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Abstract

This paper considers the problem of application-level
QoS control in group collaboration systems. The QoS
parameters considered, latency, jitter, packet-loss, and
asynchrony, are controlled by the receiver. The QoS
control is based on a novel protocol composition-based
approach, wherein the protocol is modularized such that
each module controls a single QoS parameter. Each
module is then assigned a priority and the modules are
composed such that the actions taken by a module do
not violate a QoS parameter controlled by a higher pri-
ority module. This allows for more flezible QoS control.
The performance of the approach is evaluated through
experiments, which illustrate how the compositions are
able to successfully tradeoff the QoS parameters in an
appropriate manner.

1. Introduction

With the emergence of powerful desktop computers
interconnected by high bandwidth networks, people are
increasingly using the computer for tasks that involve
collaborating with others. Such collaborations take two
forms, asynchronous and synchronous. Asynchronous
collaboration involves a person publishing various doc-
uments (including text, graphics, audio, video, etc.),
which can be retrieved at a later time by other peo-
ple. Email, web browsers such as Mosaic and Netscape,
and workflow technologies are examples of systems that
support asynchronous collaboration. Synchronous col-
laboration, on the other hand, allows collaboration on
a common task at the same time [17]. Some of the
tasks for which synchronous collaboration has been
found very useful include group design, editing, brain-
storming, and data visualization. Recently a number
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of systems such as wb, vat, nevot, nv, ivs, and vic, have
been used with a great deal of success for collaboration
over the Internet [2]. Systems such as these are the
focus of this paper. (A note on terminology: In the
rest of the paper we will use the term “collaboration”
to mean “synchronous collaboration”.)

A collaboration system typically has a shared
workspace consisting of one or more windows (referred
to as shared windows) that serve as the medium for
the collaboration, and include support for audio and
video, which enables the participants to communicate
verbally and visually about the task at hand.

As the various media-streams in the system are
transported over the network, they are subject to vari-
able delays and packet-loss that impact the overall
quality of the collaboration. The quality can be char-
acterized by QoS parameters such as latency, jitter,
packet-loss, asynchrony, and bit-rate. These parame-
ters can be controlled at the network-level by appro-
priate packet-scheduling policies which bound packet
delays (e.g. [3]), and at the application-level, by source
rate control and by receiver playout buffer control. In
this paper we are interested in application-level QoS
control, and in particular the problem of managing the
playout buffer at the receiver such that the specified
QoS parameters are satisfied.

The QoS parameters interact with each other and of-
ten one has to tradeoff one with respect to the others.
This typically involves assigning some form of priori-
ties to the parameters. Much of the earlier work on
QoS control involved picking a particular set of pri-
orities for the various QoS parameters considered and
then designing a protocol for this priority assignment.
In the protocol composition-based approach presented
here, the QoS control protocol is broken up into mod-
ules, such that each module controls a single QoS pa-
rameter. These modules can then be composed in a



number of ways allowing for more flexible QoS con-
trol.

The rest of the paper is organized as follows. Sec-
tion 2 formally defines the QoS requirements of the
media-streams present in group collaboration systems.
Section 3 describes the key elements of the proposed
protocol composition-based approach. Section 4 de-
scribes the individual protoccl modules and Section 5
presents the performance evaluation of a variety of pro-
tocol compositions of these modules. Section 6 contains
comparison with related work. Finally, Section 7 con-
cludes this paper.

2. QoS Requirements of Group Collabo-
ration Systems

Our view of collaboration systems is drawn in large
part from our experience with two projects here at the
University of Michigan, the Upper Atmospheric Re-
search Collaboratory (UARC) project and the Medical
Collaboratory project. The goal of UARC is to al-
low “tele-science” by providing a system that allows
scientists, located around the world and connected by
the Internet, to collaborate on data (in this case up-
per atmospheric space data), collected by various in-
struments located at remote locations. The Medical
Collaboratory project aims to provide “tele-radiology”
wherein radiologists and other doctors can collaborate
on patient data, in particular X-rays and ultrasound
images. In both projects there is a need to make
certain data available to people located at different
sites, and allow them to collaborate on that data using
shared windows, audio, and video. A collaboration sys-
tem, then, in general consists of three kinds of media-
streams: data streams to support sharing of windows
and workspaces, audio streams to support voice com-
munication, and video streams for displaying partici-
pant images and other related images.

