
Developing Adaptive Groupware Applications
Using a Mobile Component Framework

Radu Litiu and Atul Prakash
Department of Electrical Engineering and Computer Science
University of Michigan, Ann Arbor, MI 48109-2122, USA

Email: radu,aprakash@eecs.umich.edu

ABSTRACT

A need exists to develop groupware systems that adapt to

available resources and support user mobility. This paper

presents DACIA, a system that provides mechanisms for build-

ing such groupware applications. Using DACIA, compo-

nents of a groupware application can be moved to different

hosts during execution, while maintaining communication

connectivity with groupware services and other users. DA-

CIA provides mechanisms that simplify building groupware

for domains where users are mobile. New collaboration fea-

tures can be also more easily implemented. DACIA is also

applicable to non-mobile environments. We show its applica-

bility to building groupware applications that can be recon-

figured at run-time to adapt to changing user demands and

resource constraints, for example, by relocating services or

introducing new services. This paper describes the architec-

ture of DACIA and its use in building adaptable groupware

systems.

INTRODUCTION

Users increasingly work in environments with varying re-

source constraints or where mobility is required. Groupware

systems will need to be developed that work in such environ-

ments. The variability occurs along several dimensions:

� User and application demands: Collaborative groups can

vary significantly in group size. For best performance and

functionality, different system architectures may be required

as we go from two-party to multi-party communication. The

architecture may need to evolve from peer-to-peer to client-

server, and from centralized to distributed.

� User mobility and intermittent connectivity: Users are

increasingly mobile. They connect from various points, us-

ing a variety of devices. In some cases, it is desirable that a

user’s applications be able to participate in collaborative ac-

tivities on behalf of the user on a limited basis, even while the

user is disconnected or inactive. In domains such as cooper-

ative buildings [21], users can move from one work area to

another. In such domains, it would be nice to provide support

to users so that they do not have to close all the sessions with

other parties and quit all the collaborative applications, in or-

der to move to a different place short time later, restart the

very same applications, and establish manually the sessions.

� Hardware and network variability: The devices used

range from high-end machines, with significant computing

power, memory, and graphic display capabilities, to simple

devices such as PDAs (personal digital assistants), that can

only display text or primitive graphics. Network links char-

acteristics in terms of delay, capacity, and error rate can vary

significantly. The ideal architecture of the system depends

on the available computing and network resources.

It is difficult to design a one-size-fits-all groupware system

that works well under all potential usage situations. Group-

ware systems often end up making significant assumptions

about the environment and must be redesigned to be used

effectively if the assumptions no longer hold. We believe

that there is a need to develop techniques for designing flexi-

ble groupware systems that adapt better to user mobility and

available resources.

107



We have developed a framework, called DACIA1, that ad-

dresses some of the above challenges. DACIA provides sup-

port for building adaptable groupware systems. To illus-

trate its potential applicability, we have used DACIA to build

groupware applications with the following types of features:

� Support for application and user mobility and persis-

tent connectivity: DACIA enables persistent connectivity

between moving components. It allows a mobile user to sim-

ply “pull” an application or application component from one

computing device and drop it on another computing device.

The application maintains its state, no manual restart is nec-

essary, and all connections are re-established transparently.

� Dynamic application reconfiguration: A groupware ap-

plication with a modular architecture, in which various com-

ponents implement individual functions, can change its struc-

ture at runtime. It can dynamically load new components,

change the way various components interact and exchange

data, move some of the functions from one host to another,

and replicate some functions across multiple hosts.

� Application parking: A mobile application can be parked

while its user is disconnected or idle. A parked application

can continue to interact, with some limitations, with other

parties on behalf of the user. It can reside on the same com-

puting device the user had been connected from, or it can

move to a fixed host if the user’s device is disconnected.

When the user reconnects, eventually from a different place,

he can take over the control from the parked application.

In this paper, we explore the use of DACIA to model and

develop adaptive collaborative systems. The current version

of DACIA is implemented using Java and runs on standard

desktops as well as on PDAs (e.g., Windows CE devices) that

support PersonalJava. It has been used to implement several

prototypes of groupware applications that illustrate support

for mobility and reconfigurability.

