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Abstract

A Web proxy must accurately predict network perfor-
mance between itself and its servers and clients in order to
make good distillation decisions. In this paper, we show that
the current approaches to make such predictions — either
assuming the proxy is well-connected to all servers or using
past observations — are insufficient. We propose a new pre-
diction method,estimation with uncertainty, that will play
a crucial role in web proxies. This method can also be use-
ful in domains such as distributed prefetching, distributed
query planning, and cache replacement algorithms that take
into account the cost of refetching evicted objects.

1. Introduction

The diversity of speeds with which end users access net-
work services is steadily increasing. Typical home users
have network connectivity in the tens of Kb/s — several
orders of magnitude slower than institutional users. Mo-
bile users can experience connectivity that frequently varies
over similar ranges. Web services are often optimized
for those users connected by high-speed links; weakly-
connected users are then forced to cope with poor perfor-
mance when accessing those services. Rather than force
services to optimize to the slowest potential customer, a
proxy-baseddistillation architecture has been proposed [2].

In this architecture, shown in Figure 1, a proxy is placed
at the border between weakly-connected clients and the rest
of the network. The path from a server to the proxy will of-
ten be much faster than that from the proxy to the client.
The proxy can then distill each object fetched from the
server into a version that is smaller but of lower fidelity.
When the server-proxy path is faster than the proxy-client
path, the overhead of distillation is more than offset by the
shortened transmission time along the slow link, improving
response time for the client.
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Figure 1. Proxy Architecture

Correct distillation requires good estimates of the speed
along the server-proxy and proxy-client paths. For exam-
ple, users connected by mobile links can have distillation
decisions made for themdynamically. Objects are distilled
little if at all when the bandwidth between proxy and client
is high, and are aggressively distilled when that path is
slow [9].

Unfortunately, proxies often assume that all remote ser-
vices arewell-connectedto the proxy, and focus only on
the speed of the path to the client. A Web server that is
connected to the rest of the network by a slow modem line
will never serve items quickly enough to justify distillation.
More recently, a proxy that uses observations of recent per-
formance to each destination for future predictions has been
implemented [4]. This proxy can discover persistent perfor-
mance limitations, but cannot predict short-term variations
in performance due to transient load.

This paper argues that both of these approaches are in-
adequate as the basis for making distillation decisions. In
order to show this, we have measured how each approach
would affect the Web browsing of a small group of users at
the University of Michigan. Section 2 describes how these
measurements were collected. Section 3 quantifies the im-
pact of assuming that connections are always fast or can be
predicted by past behavior. In Section 4 we propose a new
method,estimation with uncertainty, that will provide for
better distillation decisions.



While we have focused primarily on Web proxies, a
good bandwidth estimator is crucial to a number of impor-
tant problems. For example, one needs good estimates of
network performance for prefetching in a distributed sys-
tem [13, 14]. Good estimates are also essential in dis-
tributed query planning [3, 7] and caches that consider the
cost of refetching in replacement decisions [15].

The problem of predicting end-to-end application
throughput — sometimes referred to asgoodput— is re-
lated to the problem of estimating either bottleneck or avail-
able bandwidth along a path. Several variants of thepacket-
pair algorithm [5] have been proposed, some quite sophis-
ticated [6]. However, bandwidth along a path is only one
component of throughput. Latency, loss rate, and other fac-
tors can also have a substantial effect on the performance
seen by applications.

2. Experimental Method

In order to explore the impact of various assumptions in
distillation decisions, we measured the Web browsing of a
small set of users in the EECS department of the Univer-
sity of Michigan. This traffic was measured at a proxy for
all of our users’ Web activity over one month. The proxy
provided no distillation or other added services; it was used
only to measure fetch throughput from remote servers.

The proxy generates anaccess logthat records informa-
tion about client requests, one line per request. When a
request arrives at the proxy, it is forwarded to the remote
web server, which provides a response. An HTTP response
consists of a set of headers followed by the requested data.
The proxy first receives the headers and sends them back to
the client before reading and forwarding the data itself.

We have modified our proxy to record two timestamps
for each fetch: one after fetching the headers, and one after
fetching the end of the data. The log record for each fetch
contains: client IP address, server IP address, URL, MIME
type, request time, post-header timestamp, post-fetch times-
tamp, and the number of data bytes received. In order to
guarantee privacy — and encourage as many people as pos-
sible to use our proxy — we log only the MD5 hashes [11]
of the first three entries. Thus, we can correlate fetches
to the same server, but cannot identify servers, clients, or
fetched objects.

