
Flexible Control of Downloaded
Executable Content

TRENT JAEGER
IBM Thomas J. Watson Research Center
ATUL PRAKASH
University of Michigan, Ann Arbor
JOCHEN LIEDTKE
and
NAYEEM ISLAM
IBM Thomas J. Watson Research Center

We present a security architecture that enables system and application access control
requirements to be enforced on applications composed from downloaded executable content.
Downloaded executable content consists of messages downloaded from remote hosts that
contain executables that run, upon receipt, on the downloading principal’s machine. Unless
restricted, this content can perform malicious actions, including accessing its downloading
principal’s private data and sending messages on this principal’s behalf. Current security
architectures for controlling downloaded executable content (e.g., JDK 1.2) enable specifica-
tion of access control requirements for content-based on its provider and identity. Since these
access control requirements must cover every legal use of the class, they may include rights
that are not necessary for a particular application of content. Therefore, using these systems,
an application composed from downloaded executable content cannot enforce its access control
requirements without the addition of application-specific security mechanisms. In this paper,
we define an access control model with the following properties: (1) system administrators can
define system access control requirements on applications and (2) application developers can
use the same model to enforce application access control requirements without the need for ad
hoc security mechanisms. This access control model uses features of role-based access control
models to enable (1) specification of a single role that applies to multiple application instances;
(2) selection of a content’s access rights based on the content’s application and role in the
application; (3) consistency maintained between application state and content access rights;
and (4) control of role administration. We detail a system architecture that uses this access
control model to implement secure collaborative applications. Lastly, we describe an imple-
mentation of this architecture, called the Lava security architecture.

Authors’ addresses: T. Jaeger, IBM Thomas J. Watson Research Center, 30 Saw Mill River
Road, Hawthorne, NY 10532; email: jaegert@watson.ibm.com; A. Prakash, Dept. of Electrical
Engineering and Computer Science, University of Michigan, Ann Arbor, 2231 EECS Bldg.,
Ann Arbor, MI 48105; email: aprakash@eecs.umich.edu.
Permission to make digital / hard copy of part or all of this work for personal or classroom use
is granted without fee provided that the copies are not made or distributed for profit or
commercial advantage, the copyright notice, the title of the publication, and its date appear,
and notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to
republish, to post on servers, or to redistribute to lists, requires prior specific permission
and / or a fee.
© 1999 ACM 1094-9224/99/0500–0177 $5.00

ACM Transactions on Information and System Security, Vol. 2, No. 2, May 1999, Pages 177–228.

Categories and Subject Descriptors: D.2.9 [Software Engineering]: Management—Software
configuration management; D.4.6 [Operating Systems]: Security and Protection—Access
controls; Authentication; Invasive software (e.g., viruses, worms, Trojan horse); K.6.4 [Man-
agement of Computing and Information Systems]: System Management—Centraliza-
tion/decentralization; K.6.5 [Management of Computing and Information Systems]:
Security and Protection—Invasive software (e.g., viruses, worms, Trojan horse)

General Terms: Design, Management, Security

Additional Key Words and Phrases: Access control models, authorization mechanisms, authen-
tication, collaborative systems, role-based access control

1. INTRODUCTION
Downloaded executable content, messages that contain programs that are
executed upon receipt, is enabling the emergence of many new applications.
Examples of executable content include Java applets [Gosling et al. 1996],
Tcl scripts [Ousterhout 1994], computational e-mail messages [Borenstein
1994], and replicated messages [Knister and Prakash 1993]. In most cases,
executable content is implemented using a powerful language that can
display user interfaces, engage users in a dialogue, return the results to the
content provider, etc. A key feature of these languages is that content
messages can be automatically downloaded to a wide variety of platforms
and executed without recompilation. This technology is particularly useful
in some emerging distributed applications, such as electronic commerce,
network information services, collaborative systems, and workflow sys-
tems, where the user may only run the application once or where applica-
tion actions are generated dynamically.

