

v

Connectivity

= Multiple virtual connections between PROCs are
multiplexed over the same physical network
connection

= Hide temporary network failures
= Persistent connectivity between moving PROCs

= | ow communication overhead

» Local communication - procedure calls within the same
address space

> Asynchronous communication - cost of thread scheduling
and queue management
» Remote communication

e batching
e message forwarding

v

Dynamic Application Reconfiguration

= Change the connections between components

= Change the location of execution of various
components

= Replicate components
= Dynamically load new components

= Replace a set of components with a different set of
components

= Mechanisms:

» Specialized monitors
e Dynamic loading
¢ Functionally equivalent configurations

» Command-line interface

v

Command-Line Interface

m connect [hostname] [porthnumber] - connect the local engine to
another engine

= connectProcs [sourceProclD] [sourcePortNo] [destProclD]
[destPortNo] - connect two PROCs

= disconnectProcs [sourceProclD] [sourcePortNo] - disconnect two
PROCs

m exit/quit - stop execution and exit
= help - print a help menu
= move [procID] [hosthame] - move a PROC to the host indicated

= print - print information about the local and remote PROCs and the
application configuration

m start [proclD] - trigger an action on the PROC indicated

= startMonitor - start the monitoring service that performs runtime
adaptation

= update [hostname/all] <allProcs> - updates the information about
PROCs known by other engines

v

PerfO r m an C e (Java implementation)

= Micro-benchmarks - latencies (in microseconds) for
iInter-PROC communication and raw TCP

local PROCs

message local PROCs | local local TCP | remote remote
size (bytes) | synchronous | asynchronous | procedure call PROCs TCP
0 6.6 44 6.4 370 /7800 770
1000 6.6 44 47.2 400 11000 2400

m Cost of PROC movement - 130 msec

= Macro-benchmarks - average time to serve a request