The outline of the paper is as follows. We first present re-

lated work, followed by the architecture of DACIA. Next, we

illustrate the support provided by DACIA for building collab-

orative applications for mobile environments. Then we show

how DACIA can be used to build and execute reconfigurable

1Dynamic Adjustment of Component InterActions

groupware applications that adapt to available resources. Fi-

nally, we present some concluding remarks and directions for

future work.

RELATED WORK

DACIA enables the design of more flexible and adaptable

CSCW systems. The importance of flexibility and adapt-

ability in CSCW systems has been discussed by several re-

searchers [3, 19]. It is important to understand where this pa-

per fits in that context. We believe that in fact there are many

dimensions to flexibility and adaptability in CSCW systems.

Some of these dimensions include:

� access control [8, 20];

� concurrency control [7, 11];

� coupling of views [6];

� extensible architectures [10, 16].

The key point that these researchers make is that there are

significant tradeoffs in CSCW system design along many di-

mensions and many of these tradeoffs in fact cannot be made

priori. They depend significantly on the context in which the

system is going to be used. DACIA is complementary to the

above work and focuses on providing support for adapting

the architecture of CSCW systems and location of system

components to the usage context, scale of use, location of

users, and to available resources.

The importance of considering resources has been pointed

out by other researchers. Hudson and Smith point that CSCW

systems may need to be designed to allow tradeoffs between

context awareness and available resources (CPU, display, net-

work) [14]. There is a cost to providing more awareness

information in terms of information overload, screen real-

estate, network resources, privacy, etc. There have also been

debates over the merits of centralized architectures, peer-to-

peer architectures, and replicated services in building group-

ware systems. In DACIA, our goal is to provide the mech-

anisms to CSCW system designers so that the systems and

their architecture can be more easily reconfigured, at run-

time if desired.

The work of Chung and Dewan [5] has some goals similar

to ours, such as migrating applications to make better use of

the available resources, and accommodating heterogeneous

2108



Monitor performance
Implement application-specific

reconfiguration policies
Make reconfiguration decisions

Monitor performance

MONITOR 2

MONITOR 1

HOST 1 - fixed PC HOST 2 - mobile PC HOST 3 - PDA

Provide information to Monitor 1

Relocate components
Reconfigure the application

Manage connections to other hosts
Manage connections between components

Relocate components
Reconfigure the application

Manage connections to other hosts
Manage connections between components

Relocate components
Reconfigure the application

Manage connections to other hosts
Manage connections between components

ENGINEENGINEENGINE

Figure 1: A DACIA distributed application is a directed graph of connected components (ovals represent components). An engine
runs on every host. It manages the local components and the connections between components, both local and across different hosts.
The monitor gathers performance data and implements application-specific relocation and reconfiguration policies.

environments. Their approach targets the specific applica-

tion domain of centralized shared Windows systems. It is

based on the migration of a X Windows client that receives

inputs generated by multiple users, and the migration of the

events logged at a particular site. DACIA targets a broader

class of applications, in which application components, in-

cluding services, can move from one host to another to adapt

to changing usage conditions.

The importance of supporting mobility of users has also been

argued recently. The work in the cooperative buildings area

assumes that the users are mobile inside buildings and the

work should be possible anywhere the users are (coffee ta-

ble, walls, desktops, etc.) rather than users having to work

on a standard desktop [21]. In other mobility work, Belloti

and Bly argue that CSCW systems must be designed to sup-

port mobility because mobility can be critical to many work

settings [2]. They conclude that CSCW systems must accom-

modate mobility rather than seek to eradicate it via desktop

collaboration tools. In their study, they found that particu-

lar support is needed for ”local mobility” where people walk

between rooms or buildings at a local site. DACIA simpli-

fies building of groupware applications in which clients are

mobile.

Code mobility [9] has received a great deal of attention in

the distributed systems research community. Several recent

languages support various flavors of code mobility, such as

Telescript [22], Obliq [4], and Sumatra [1]. In TACOMA

[15], the term mobile agent is used to denote code fragments

associated with initialization data that can be shipped to a

remote host. TACOMA agents do not have the ability to mi-

grate once they started execution. In contrast, DACIA’s com-

ponents can move during the execution of an application.

DACIA ARCHITECTURE

DACIA is a framework for building adaptive distributed ap-

plications in a modular fashion, through the flexible com-

position of software modules implementing individual func-

tions. A DACIA application (Figure 1) is constructed by

connecting in a particular configuration several components

implementing various functions or parts of the application.