As noted previously [Borenstein 1992], a major problem with executing
downloaded content is that, if unchecked, it can enable attackers to gain
unauthorized access to the downloading principal’s system resources. Thus,
content interpreters attempt to enforce control of content operations.
However, early content interpreters’ security models are either too rigid to
build complex systems (e.g., Java-enabled Netscape, ATOMICMAIL, Safe-
Tcl, and Java appletviewer [Borenstein 1992; 1994; Dean et al. 1996;
Jaeger and Prakash 1994]) or require the ad hoc development of security
infrastructure for each application (e.g., Telescript, Inferno, and Tcl [Dor-
ward et al. 1996; Gallo 1996; Levy and Ousterhout 1995; CNRI 1998; White
1995]). For example, Java-enabled Netscape prevents all I/O except com-
munication back to the source IP address. On the other hand, Tcl lets us
compose systems from trusted and untrusted interpreters, but much skill is
required to compose a secure system from these components.

Improvements have been made to these access control models, but they
still lack the flexibility to compose arbitrary applications. A number of
subsequent content execution systems were developed with more flexible
access control models [Islam et al. 1997; Netscape 1997; Gong 1997b;
Ousterhout et al. 1998]. However, these systems all assign content rights
based solely on their class name and provider. The problem is that for

178 • T. Jaeger et al.

ACM Transactions on Information and System Security, Vol. 2, No. 2, May 1999.

content to execute properly under all legal conditions, the rights assigned
to content must be the union of all possible rights the content may ever
need. For example, in JDK 1.2 [Gong 1997b], a thread’s rights are the
intersection of the rights of the classes invoked by the thread, but this
intersection of all rights ever needed is not necessarily consistent with the
rights needed in the application’s current state. For example, a collabora-
tive editor may want to restrict the content it downloads to only operate
upon the files being explicitly shared even though the collaborator may, in
general, be able to modify a large set of files. Thus, applications would have
to create ad hoc security mechanisms to enforce these stricter require-
ments.

The focus of this paper is to develop a security architecture that enables
applications to be constructed from downloaded executable content that can
be restricted using system and application security policies. This security
architecture defines an access control model that we show is sufficient to
enforce both system and application access control requirements. This
architecture supports the following tasks: (1) specifying the requirements
for content to be assigned the identity of a particular principal (e.g, an
application or a role within an application); (2) specifying the rights
commensurate with the content’s role in the application and the applica-
tion’s state; (3) maintaining the content’s permissions relative to the
application’s state; and (4) enforcing these permissions throughout the
content’s execution. System administrators specify security policy for appli-
cations and the limits within which applications and users may specify
policy refinements. Content loading is done using a secure system service,
so the system’s security requirements can be enforced on the content. We
demonstrate the architecture by showing how security policies for a distrib-
uted collaboration example are defined and enforced. We then detail an
implementation of the architecture in the Lava operating system, which is
composed on a successor to the L4 m-kernel [Liedtke 1995].

Throughout this paper, we assume a conventional protection model,
where principals (e.g., users, groups, and services) execute processes that
perform operations (e.g., read, write, and execute) on objects (e.g., files,
URLs, and communication channels). The privileges of a principal in
performing operations on objects are called access rights of the principal or
the principal’s permissions [Wobber et al. 1994]. A protection domain is a
program and its data objects encapsulated such that data objects are only
accessible to the domain or through designated entry points [Saltzer and
Schroeder 1975].

The structure of this paper is as follows: In Section 2, we describe an
example problem we believe is representative of distributed applications
that can be implemented using downloaded executable content. In Section
3, we examine how researchers approached similar problems in the past. In
Section 4, we define an access control model in which security policy for
solving these problems can be formally expressed. In Section 5, we detail an
architecture in which security policy for the example application can be

Flexible Control of Downloaded Executable Content • 179

ACM Transactions on Information and System Security, Vol. 2, No. 2, May 1999.

expressed and enforced. In Section 6, we discuss our experiences in
implementing this architecture into an operating system environment that
configures systems from downloaded content. In Section 7, we summarize
and describe future work.

2. EXAMPLE

We use the Upper Atmospheric Research Collaboratory (UARC) [Clauer et
al. 1995; Lee 1996] application as our example for identifying the security
requirements for distributed applications built from downloaded executable
content. UARC is a collaborative system for viewing, discussing, recording,
and annotating atmospheric test data. A UARC session (i.e., an instance of
an execution of the UARC application) is shown in Figure 1. First, a UARC
client retrieves the UARC application from a UARC system web server. The
UARC application may consist of content authored by a variety of princi-
pals. These principals may be official developers of the UARC system or
outside developers whose content was found to add value to the UARC
application. Once the UARC application is downloaded, it calls a UARC
session manager to enter the UARC client into a collaborative session. The
session manager adds the UARC client to the session in a role suitable to
the collaborative group. A collaborative session is a distributed application
where a set of remotely located collaborators can perform operations on a
UARC session state replicated at each of the collaborators’ sites. Each
collaborator operation in a UARC session is implemented using downloaded
executable content executed by all collaborators to keep their shared state
consistent. Therefore, each UARC client may receive and execute content
written by any other client. In general, any content may request that
operations be performed by local services (e.g., file system and network
system) or any other content on its behalf. However, these operations must