The throughput between the server and the proxy is de-
fined as:

T =
b

tf � th
(1)

Whereb is the number of data bytes fetched,tf is the times-
tamp taken after all data is obtained, andth is the timestamp
taken after the headers have been fetched.

Browsers fetch a web page by first fetching the page’s
text and then issuing separate requests for each embedded
object. In order to overlap connection set-up and tear-down
with the transfer of useful data, browsers often issue re-
quests for embedded objects concurrently. These requests
often are to the same server; an example is shown in Fig-
ure 2.

client proxy server

request 1request 2

headers

data

t1t2

Figure 2. Parallel Requests for Web Objects

The timest1 andt2 denote the periods during which the
proxy receives data from the server for the first and sec-
ond request, respectively. In this example, the transmis-
sion of the two responses happens concurrently, and the
available network capacity is divided between them. If we
were to measure the throughput separately for each request,
we would understate the aggregate throughput between the
server and the proxy. Thus, whenever two log entries with
the same endpoints overlap in time, we merge them into a
single entry. The new entry has a size that is the sum of the
size of the two merged entries. The first timestamp is the
smaller of the post-header timestamps, while the second is
the larger of the post-fetch timestamps. We found that 22%
of logged responses experience such overlapping.

The proxy interleaves fetching pieces of an object from
the remote server with forwarding those pieces to the client.
If the path from the proxy to the client is the bottleneck,
the measured throughput will again understate the capacity
from server to proxy. Since our users almost always have
excellent connections to the proxy, we do not log these ex-
tremely rare observations.

We modified Apache version 1.3.1 to act as our data col-
lection proxy. It ran on a 300 MHz Pentium II machine with
64 MB of RAM running Linux 2.0.35. The log file was ap-
proximately 22 MB with an average of 4000 requests per
day. There were 1660 distinct servers in the log. How-
ever, about 40 servers accounted for more than 50% of all



the requests. The logged reponses include 76%successful
responses, 17%not modifiedresponses, and 7% other re-
sponses. We report only the successful responses.

3. Experimental Results

We used the collected data to answer two questions.
First, what is the impact of assuming that the paths between
the proxy and all servers are fast? Second, what is the im-
pact of using past observations to predict individual fetch
times?

3.1. Assuming Fast Links

The most common strategy used by distilling proxies is
to assume that all remote services are well-connected to the
proxy. In other words, the time for the proxy to fetch an
object from a remote server is considered to be negligible
compared to the time to distill and forward that same object.
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This figure shows the distribution of the observed through-
put for all images larger than 5KB in size. The X axis is in
Kb/s, and the Y axis shows percentage of observed fetches.
Each bin represents the percentage of fetches between the
previous bin’s X value and the current bin’s. The final bin
gives all fetches faster than 4Mb/s. Note that 10% of all
fetches are at or below 64Kb/s.

Figure 3. Image Retrieval Throughput

Figure 3 shows the distribution of bandwidths observed
by our proxy when fetching images from remote servers.
Because TCP slow-start can have a dominant effect for
transfers over paths with large round-trip times, smaller ob-
jects tend to have lower bandwidths. In this histogram, we
consider only images that are 5KB or greater in size; most
proxies distill only images, and those smaller than 5K in
size are not likely to benefit from distillation. This num-
ber was selected to be conservative. Other work suggests

distilling images larger than 1K [4]; using this size as the
cutoff would shift the distribution in Figure 3 to the left.

There were 15,742 images over 5K fetched during data
collection. Each bucket represents the percentage of obser-
vations that fell between that bar’s X value and the previous
one; for example, the second bar shows that almost 6% of
all fetches were at bandwidths between 64 Kb/s and 128
Kb/s. The final bucket contains all fetches that were faster
than 4 Mb/s.

The central message of this histogram is that more than
one in ten images are fetched near or below typical mo-
dem speeds. A proxy that assumed all fetches were fast
would distill these images rather than simply forwarding
them. The user would then see a lower quality image with-
out a corresponding reduction in response time; the server-
proxy path is the constraining link, and distillation will not
deliver the last byte of the image more quickly. In fact, re-
sponse time would likely increase due to the added delay of
distillation.