The application can be seen as a directed graph of connected

components. The links between components indicate the di-

rection of the data flow within the application. The graph

may have cycles and multiple paths may exist in the graph

between two components.

In DACIA, a component is a PROC2. A PROC can apply

some transformations to one or multiple input data streams.

It can synchronize input data streams; it can split the items

in an input data stream and send them alternately to multiple

destinations. PROCs represent the basic building blocks for

an application. They are relocatable data objects. They are

executable entities that may hold state, may be interrupted

and restarted, and they are involved in communications with

other entities.

PROCs communicate by exchanging messages through input

and output ports. We support both the blocking semantics

2Processing and ROuting Component

3109



connect [hostname] [IPportnumber] - connect the local engine to another engine
connectProcs [sourceProcID] [sourcePortNo] [destProcID] [destPortNo] - connect two PROCs
disconnectProcs [sourceProcID] [sourcePortNo] - disconnect two PROCs
exit/quit - stop execution and exit
help - print a help menu
move [procID] [hostname] - move a PROC to the host indicated
print - print information about the local and remote PROCs and the application configuration
start [procID] - trigger an action on the PROC indicated
startMonitor - start the monitoring service that performs runtime adaptation
update [hostname/all] <allProcs> - updates the information about PROCs known by other engines

Figure 2: Command-line shell interface. A programming API offers application programmers similar primitives. For example, two
PROCs can be connected using the call: boolean connectProcs(int procID1, int port1, int procID2, int port2).

provided by RPC and asynchronous message passing. For

synchronous communication, the PROCs are located on the

same host, in the same address space. To reduce overheads,

the thread that executes the action associated with the source

PROC will also execute the message handling routine of the

connected PROC. In the asynchronous case, the messages

received by a PROC are inserted into the PROC’s message

queue. Every PROC has a thread that handles the messages

in the queue, usually in FIFO order.

The engine decouples the application and component-specific

code and functionality from the general administrative tasks

such as maintaining the list of PROCs and their connections,

migrating PROCs, establishing and maintaining connections

between hosts and communicating between hosts. In the cur-

rent DACIA implementation, a DACIA distributed applica-

tion requires an engine on every host it runs on.

The engine works in conjunction with a monitor. The moni-

tor represents the part of an application that monitors the ap-

plication performance, makes reconfiguration decisions, and

instructs the engine accordingly. The engine is responsible

for establishing and removing connections between compo-

nents and for moving components to other hosts.

The engines and the PROCs are general-purpose and they can

be reused to build multiple applications. Engines provide

the mechanisms for reconfiguration while monitors imple-

ment application-specific policies for reconfiguration. The

approach used by FarGo [13], called dynamic application

layout, also separates the programming of the layout of the

application from the policy logic. The changes of an appli-

cation layout in FarGo consist of finding the right place to

execute components. We go further, allowing an application

to dynamically change the connections between components,

to introduce new components, and to change its structure.

The monitors are optional – applications can be also recon-

figured manually by system administrators, for example by

using the shell interface in Figure 2. Through this interface,

the user or system administrator can manually reconfigure

an application by relocating PROCs, creating new PROCs,

and changing the way existing PROCs are connected. A

programming API is also available with similar functionality

and is typically used by the monitors to make reconfiguration

changes.

Further details about implementation aspects of DACIA can

be found in [18].

MOBILITY AND INTERMITTENT CONNECTIVITY

Traditional collaboration paradigms, in which users interact

using their desktop computers, are too rigid to provide ad-

equate support for novel environments, in which mobility

has become ubiquitous. Fixed hardware, combined with mo-

bile devices, form a set of resources with distinct interaction

and availability characteristics. Mobility is not restricted to

the mere use of mobile computing devices such as laptop

computers and PDAs. Non-conventional devices, such as

video cameras, touch-screen interactive displays, biometric

devices, etc., support the collaborative experience. Sensors

and active badges have been used together with telemetry

software and a location system to implement context-aware

applications [12]. Cooperative buildings [21] use upgraded

versions of mundane objects such as walls, tables, and chairs,

as computing and display devices.

