
DACIA:DACIA:
A Mobile Component FrameworkA Mobile Component Framework
for Building Adaptive Distributed for Building Adaptive Distributed
ApplicationsApplications

Radu Radu LitiuLitiu
University of Michigan, EECSUniversity of Michigan, EECS

Design GoalsDesign Goals

Manage heterogeneity and adapt to variability
Runtime reconfiguration of the application
Support for application and user mobility
Persistent connectivity between mobile components
Location- and context-aware components
Low overhead for both local and remote
inter-component communication

An Adaptive ApplicationAn Adaptive Application

An application is a graph of connected components.
Possible changes:

Execute the computation on the client machine
Store computed images instead of raw data
Place data caches at various points in the network
Add compress/decompress modules

DataSrc

Server

Compute

Client1 Client2 Client3

Store

DataSrc

Server Store

DataSrcDataSrc

ComputeCompute

Client3Client2Client1

DACIA* ArchitectureDACIA* Architecture

PROC - Processing and Routing Component
Communication through ports
Synchronous/asynchronous communication
Message queue
Mobile components
Unique identifier

*Dynamic Adjustment of Component InterActions

PROC 1

PROC 2 PROC 3
MONITOR

PROC4 PROC 5
MONITOR

ENGINE 2

TCP

ENGINE 1

HOST 1 HOST 2

DACIA Architecture (contd)DACIA Architecture (contd)
Engine

Maintains the list of PROCs and their connections
Partial knowledge about PROCs running on other hosts
Migrates PROCs
Establishes and maintains connections between hosts
Communicates between hosts

Monitor - monitors the application performance and
makes reconfiguration decisions
Component mobility

Transfer the PROC's state, including the messages in the
queue, and the state of its connections
Java serialization - efficient implementation
Message integrity
Locating a mobile component

ConnectivityConnectivity
Multiple virtual connections between PROCs are
multiplexed over the same physical network
connection
Hide temporary network failures
Persistent connectivity between moving PROCs
Low communication overhead

Local communication - procedure calls within the same
address space
Asynchronous communication - cost of thread scheduling
and queue management
Remote communication

batching
message forwarding

Dynamic Application ReconfigurationDynamic Application Reconfiguration
Change the connections between components
Change the location of execution of various
components
Replicate components
Dynamically load new components
Replace a set of components with a different set of
components
Mechanisms:

Specialized monitors
Dynamic loading
Functionally equivalent configurations

Command-line interface

Command-Line InterfaceCommand-Line Interface
connect [hostname] [portnumber] - connect the local engine to
another engine
connectProcs [sourceProcID] [sourcePortNo] [destProcID]
[destPortNo] - connect two PROCs
disconnectProcs [sourceProcID] [sourcePortNo] - disconnect two
PROCs
exit/quit - stop execution and exit
help - print a help menu
move [procID] [hostname] - move a PROC to the host indicated
print - print information about the local and remote PROCs and the
application configuration
start [procID] - trigger an action on the PROC indicated
startMonitor - start the monitoring service that performs runtime
adaptation
update [hostname/all] <allProcs> - updates the information about
PROCs known by other engines

Performance Performance (Java implementation)(Java implementation)

Micro-benchmarks - latencies (in microseconds) for
inter-PROC communication and raw TCP

message
size (bytes)

local PROCs
synchronous

local PROCs
asynchronous

local
procedure call

local TCP remote
PROCs

remote
TCP

0 6.6 44 6.4 370 7800 770
1000 6.6 44 47.2 400 11000 2400

Cost of PROC movement - 130 msec
Macro-benchmarks - average time to serve a request