3.2. Using Short-Term Averages

Rather than simply assuming that all fetches are fast, the
proxy must use some method of estimating the time it will
take to fetch an object from a remote service. One sug-
gested approach [4] has been to use a technique similar to
SPAND [12] to make these predictions. In this approach,
the proxy logs interactions with each server and client in
protocol stubs. An off-line algorithm periodically sum-
marizes these observations, grouped by endpoint and size.
When each fetch is requested by the client, the proxy con-
sults this summary to predict the time required to obtain the
requested object. It bases this summary primarily on obser-
vations that are at most tens of minutes old [1].

The success of this approach depends on the degree to
which such summaries can predict individual fetch times.
To gauge the predictive power of past observations, we first
selected the most popular server from our logs.1 The traffic
to this server is most likely to provide us with a history on
which to base predictions; predictions to other servers are
likely to be less accurate. We then predicted the times for
one day’s worth of fetches using the median of the observa-
tions from the previous 15 minutes, measuring the degree to
which our predictions matched reality.

We used anerror ratio metric to determine the accu-
racy of prediction. For the fetch of an object of sizes, we
first examine prior fetches to predict its performance. Over
wide area links, TCP slow-start dominates the throughput
of small transfers; therefore, we consider only those objects
larger thans=2 and smaller than2s. We then take the me-
dian of those observations as the predicted fetch time,tp.

1Since we record only the MD5 hashes of server names, we do not
know what server this was.



We say that this predicted time is correct to within an error
ratio, r, of the actual time,ta, if it satisfies the following
inequality:

tp
r
� ta � rtp (2)

We consider the error ratio of a particular prediction to be
the smallest possible value.
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This figure shows the distribution of error for predictions
based on short-term observations. The X axis gives the error
ratio, and the Y axis is in percentage of predicted fetches.
Note that more than 12% of all predictions were off by a
factor of 2 or more.

Figure 4. Error Ratio: Short-Term Predictions

Figure 4 shows the distribution of prediction accuracy
for fetches of all sizes. There were 313 fetches during the
day; 14% of them did not have any applicable observations
within the previous 15 minutes. The histogram depicts the
remaining predictions. Each bucket represents the percent-
age of predictions that had error ratios between that bar’s
X value and the previous one. For example, the second bar
shows that more than 22% of all predictions had error ratios
between 1.1 and 1.2. The final bar gives the percentage of
predictions with error ratios greater than 2.0.

While most predictions are quite good, more than one
in eight of them are still off by a factor of two or more.
This is much better than the performance reported in the pa-
per describing SPAND [12], which claims less than 70% of
predictions with an error ratio less than two. This is in part
because they did not consider the impact of size on through-
put, though they mention it as a mitigating factor and have
corrected it in later work [4].

3.3. Using Long-Term Averages

The number of unpredictable fetches is quite high, es-
pecially given the fact that this is the most popular server
in our access logs. Aggregating history information from
several co-located hosts would improve this rate, as would
serving a larger number of clients. However, even with sub-
stantially larger traffic rates, predictions with recent data
will not always be possible.

One fallback strategy would be to use older observations
to predict such fetches. To gauge the success of such a
strategy, we re-ran the prediction experiment, using the past
week’s observations rather than those from only the most
recent 15 minute period. The results are presented in Fig-
ure 5.
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This figure shows the distribution of error for predictions
based on long-term observations. The X axis gives the error
ratio, and the Y axis is in percentage of predicted fetches.
Note that 10% of all predictions were off by a factor of 2 or
more.

Figure 5. Error Ratio: Long-Term Predictions

Surprisingly, the predictions are slightly better than those
based on short-term observations. This is counter to the ob-
servation that network performance tends to be most stable
over periods of tens of minutes [1]. We cannot fully explain
this difference, though our observed traffic load was both
smaller in scale and only to a single host. The question of
what interval to use for prediction is one that we are pursu-
ing in ongoing work.

However, even predictions based on long-term averages
are still off by more than a factor of 2 in one out of ten
cases. Such erroneous predictions can lead a proxy to make
sub-optimal distillation decisions. The proxy will either
throw away information needlessly or not distill aggres-
sively enough to give good response times.



4. Towards a Better Estimator

In order for a proxy to make the best possible distil-
lation decisions, it must accurately predict each individ-
ual fetch. However, it is unlikely that we will be able to
build an oracular proxy that is always able to predict cor-
rectly. If two hosts are close together — as the client and
the proxy are likely to be — performance observations are
likely to be very stable. However, traffic performance be-
tween two widely separated Internet hosts shows significant
variance [10], and observing a sequence of bandwidth ob-
servations can lead one to believe they are no more than
noise.