Based on this view of a collaboration system, we can
describe the requirements of each of the media-streams
with respect to the QoS parameters considered: la-
tency, jitter, packet-loss, and asynchrony.

Latency: For useful collaboration, actions such as a
participant speaking or a participant making a modifi-
cation to a shared workspace, should be delivered with
low latency to the other participants in the group. High
latencies can impede the progress of the collaboration.
The acceptable level of latency is specified using the pa-
rameter, LatencyMaz, which specifies the maximum ac-
ceptable latency for the delivery of the media-streams.

Jitter: Audio and video streams need to be delivered
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with low jitter in order to ensure continuous playback,
while pointer-event streams can tolerate higher levels
of jitter [18]. The acceptable level of jitter is specified
in terms of the maximum number of gaps, GapsMarz,
allowed in the playback over a time period Tgaps.

Packet-Loss: Typically audio and video streams can
tolerate a certain amount of packet-loss, while other
shared window data streams may not be able to toler-
ate any packet-loss. The acceptable level of packet-loss
is specified in terms of the maximum allowable packet-
loss, PktlossMaz, over time Tpktloss. Note that there
may be certain special packets that cannot be dropped
(e.g., I-frames in MPEG streams). We do not explicitly
consider such coding related constraints here, although
these constraints can be incorporated in our approach.

Asynchrony: For effective communication, the shared
window data stream and the audio stream must be syn-
chronized. Consider the situation where a user moves
the pointer to draw attention to a part of the data be-
ing displayed and simultaneously talks about it. Lack
of good synchronization between the playback of au-
dio and the movement of the telepointer in a receiver’s
window can be highly confusing [10, 18]. Further, when
both audio and video are present, there needs to be
synchronization (lip-sync) between these two streams
as well [18]. The acceptable level of asynchrony is spec-
ified in terms of an interval Asynclnt, which specifies
the amounts by which a the stream can be “ahead” or
“behind” the stream with which it is being synchro-
nized.

3. The Approach

The typical usage scenario in a collaboration system
involves a user initiating a new collaboration session or
joining an existing session. At this time a state transfer
occurs, wherein the user joining the session receives
the state of the shared workspace, information about
the media-streams being used in the session, and any
other state necessary for that user to be a part of the
collaboration session. The user can then begin to send
(subject to possible floor-control policies in effect) and
receive media-streams. The QoS control of the media-
streams received is then done at each receiver.

The QoS control essentially involves computing the
playback time of each packet, monitoring the various
QoS parameters while the packets from the media-
streams are being played back, and adjusting the play-
back time to meet the QoS requirements (Fig 1). The
playback time computation has to determine whether
to buffer a packet before playback, and if so for how
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Figure 1. Managing the playout buffer using
protocol composition

long, or not play it at all and simply drop it. The
decision is based on the specified values of the QoS
parameters and their observed values.

The QoS parameters interact with each other in
many ways and often one has to tradeoff one with re-
spect to the others. For example, jitter and latency
conflict with each other. In order to have low jitter
during the playback, packets need to be buffered suf-
ficiently long in order to smooth out variations in the
network delay. However, the need to delay the delivery
of packets conflicts with the requirement of having low
latency for meaningful synchronous collaboration. In a
similar manner, asynchrony conflicts with latency too.
To reduce asynchrony, the latencies can be kept high,
but again this conflicts with the low latency require-
ment. The protocol must be able to strike a balance
between these conflicting requirements.