Fig. 1. A typical UARC session: The UARC servers download content and application data to
UARC clients who exchange operations that modify the application data.

180 • T. Jaeger et al.

ACM Transactions on Information and System Security, Vol. 2, No. 2, May 1999.

be controlled to prevent the content providers from gaining unauthorized
access to the UARC client’s resources.

We consider the UARC application a canonical example of a distributed
application built using downloaded executable content. First, there is a
main UARC application that ensures that the application performs cor-
rectly. The UARC application content performs actions on behalf of the
downloading principal. Second, the UARC main application utilizes the
services of third-party application content that helps it by performing
specialized tasks. In general, we expect that application developers will
compose their applications using their favorite supporting content. Third,
UARC uses downloaded executable content to implement operations from
remote principals involved in the application. Many applications may
benefit by executing operations at the site of the application data or at the
site of the user of the application. For example, workflow activities in a
workflow system and marketing activities in an electronic marketplace
could be implemented as downloaded executable content and downloaded
on demand by users of those applications.

We review the specific requirements that the various types of UARC
content need in order to perform their actions properly. First, the UARC
application content needs to perform the following actions:

—communicate with the UARC session manager, UARC data server, and
session collaborators;

—read and write atmospheric data recordings, annotations, and discus-
sions;

—download and execute outside and collaborator content:

—access system resources, such as the CPU, disk, and screen

The extent of the resources available for the purposes specified above can
be largely predetermined. Therefore, a system administrator may specify
many of the permissions that are to be granted to the UARC application.
However, in order for the UARC application content to execute properly, it
must be informed of the location of some objects that are dependent on the
individual client (i.e., the user). For example, each UARC client may choose
the files used for storing their recordings, annotations, and discussions.
Therefore, the derivation of UARC application permissions may depend on
input from system administrators and users. However, users should be
restricted in the scope of their permission management.

The security policy enforced on outside content depends on the purpose of
the content. In general, the rights of content used by an application depend
on the state of the application. For example, the rights of a statistical
package depend on the data needed by the package. It is also conceivable
that some outside content (e.g., system services) may be more trusted than
the application itself, so it must be possible to load content that is
permitted different rights.

Flexible Control of Downloaded Executable Content • 181

ACM Transactions on Information and System Security, Vol. 2, No. 2, May 1999.

The security requirements of collaborator content depend largely on the
state of the UARC application. Authentication constraints, such as content
freshness or content identity, must be verified to prevent attacks, like
content replay or content replacement. If an attacker can replay content or
get other content run with the same access rights, then the application can
be invalidated. The permissions assigned to content depend on the state of
the application as well. The UARC application has different types of
collaborators who may be able to perform different actions. We discuss two
such collaborator types: scientists and novices. Scientists use the UARC
application to perform experiments, while novice collaborators use it to
learn about atmospheric data analysis. At present, most actions are per-
formed by scientists, while the novices may only view data and chat with
others. The security requirements of the two groups is described below:

—Scientists:
—communicate with the UARC data server;
—read and write atmospheric data recordings, annotations, and discus-

sions;
—change the view of collaborator;
—engage in a text chat.

—Novices:
—communicate with the UARC data server;
—read atmospheric data recordings, annotations, and discussions;
—engage in a text chat.

Any participant must be able to retrieve data from the UARC data server
chosen by the UARC application. The files that users have explicitly
identified to the UARC application as sharable must also be accessible to
the scientists. Also, the UARC security policy must control access to both
system and application objects. For example, scientists may change the
data being displayed, but not the state of the other collaborators’ displays
(e.g., location, colors, etc.). Thus, in order for the UARC application to run
correctly, it must restrict its collaborators to only those objects currently
being used in the collaboration. However, current operating systems do not
provide application developers with security infrastructure such that they
can enforce their own policies, so they must build an ad hoc security
architecture, which is an arduous and error-prone task.