In light of this, a proxy should have the following prop-
erties to be as useful as possible:

� It must accurately estimate transfer time from servers.
These estimates must depend in part on short-term ob-
servations.

� Each estimate should be accompanied by adegree of
confidence. This confidence should ideally be conser-
vative.

� The proxy should take both the estimate and the confi-
dence into account when making distillation decisions.
When confidence is low, the proxy should be conser-
vative in the prediction’s use unless directed otherwise
by user preferences.

As shown in Sections 3.2 and 3.3, past observations are
not sufficient as predictors of bandwidth; the proxy must
take into account transient variations. Simple approaches
can work well for the short connection between client and
proxy. For example, Odyssey uses:

pi = �bi�1 + (1� �)pi�1 (3)

wherepi is the predicted bandwidth of theith fetch, andbi
is the actual bandwidth during that fetch;� is 3/4, giving
a heavy bias towards the most recent observation. This has
been shown to have sufficient predictive power in realistic
situations [8], while retaining good agility — the ability to
react quickly to change in mobile environments.

However, since performance observations over wide-
area connections carry much more noise, something more
sophisticated is required to predict performance between
the proxy and servers. To see why, consider Figure 6; it
shows the same predictions as Figure 5, but in different
form. Rather than a histogram of error ratios, it shows the
error ratio for the long-term predictions to the most popular
server, in sequence. Error ratios above the X axis represent
estimates that were too high; those below the X axis are es-
timates that were too low. Points plotted at the extremes
show error ratios of 2.0 or greater.
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This figure shows the error for each prediction based on
long-term observations. The X axis gives each prediction
in sequence, and the Y axis shows error ratio. Predictions
above the X axis are too optimistic. In region 1, predictions
are accurate. In region 2, predictions are consistently too
high. In region 3, throughput is unstable.

Figure 6. Error Ratio: Series of Predictions

On first glance, it appears that there is little predictive
power in these observations. However, on closer inspec-
tion there is some opportunity for improvement. We have
labeled three regions of interest in the graph. In region 1,
the deviation from the prediction is fairly small; it could be
used with a high degree of confidence.

In region 2, the predictions are consistently too high,
often exceeding an error ratio of 2.0. During this period,
the time to fetch objects from the server was much longer
than usual. This could have been caused either by increased
cross-traffic or by load at the server. During this period it
would be possible to observe that the long-term average is
too optimistic, and quickly adjust the estimates downward
to meet reality.

In region 3, the predictions are alternately far too fast
and far too slow. If estimates had confidences attached, the
proxy would be able to determine that it was in a range
of instability. In such cases, it would be best to conser-
vatively assume that the object will arrive quickly at the
proxy. If wrong, the proxy might throw away extra infor-
mation through too-aggressive distillation. The alternative
— assuming a lower bandwidth, and forwarding the item
unchanged — might result in unnecessarily long response
times when the assumption is unwarranted.

We plan to build an estimator that includes confidences
to cope with situations similar to the three above. It is de-
picted in Figure 7, and is similar to a canonical feedback
control system. At each fetch, the estimator will compare
its predictions with the actual values. By designing an ap-
propriate set of heuristics, one can identify consistent errors,
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Figure 7. A Better Estimator

such as might happen in region 2, or noisy states, such as re-
gion 3. This is similar to the variance metric maintained by
protocols such as TCP. However, the uncertainty bounds
are also influenced by age of observations; older measure-
ments are less certain than more recent ones. It is also ex-
posed to all entities that make use of bandwidth estimates,
rather than used only for internal bookkeeping.

5. Conclusion

Correct distillation decisions at a proxy require accurate
predictions of the time to fetch an object from a remote ser-
vice. Because the servers storing the original objects are
often far away in the network topology, accurately estimat-
ing that time is an extremely difficult problem. As we have
shown, simply assuming all fetches will be fast is incorrect,
as is using only past average behavior and ignoring short-
term fluctuations.

We propose to build an estimator framework that uses
feedback control to both improve the accuracy of estimates
as well as attach a certainty to them. When estimates are
accurate, the proxy can make much better distillation de-
cisions. When the estimates are very uncertain, the proxy
must make some conservative assumptions in order to pre-
serve good response time for the end users. In addition
to distillation proxies, such an estimator would be invalu-
able in distributed prefetching, query planning, and cache
replacement algorithms. We plan to investigate its use in
these and other domains.
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