In order to deal with such tradeoffs we propose man-
aging the playout buffer using a protocol composition-
based approach. The basic idea of the approach is to
determine an overall strategy for playing back packets
and then to structure it into protocol modules, such
that each protocol module controls a single QoS pa-
rameter. The inputs to each module are the current
values for the QoS parameters, the specified values for
the QoS parameters, and the network delay of the in-
coming packet. The module uses these values to deter-
mine new values for the QoS parameters. Further, to
be able to effectively deal with the conflicting require-
ments of the QoS parameters, each module is assigned
a priority. Once priorities are assigned, it is possible
to have linear compositions of the modules, where the
outputs of one module are input to the next module.
An example composition is shown in Fig. 2. The left-
most module has the highest priority, the module to
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Figure 2. An example composition of the pro-
tocol modules

its immediate right has the next highest priority, and
so on until the rightmost module, which has the low-
est priority. The priorities are used to ensure that the
actions taken by a module to control the QoS and the
playback do not affect any QoS parameters that are
controlled by modules of higher priority. By appro-
priately composing the QoS modaules, it is possible to
strike a balance between the often conflicting require-
ments of the QoS parameters.

It i1s important to point out though that the protocol
composition does not capture all possible strategies for
playout buffer management. What it does is allow one
to structure a given strategy, such that the strategy
can tradeoff the QoS parameters.

The approach thus is an application-level QoS con-
trol scheme. It can be used in conjunction with
network-level QoS control schemes, which typically
bound packet delays. Such schemes can result in very
bursty packet arrivals at the receiver [3, 20]. By appro-
priately managing the playout buffer at the receiver,
the burstiness can be smoothed out and packets can
be delivered to the application earlier than worst-case
bounded delays.

4. Protocol Modules

We describe next an overall strategy for QoS control
and a decomposition of this strategy into four protocol
modules that can then be composed in a variety of
ways. The strategy involves computing the playback
time of a packet by determining a certain latency with
which to playback the packet. In order to determine an
appropriate value for the latency, it is useful to use the
notion of a packet-spurt. A packet-spurt is a group of
consecutive packets such that each packet in the group
arrives at the receiver at or before its playback time,
i.e., the network delay of the packet is within the chosen
latency value. As long as this continues to happen, the
playback will proceed without any gaps. Each packet in
this packet-spurt is played back with the same latency,
which we will denote spurtLatcy. The problem then is
to appropriately set spurtLatcy.

We can view spurtLatcy as being made up of two
components: the network component and the asyn-
chrony component. The nelwork component of the



spurtLalcy (denoted spurtLatcyNw), is a direct func-
tion of the network delay, while the asynchrony com-
ponent (denoted spurtLatcyAsync), is a function of the
asynchrony between the streams that are being syn-
chronized, and is indirectly affected by network de-
lays. Thus, the playback time of a packet is obtained
by adding spurtLaicy to the generation time of the
packet, where spurtLatcy is the sum of spurtLatcyNw
and spurtLatcyAsync.

This strategy for playing back packets can be de-
composed into four protocol modules: Jitter control
module, Latency control module, Packet-Loss control
module, and the Asynchrony control module, with each
module controlling the jitter, latency, packet-loss, and
asynchrony QoS parameters respectively. Below we de-
scribe the functionality of each of these modules. The
functionality is described independently of the other
modules. In a composition, however, the actions taken
by the module are constrained by the actions taken by
earlier modules in the composition. We describe that
aspect in the following section.

Jitter Control Module

The function of the Jitter control module is to deter-
mine an appropriate value for spurtLatcyNw such that
packets can meet their jitter specification. It does this
by maintaining a running average and variance of the
network delay and using it to estimate spuriLatcyNw
[8, 13]. The estimate is used to compute spurtLatcyNw
for the first packet in the packet-spurt and is used for
the rest of the packets in the packet-spurt.

Latency Control Module

The function of the Latency control module is to en-
sure that the LatencyMaz requirement is met. It does
this by keeping the spurtLatcy to within LatencyMaz.
This may involve dropping the packet as well.