One of the key features of our architecture is the ability to

4110



move components between hosts. A moving PROC carries

with it the state of its data members, the messages received

but not yet handled, and the state of its connections. When a

PROC moves to another host, all the messages left in its mes-

sage queue move with the PROC. Java object serialization,

with extensions for serializing buffered messages, is used to

transfer a PROC’s state to another engine. We maintain a

weak consistency of each engine’s view of components’ lo-

cations and their connections. When a PROC moves, the en-

gine where the PROC was previously located will send noti-

fications about the change only to the engines hosting PROCs

connected to the moving PROC.

The temporary failure of a connection between engines is

made transparent to the PROCs. When a network connection

is broken, the engine caches messages addressed to a remote

PROC until the connection is re-established, assuming that

the disconnection is temporary.

PROCs can move between hosts while maintaining persis-

tent connectivity to other PROCs. The structure of the ap-

plication does not change and the flow of data in the system

is not interrupted3. The movement of a PROC is transpar-

ent to other PROCs. The virtual connection between PROCs

is permanently maintained, even if the underlying physical

connection changes. Messages addressed to a PROC that has

left a host will be forwarded to the PROC’s new location.

This seamless connectivity offers a great benefit to mobile

users, who can move applications from one host to another

without having to re-establish all the connections to other

parties. It can also provide transparency of the location of

a user, if so desired.

A Simple Example of Component Mobility

Figure 3 illustrates a simple example of component mobility,

in the case of a chatbox application, that has been imple-

mented using DACIA. Two chatbox users are involved in a

session from their respective workstations. At some point,

one of the users moves to a different device, which is cur-

rently allowed to be another desktop or a Windows CE PDA

that runs PersonalJava (available from www.javasoft.com).

The user issues a move() command using the command-line

3a small delay may be observed due to message forwarding

initial state

after PROC relocation

449016
Chat

402016
Chat

402016
Chat

449016
Chat

seoul saturn sanjuan seoul saturn sanjuan

initial state after PROC relocation

Figure 3: A Chat PROC moves from one machine (sat-
urn, top) to another one (sanjuan, second from top).
All the PROCs remain connected and they continue to
exchange data. The terminal windows on each screen
show application status information for both local and
remote PROCs, as displayed by the command-line in-
terface. Machines can be desktop machines that sup-
port Java or PDA devices (e.g., Windows CE) that sup-
port PersonalJava JVM.5111



interface given previously (see output in the terminal win-

dow). The Chat PROC moves between the two machines

and the users can resume communication without having to

re-establish the connection. The messages previously ex-

changed (the state of the moved PROC) are still displayed

in the window.

Note that a PROC is allowed to move from one device to a

different type of device that supports DACIA. For example,

the Chat PROC can move to a DACIA-enabled PDA, where

it presents a text interface to the user. The main requirement

is that corresponding PROCs for different devices agree on

the serialized state format so that a PROC “move” can be ac-

complished by transferring the serialized state from the en-

gine on one device to the engine on another device. DACIA

takes care of transparently restoring the connectivity between

the PROCs.

Through mobility, users can also share their previously pri-

vate work with others, for instance by moving a GUI com-

ponent from their personal desktop to a large touch-screen

display, where several other users can interact with it.

Application/Client Parking

Our work is particularly concerned with the application and

resource availability and the intermittent connectivity in a

mobile collaboration environment. Our goal is to ensure that

a user’s applications are available, in a suitably adapted form,

wherever the user goes. At the same time, we want to allow a

user’s applications to participate on a limited basis in collab-

orations on the user’s behalf, while the user is disconnected

or not active.

A potential solution is application parking, in conjunction

with persistent connectivity4, to address these issues. A parked

application is able to continue, with some limitations, to in-

teract with other parties on behalf of the user while the user

is idle. When the user reconnects, eventually from a different

place, he can take over the control from the parked applica-

tion.

A parked application can reside on the same computing de-

vice the user had been connected from, or it can move to a

fixed host if the user’s device is disconnected. Specialized

4here we refer to logical connectivity

hosts can provide parking lot services to mobile users. When

the user’s application moves to a different device, it main-

tains its connections to services and collaborative partners

and it continues its execution.

In current groupware applications (Figure 4.a), when a user

disconnects, the disconnection is typically treated as long-

term. Other users are typically aware that the user is no

longer participating but no further information is available

as to how long or whether asynchronous interactions are still

possible. Furthermore, when the user reconnects, typically

all the connections to collaboration services have to be re-

established.