The problem that we address in this paper is to design a system security
architecture that supports the enforcement of both system and application
access control policies. Fundamentally, access control is simply controlling
a principal’s ability to perform operations on objects. In this sense, there is
no difference between authorizing access to either system and application
objects. However, the handling of principals and their security policy
becomes more complex because application principal’s rights may depend
on a wider variety of factors and more principals are able to administer
security policy. Our goal is to design an access control model and system
architecture that provides enforcement for mandatory system security

182 • T. Jaeger et al.

ACM Transactions on Information and System Security, Vol. 2, No. 2, May 1999.

policies (i.e., policies that are defined and controlled by system administra-
tors) and permit policies to be added within those mandatory restrictions,
checking that system security requirements are not violated.

We use the basic security requirements of the UARC application as
motivation for the design of the access control model and system architec-
ture. The UARC application security requirements are summarized below:

(1) Verify the source integrity that the content is designed for the purpose
requested; and, for collaborator content only, the freshness of the
downloaded executable content;

(2) Derive the initial content permissions on the basis of information at
download time, such as its downloading principal, its provider, the
application for which it is used, the application’s current state, and the
content’s role in the application (note that the content’s rights are not
required to be a subset of the downloading principal’s rights);

(3) Combine, within limits, permissions delegated from multiple principals
including system administrators, users, applications, and collaborators;

(4) Authorize content operations on the basis of content-specific permis-
sions (i.e., not the user’s permissions);

(5) Control access to system resources, such as files, communication chan-
nels, environment variables, disk, CPU, etc. and application object;

(6) Enable a principal’s permissions to evolve (via addition and removal of
rights) in a limited way as application state changes to maintain least
privilege;

(7) Permit delegators to revoke their delegations, if desired.

3. RELATED WORK

The enforcement of access control policies is important in a variety of
contexts. In this section, we examine some key research in access control
enforcement in four areas: (1) collaborative systems; (2) language systems;
(3) operating systems; and (4) distributed systems. Many systems define
novel access control models and/or authorization mechanisms, but these
models lack the flexibility required by the UARC application, and the
authorization mechanisms do not support flexible control of system and
application objects. This is not intended to be an exhaustive survey (e.g.,
there is an enormous amount of work in operating systems security).
Rather, we intend to give a sense of access control model principles and
their effectiveness.

Access control in collaborative systems (i.e., groupware) is difficult be-
cause a significant amount of ad hoc sharing is necessary, and there may be
different access control policies for each collaborator. Access control first
became relevant to groupware researchers with the advent of active mail
[Goldberg et al. 1992], a system where collaborative actions are embodied
in e-mail messages that are executed by the receiver (i.e., downloading

Flexible Control of Downloaded Executable Content • 183

ACM Transactions on Information and System Security, Vol. 2, No. 2, May 1999.

principal). Initial work to protect receivers from malicious mails restricts
content to a few public resources [Borenstein 1992; 1994]. Attempts to
support more flexible access control policies makes it possible for content to
obtain rights shared between the content provider and downloading princi-
pal [Jaeger and Prakash 1994] and permit user selection of shared rights
[Jaeger and Prakash 1995]. Both systems depend on the users properly
managing the permissions of content, but it is recognized that users may
easily be spoofed. More comprehensive environments for access control that
are buttressed by mandatory security policies are necessary. Gong’s En-
claves system [Gong 1997a] uses a trusted “session leader” to determine the
security policy for the group, and so in general the leader must understand
and enforce the system security policy for each individual downloading
principal. Such trust among remote principals may not be possible, al-
though agreement is probably necessary to execute the system. Foley and
Jacob define a security model in which the permissions associated with a
collaborative process are determined by the activities that are executed
[Foley and Jacob 1995]. We built upon this approach by restricting permis-
sions to a system-administrator-specified policy [Jaeger et al. 1996]. How-
ever, this places too much of a burden on the system administrators
because they may not really understand the semantics of application
operations. We seek to develop an access control model in which system
security policy can be enforced, but less-trusted principals (e.g., application
developers and users) can still make security decisions within a restricted
space.