Packet-Loss Control Module

The function of the Packet-Loss control module is
to ensure that the PktlossMaz requirement is met. It
does this by ensuring that the packet-loss counts over
the monitoring interval Tpktloss are within PktlossMaz.

Asynchrony Control Module

The Asynchrony control module is responsible for
controlling the asynchrony between pairs of streams
that are to be synchronized. In order to meet the inter-
stream synchronization requirements, the asynchrony
module monitors the asynchrony between the streams.
Based upon the observed asynchrony, corrective ac-
tions are taken as necessary. In particular, consider
two streams r and y. If stream z is ahead of stream y,
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and the amount it is ahead by is outside the specified
asynchrony interval, AsyncInt, then stream z needs to
be delayed. This delay is the asynchrony component
of the spurtLatcy, spurtLatcyAsync, and is added to
spurtLatcyNw to obtain the overall spurtLatcy.

5. Experimental Evaluation of Composi-
tions

In order to test the effectiveness of the protocol
composition approach, we conducted a series of exper-
iments using audio and telepointer data streams. Due
to space considerations, we describe the results only for
the audio stream. Results for two streams, particularly
for managing the asynchrony are described in [11].

Audio was recorded (with silence detection) and
played back using the SUN audio hardware (at 8KHz,
8-bit). The audio packet size used was 200 bytes, cor-
responding to about 25 ms of audio. The audio (and
pointer-event packets) generated at the source window,
were transported over the network, and delivered to the
application at the receiver. The packets were subject
to network load conditions similar to those observed
on the Internet [1, 13, 15]. In particular, burstiness
was introduced in the network delays (see Fig. 3). For
repeatability of the experiments, the send and arrival
times of packets were recorded in a file, and these were
then used to compute the playback times for each of
the protocol compositions.

The QoS specifications for the audio stream were as
follows. The latency was to be kept below 500 msec
(LatencyMaz), jitter was to be restricted to 3 gaps
(GapsMaz) over 2 sec monitoring intervals, and the
packet-loss was to be kept to 10 packets (PktlossMaz),
also over the same 2 sec monitoring interval.

The playback was controlled by a composition of the
jitter, latency, and packet-loss control modules. In the
following, we will denote these modules by the letters
J, L, and P respectively. We considered all composi-
tions that result from the 6 possible permutations of
these modules. The compositions are denoted by LPJ,
LJP, PLJ, JPL, JLP, and PJL. It turns out that the
compositions LPJ and LIP are equivalent and so we
denote them together by LPJP. Similarly, the composi-
tions PJL and JPL are equivalent and we denote them
together by PJPL. The reason for these equivalences
will become clear below.

The results are described below in Figs. 3to 9. Fig. 3
plots the network delays of the packets. Figs. 4 and
5 plot the packet latency and packet-drops and gaps
for the LPJP compositions. Figs. 6 and 7 plot the
packet latency and packet-drops and gaps for the PLJ
composition. Figs. 8 and 9, plot the packet latency and



packet-drops and gaps for the PJPL compositions. We
did not plot the results of the JLP composition as for
this packet trace they turned out to be identical to the
results of the LPJP compositions. We will explain the
reason for this below.

First consider the compositions LPJ and LIJP
(LPJP). In these compositions, the latency control
module has a higher priority than the jitter control
module, and in both cases the packet-loss control mod-
ule has a lower priority than the latency control mod-
ule. This has two implications. First, the playback
point set by the jitter control module is constrained by
the LatencyMazr parameter since latency has a higher
priority. Second, in order to enforce the higher pri-
ority of latency, the latency control module may drop
packets, and since packet-loss has a lower priority, the
number of packets dropped are not constrained by Pki-
lossMaz. This is illustrated in Figs. 4 and 5, where the
latency is kept within 500 ms, while the packet-loss is
high, in particular it violates the specified limit of 10.
Note that the reason that the two compositions LPJ
and LJP are equivalent is that the jitter control mod-
ule makes no attempt to drop packets and hence it does
not affect the packet-loss. Thus it is possible to com-
mute the packet-loss and jitter control modules when
they are adjacent to each other. This is also why the
compositions PJL and JPL (together denoted PJPL)

are equivalent.