Server

Client2

Client2

Server

Client2

b. DACIA applications

Server Client1
parked

parking host

user1 connected

client state

Client1
(mobile)

host1

disconnect
user1

a. traditional applications

Figure 4: Using traditional groupware applications,
when a user disconnects, its state has to be saved
on the server. If the user later connects to a differ-
ent server, the state has to be transfered between the
servers and between the new server and client. Us-
ing DACIA-enabled applications, while the client is dis-
connected, its state is maintained by the parked client,
which can continue to participate to collaborative ac-
tivities.

Using DACIA, the user can park his client agent to a fixed,

connected host. While the user is disconnected, a parked

client (Figure 4.b) can continue to maintain state. Moreover,

the parked application maintains its connections and it can

interact with collaborative partners.

A user can delegate various degrees of autonomy to a parked

application. For example, in the case of a parked chat appli-

cation, the application’s response to messages received from

other collaborators could be a simple message (similar to the

vacation email message) informing them that the user is not

active. A more elaborate parked application could save mes-

sages, forward notifications to the user via email, or notify

6112



users of potential future activity schedule. The parked appli-

cation’s behavior can be made to change gradually, according

to the duration of user inactivity. For example, after a time-

out interval, it can potentially save its state to a server, and

shut itself down. There is a tradeoff between the complex-

ity of the parked application code and its ability to actively

participate in the collaboration.

DYNAMIC APPLICATION RECONFIGURATION

Even when users are not mobile, application reconfiguration

can be desirable to make groupware systems adaptable to

available resources. The reconfiguration consists of either

reordering or relocating some components or replacing a set

of components with a different set of components, possibly

connected in a different configuration. As a result of recon-

figuration, the application graph changes. A more efficient

execution can be achieved by better using the available re-

sources and optimizing inter-component communication.

DACIA provides mechanisms for dynamically reconfiguring

an application. These mechanisms are the same as shown

in Figure 2. They can be used to dynamically connect and

disconnect PROCs, introduce new PROCs in the data paths,

and move PROCs across hosts.

There is a separation between reconfiguration policies and

mechanisms. An application developer or a system adminis-

trator can implement customized policies in monitors or can

manually reconfigure the application based on changing run-

time requirements and resource availability.

Below, we give two examples of using DACIA to implement

reconfigurable groupware services that also apply to situa-

tions where users are not mobile.

Example 1: Need for Multiple Architectures

We have previously faced the challenges of building flexible

collaborative applications in the context of the UARC [17]

project, an experimental testbed for wide-area scientific col-

laboratory work. Among the collaborative tools provided,

there are several tools for visualizing various real-time or

archived data streams. A communication server handles sub-

scriptions from multiple clients and the distribution of data

to these clients. The server receives large amounts of raw

data from various data sources, it applies some computations

(e.g., transforming raw data into GIF images), and then dis-

seminates the resulting data to the clients. Figure 5.a shows

the DACIA graph structure corresponding to this application.

The server caches the data (the Store module) for fault toler-

ance and for future access.

Figure 5: Alternative configurations for an application.
Ovals represent components. Grey rectangles represent
hosts. Components are connected through directed links,
indicating the direction of the data flow within the appli-
cation. Multiple graphs (a-b) may correspond to the same
application.

We encountered several problems in using this system. First,

the server handles inputs from tens of data sources and sub-

scriptions from hundreds of clients, who can choose to view

the data in different ways; each different view requires a dif-

ferent computation task to run on the server. We found that

with a large number of users, the server sometimes ran out of

sufficient capacity to compute in real time the images for all

the subscriptions. Second, most of the time the computations

produced images with bigger size than the size of the raw

data. Therefore, the network links from the server to some

clients also sometimes got congested.

The above problems can be potentially alleviated by using an

alternative architecture where the server sends the raw data

to the clients and clients do the image computations. This

architecture was in fact tried out in UARC after an expen-

sive code redesign. Unfortunately, the experience was that

some clients got overloaded if they computed many images.

Since the system was being used to support scientific col-

laboration, failure of some clients made group collaboration

difficult, making the system seemingly unreliable for group

collaboration.

Using DACIA, we implemented an adaptive version of this

7113



application. This version allowed the computing function

to be executed on the server, on the client, or on any other

host with a DACIA engine. The application structure could

change at runtime, according to the load and the resource

availability. Figure 5.b presents an alternative configuration

created using DACIA, that uses several Compute modules

located on the same or nearby hosts as the clients. The sim-

plified reconfiguration policy that we implemented only took

network bandwidth into account. Preliminary performance

experiments (not presented in this paper) indicated that the

system was indeed able to adapt better to network constraints

via reconfiguration of Compute PROCs.

DACIA can also allow additional changes to be applied to

the application graph. Data caches can be placed at various

points in the network, by introducing Store components. The

server can store images instead of raw data. In this case, a

Compute module should be placed between the Server and

the Store module. A pair of Compress/Decompress com-

ponents can be introduced at appropriate points in the data

path. Depending on the network topology and on runtime

conditions, either one of these configurations may be more

efficient than the other ones.

The insertion of new processing nodes, such as a pair of

Compress/Decompress components is done as follows. As-

sume that Sender and Receiver are two PROCs exchanging

data, being connected on their respective ports 0. The fol-

lowing sequence of operations allows the insertion of a pair

of PROCs, Compress and Decompress, without corrupting

the data exchanged. All the messages that are sent by Sender

after the disconnection will be first compressed and then de-

compressed, before being delivered to Receiver. In DACIA,

messages are buffered for a limited duration to allow recon-

figurations that require disconnecting and reconnecting PROCs.

disconnectProcs(Source, 0)
connectProcs(Sender, 0, Compress, 0)
connectProcs(Decompress, 1, Receiver, 0)
connectProcs(Compress, 1, Decompress, 0)

Example 2: Multi-Party Communication

Using DACIA, we have implemented an adaptive multi-party

communication application that can be used as a basis of

building a range of groupware systems. The application con-

sists of client (C) and server (S) PROCs. Through the servers,

a client sends messages to the whole group. A server can be

located on a different host than the ones where the clients

run.

Initially, when there are only 2 clients, they are connected

directly (Figure 6.a), without using a server. This is a typ-

ical architecture for two-party communication tools. When

a third client tries to join the communication group, a server

module is spawned, and all the clients will connect to the

server and will exchange data through it (Figure 6.b). As-

suming that the clients are C1, C2, and C3, the sequence of

operations5 involved is (arguments are procID’s and portNo’s):

disconnectProcs(C1, 0)
S1 = new Server()
connectProcs(C1, 0, S1, -1)
connectProcs(C2, 0, S1, -1)
connectProcs(C3, 0, S1, -1)

C
C

S
C

S

C C

S

C

C

C C

SC

C
S

C

C

C CC

C

c.b.a.

Figure 6: Adaptive multi-party communication. Servers
are denoted by S, and clients are denoted by C. New servers
are created as the number of participants grows.

Various adaptive algorithms can be implemented to allocate

and deallocate server modules and to handle clients distribu-

tion. For example, in our implementation, when the num-

ber of clients on a server reaches an upper threshold Nmax,

an engine spawns a new server, which connects to the ex-

isting servers. When there is a large number of clients in

the group, the application will contain several servers, con-

nected to each other in a certain configuration. The clients

are distributed among the servers. Ideally, the distribution

should take into account clients’ relative locations. Figure

7 presents the part of the monitor responsible for allocating

new servers and balancing the load among servers.

5a negative value for the port number in connectProcs() allows to connect
to any of the available ports of the specified PROC

8114



// get the list of all the PROCs in the system
procs = Engine.getProcs();
// get the list of all the servers, sorted in decreasing order
servers = procSelect(procs, "server");
while(true) f

// find the server with the highest load
s1 = getServer(servers, 1);
// if the server is overloaded, offload some clients to other servers
if(s1.load() >= Nmax) f

// find the server with the lowest load
s2 = getServer(servers, 0);
if(s2.load < Nmax-1) f // can move PROCs to s2

// find the number of PROCs to move
moveSize = min((s1.load - Nmax + 1),

(Nmax - 1 - s2.load));
g
else f // need to spawn a new server

// get the list of all the hosts in the system
hosts = Engine.getHosts();
// find a host that does not have a server
h = getFreeHost(hosts, "server");
// if there is no free host, resume the process later
if(h == null) f
sleep(checkInterval);
continue;

g
// start a new server on host h
s2 = Engine.createProc(h, "server");
// connect the servers
connectProcs(s2, 0, s1, -1);
// add s2 to the list of servers
servers.addElement(s2);
// find the number of PROCs to move
moveSize = s1.load/2;

g
// move moveSize PROCs from s1 to s2
for(i=0; i<moveSize; i++) f

// get any of the PROCs connected to s1
c = s1.getConnectedProc();
disconnectProcs(c, 0);
// connect the client c to s2, on any available port
connectProcs(c, 0, s2, -1);

g
g

g

Figure 7: The monitoring routine that balances load
among servers. When the number of clients on
one server reaches the threshold Nmax, either some
clients are assigned to one of the existing servers, if
possible, or a new server is spawned to handle the
excess clients.