Next consider the composition PLJ. In this compo-
sition, the latency control module has a higher prior-
ity than the jitter control module, and the packet-loss
control module has a higher priority than the latency
control module. So, the playback point set by the jitter
control module is constrained not only by LatencyMaz,
but also by PktlossMaz. This is illustrated in Figs. 6
and 7, where the packet-loss parameter, which has the
highest priority, is never violated, while there are oc-
casional violations of latency and jitter.

The next two compositions, PJPL and JLP are dif-
ferent from the above two (i.e., LPJP and PLJ) in that
the jitter control module has a higher priority than the
latency control module. This means that the jitter con-
trol module has a greater degree of freedom in setting
the playback point. The latency module can constrain
it only upto the point where the jitter QoS contraint is
not violated, i.e., the latency control module can alter
the playback point proposed by the jitter control mod-
ule as long as the number of gaps over the monitoring
interval is within the GapsMaz limit. Once the num-
ber of gaps reach or exceed the limit, the latency con-
trol module cannot alter the playback point anymore,
even if the latency exceeds LatencyMaz. Figs. 8 and 9,
plot the packet latency and packet-drops for the PIPL
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compositions. Note that since the packet-loss control
module has a higher priority than the latency control
module, any packets dropped by the latency control
module have to be bounded by PktlossMaz. On the
other hand, in the composition JLP, the packet-loss
control module has a lower priority than the latency
control module, and so the latency control module can
drop packets without being constrained by PktlossMaz.
The reason that this composition can perform similar
to the LPJP composition is that as long as the jitter
is within the specified GapsMaz, the actions taken by
the latency control module are identical to those taken
in the LPJP compositions. Hence the similarity in re-
sults.

In Table 1, we tabulate the QoS violations for each
protocol composition scheme applied to the packet
trace. Violations are flagged when the playback or
dropping of a packet causes one or more of jitter, la-
tency, or packet-loss violations. For this trace, the PLJ
composition has the fewest number of QoS violations.

6. Related Work

Protocol composition has been used in other con-
texts as well. It was originally proposed for use with
communication protocols such as TCP/IP and RPC in
the x-Kernel system [6]. It was later used to compose
group communication protocols in in the Consul sys-
tem [{12] and recently in the Horus System [19]. How-
ever, we are not aware of its use for QoS control.

Earlier work on QoS control involved picking a par-
ticular set of priorities for the various QoS parameters
considered and then designing a protocol for this pri-
ority assignment ([5, 4, 9, 13, 14, 7, 16]). The protocol
composition approach presented here involves modu-
larizing a QoS control protocol in a manner such that
the individual modules can be composed in a number
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of ways resulting in a variety of priority assignments,
thus allowing for more flexible QoS control.

7. Conclusions

This paper has considered the problem of meeting
the QoS requirements of media-streams in collabora-
tion systems. A novel protocol composition-based ap-
proach to achieve this was proposed. The basic idea of
the approach is to modularize the QoS control protocol
such that each module controls a single QoS parame-
ter. The modules are assigned priorities and then can
be composed in a number of ways allowing for more
flexible QoS control. The performance of a number of
compositions was evaluated through experiments. The
load conditions used in the experiments were similar to
those seen on the Internet. The experiments illustrated
how the protocol compositions are able to successfully
tradeoff the QoS parameters in an appropriate manner.
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Protocol composition

Jitter Violations

Latency Violations

Packet-Loss Violations

LPJP 0 0 89
PLJ 1 64 0
PJPL 1 99 0
JLP 0 0 89

Table 1. Number of QoS violations for each of the protocol compositions
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