As clients leave the group, the load per server goes down, and

thus it does not justify the usage of too many servers. When

the load on a server goes under a lower threshold Nmin, a

server module is deallocated and its clients are distributed

to other servers. Alternatively, two servers with load under

Nmin can be replaced by a single server supporting all their

clients.

DACIA only provides support for ordered delivery of mes-

sages along a channel between two PROCs. In multi-party

communication, sometimes stronger guarantees such as total

ordered delivery of messages may be required. To provide

totally ordered message delivery using the current DACIA, a

possible solution is to require that the graph formed by the

servers does not have cycles (it is a tree) and one server acts

as sequencer for group messages.

In our implementation of Figure 6, the servers were stateless.

They simply routed messages and no consistency of state

among the servers was required. If maintaining a group’s

state at the servers is required, currently the easiest way to

do that is to provide a store component to the system that

maintains the group’s state. In future versions of DACIA,

we plan to provide support for replicating components and

maintaining consistency of their states.

As proof-of-concept, we implemented a multi-party chatbox

application on top of this group communication service. The

application reconfigures itself dynamically, based on the im-

plemented adaptive policy. The same architecture can be

used to implement other groupware applications requiring

multi-party communication infrastructure.

CONCLUSIONS

In this paper, we presented DACIA, a mobile component

framework that allows applications to reconfigure dynami-

cally by loading new components, changing the way com-

ponents interact and exchange data, and moving some com-

ponents from one host to another. DACIA provides sup-

port for application and user mobility and it enables per-

sistent connectivity between moving components. To illus-

trate DACIA’s use, several reconfigurable groupware appli-

cations have been implemented. Applications include group-

ware clients that relocate, based on the user’s location, and

9115



mobile clients that can be “parked” while their users are dis-

connected. A parked client may continue to interact with

other parties in specified ways on behalf of the user. DACIA

has also been used to build collaboration services that adapt

to available resources and the number of users. Such recon-

figurable services are useful even when users are not mobile.

We believe that DACIA provides a platform for experiment-

ing with new kinds of groupware applications. Some future

challenges include implementing a library of useful PROCs,

using and evaluating DACIA-enabled collaboration tools in

real collaboration settings, providing access control features

for users to control the mobility of their components, and

supporting component replication.

ACKNOWLEDGMENTS

This work has been supported in part by the National Science

Foundation under Grant No. ATM-9873025. The authors

would like to thank Tom Finholt for his useful comments on

an earlier draft of the paper. We also would like to thank

Prasun Dewan for suggesting the multi-party communication

application as a potential candidate for use of DACIA.

REFERENCES
1. A. Acharya, M. Ranganathan, and J. Saltz. Sumatra: A Language for

Resource-Aware Mobile Programs. Mobile Object Systems: Towards
the Programmable Internet, Lecture Notes in Computer Science 1219,
Springer Verlag, pages 111–130, Apr 1997.

2. V. Belloti and A.S. Bly. Walking Away from the Desktop Computer:
Distributed Collaboration and Mobility in a Product Design Team. In
Proceedings of the 1996 ACM Conference on Computer-Supported
Cooperative Work, (CSCW ’96), pages 209–218, Boston, MA, Nov.
1996.

3. R. Bentley and P. Dourish. Medium versus Mechanism: Support-
ing Collaboration through Customisation. In Proceedings of the
Fourth European Conference on Computer-Supported Cooperative
Work (ECSCW’95), Stockholm, Sweden, 1995.

4. L. Cardelli. A Language with Distributed Scope. Computing Systems,
8(1):27–59, 1995.

5. G. Chung and P. Dewan. A Mechanism for Supporting Client Migra-
tion in a Shared Window System. In Proceedings of the Ninth User
Interface Software and Technology, pages 11–20, Nov. 1996.

6. P. Dewan and R. Choudhary. Coupling the User Interfaces of a Mul-
tiuser Program. ACM Transactions on Computer Human Interaction,
2(1):1–39, March 1995.

7. P. Dourish. The Parting of the Ways: Divergence, Data Manage-
ment and Collaborative Work. In Proceedings of the Fourth European
Conference on Computer-Supported Cooperative Work (ECSCW’95),
Stockholm, Sweden, 1995.

8. W.K. Edwards. Policies and Roles in Collaborative Applications. In
Proceedings of the ACM 1994 Conference on Computer-Supported
Cooperative Work (CSCW ’96), pages 11–20, Boston, MA, Nov..
1996.

9. A. Fuggetta, G.P. Picco, and G. Vigna. Understanding Code Mobility.
IEEE Trans. on Software Engineering, 24(5), May 1998.

10. G.Fitzpatrick, S. Kaplan, and T. Mansfield. Physical Spaces, Virtual
Places and Social Worlds: A study of Work in the Virtual. In Proceed-
ings of 1996 the ACM Conference on Computer-Supported Coopera-
tive Work, (CSCW ’96), pages 334–343, Boston, MA, Nov. 1996.

11. S. Greenberg and D. Marwood. Real Time Groupware as a Distributed
System: Concurrency Control and its Effect on the Interface. In Pro-
ceedings of the 1994 ACM Conference on Computer-Supported Co-
operative Work, (CSCW ’94), pages 207–217, Chapel Hill, NC, Oct.
1994.

12. A. Harter, A. Hopper, P. Steggles, A. Ward, and Paul Webster. The
Anatomy of a Context-Aware Application. In Proceedings of Mobicom
’99, Seattle, WA, Aug 1999.

13. O. Holder, I. Ben-Shaul, and H. Gazit. System Support for Dynamic
Layout of Distributed Applications. In Proceedings of the 19th Inter-
national Conference on Distributed Computing Systems (ICDCS’99),
pages 403–411, Austin, TX, May 1999.

14. S.E. Hudson and I. Smith. Techniques for Addressing Fundamental
Privacy and Disruption Tradeoffs in Awareness Support Systems. In
Proceedings of 1996 the ACM Conference on Computer-Supported
Cooperative Work, (CSCW ’96), pages 248–257, Boston, MA, Nov.
1996.

15. D. Johansen, R. Van Renesse, and F.B. Schneider. An Introduction to
the TACOMA Distributed System. Technical Report 95-23, Dept. of
Computer Science, Univ of Tromso and Cornell Univ., June 1995.

16. J.H. Lee, A. Prakash, T. Jaeger, and G. Wu. Supporting Multi-User,
Multi-Applet Workspaces in CBE. In Proceedings of 1996 the ACM
Conference on Computer-Supported Cooperative Work, (CSCW ’96),
pages 344–353, Boston, MA, Nov. 1996.

17. R. Litiu and A. Prakash. Adaptive Group Communication Services
for Groupware Systems. In Proceedings of the Second International
Enterprise Distributed Object Computing Workshop (EDOC’98), San
Diego, CA, Nov. 1998.

18. R. Litiu and A. Prakash. DACIA: A Mobile Component Framework
for Building Adaptive Distributed Applications. Technical Report
CSE-TR-416-99, University of Michigan, EECS, Dec 1999.

19. M. Roseman and S. Greenberg. Building Flexible Groupware through
Open Protocols. In Proceedings of the ACM Conference on Organiza-
tional Computing Systems, California, 1993.

20. A H. Shen and A.P. Dewan. Access Control in Collaborative Envi-
ronments. In Proceedings of the 1992 ACM Conference on Computer-
Supported Cooperative Work, (CSCW ’92), pages 51–58, 1992.

21. N.A Streitz, J. Geisler, and T. Holmer. Roomware for Cooperative
Buildings: Integrated Design of Architectural Spaces and Information
Spaces. Cooperative Buildings: Integrating Information, Organiza-
tion, and Architecture, Springer-Verlag, Lecture Notes in Computer
Science, 1370, pages 4–21, 1998.

22. J.E. White. Telescript Technology: Mobile Agents. Software Agents,
J. Bradshaw, ed. AAAI Press/MIT Press, 1996.

10116