In recent years, much activity has focused on the creation of “safe”
languages and security infrastructure that enables control of content
written in such languages [EC 1999; Dorward et al. 1996; Gallo 1996; Gong
1997b; Grimm and Bershad 1998; Hagimont and Ismail 1997; Hawblitzel et
al. 1998; Islam et al. 19997; Jaeger et al. 1996; Ousterhout et al. 1998;
CNRI 1998]. These systems define an access control model, an authoriza-
tion mechanism, and, sometimes, mechanisms for maintaining permissions
as the content executes. Originally, interpreters were either designed to
“sandbox” untrusted programs [Sun Microsystems 1999; Netscape 1999], so
like the early collaborative systems above, few applications could be built.
Then, systems were developed in which access control requirements could
be specified per module (within a single hardware-protected process) and
enforced on intermodule operations [Ousterhout et al. 1998; CNRI 1998;
White 1995]. These systems lack a comprehensive security infrastructure
that uses these mechanisms, however, so application security must be
developed ad hoc. Since then, several researchers have focused on creating
comprehensive security architectures [Islam et al. 1997; Gong 1997b;
Grimm and Bershad 1998; Hagimont and Ismail 1997; Jaeger et al. 1996],
but the JDK 1.2 security architecture is the best-known and notable. There
are two important features of this architecture: (1) access control policies
are associated with a class and its provider and (2) the permissions of each
Java thread are the intersection of the permissions of classes whose
methods have been invoked by the thread (called stack introspection

184 • T. Jaeger et al.

ACM Transactions on Information and System Security, Vol. 2, No. 2, May 1999.

[Wallach and Felten 1998]).1 So that each class functions properly in any
situation, the permissions assigned to it must be the union of all the rights
that the class will ever need. Therefore, the UARC application cannot be
guaranteed that the rights it must enforce are consistent with its access
control policy. The Java system itself has another weakness: authorization
requires that explicit calls to a security manager must be coded by the class
developer.

A variety of innovative access control models and authorization mecha-
nisms have been implemented for operating systems, although most are
research or niche systems [Gasser and McDermott 1990; Wobber et al.
1994; Trusted Information Systems, Inc. 1994]. A comprehensive access
control architecture is implemented in the Taos operating system [Lamp-
son et al. 1992; Wobber et al. 1994]. This system’s access control model
enables principals to be composed from base principals, the roles they may
assume, and delegations. This access control model has tremendous power,
but it is difficult to create principals whose permissions depend on an
application state because: (1) it is cumbersome to define roles or delega-
tions for each state change and (2) management of access control lists
becomes prohibitive with all these artificial roles and delegations [Boebert
and Kain 1985]. In another approach, TMach adopted Boebert and Kain’s
Domain and Type Enforcement (DTE) access control model [Trusted Infor-
mation Systems, Inc. 1994] to Mach. But DTE does not handle principals
whose permissions change with application state because domain labels are
context-sensitive. A flexible authorization mechanism is proposed in the
Distributed Trusted Operating System (DTOS) variant of Mach [Minear
1995]. Here, capabilities for any principal may be cached in the kernel and
may be managed by one of potentially many security servers. The kernel
checks communication capabilities on IPC, and system servers must call
the kernel to check system security policy. The degree to which servers
control authorization is a point of contention because servers must be
trusted to manage their object spaces and operation semantics, but letting
servers determine whether to authorize an operation may violate the
requirement for a secure monitor [Anderson 1972] that states that moni-
tors must completely mediate all operations.

Some distributed systems also define interesting access control systems.
The CRISIS system control access to web-based file systems using a
combination of base rights, represented using a access control list (ACLs)
and dynamically obtained rights represented using capabilities [Belani et
al. 1998]. Security policy for managing the dynamic distribution of capabil-
ities is not specified, however. Restriction of capability delegation is neces-
sary to prevent a principal from violating the system security policy. Also,
CRISIS security managers cannot enforce immediate revocation (timeouts
are used). The Moses system authorizes each communication using the
current security policy [Minsky and Ungureanu 1998]. Since all communi-
cation is mediated, different security policies can be supported for different

1Actually, a class may re-establish its full privileges using a command provided in JDK 1.2.

Flexible Control of Downloaded Executable Content • 185

ACM Transactions on Information and System Security, Vol. 2, No. 2, May 1999.

principals and immediate revocation is possible. Like CRISIS, Moses does
not support the security policies for managing permissions.

4. REPRESENTING ACCESS RIGHTS

The fundamental concepts in our system are the access control model and
the access control enforcement mechanisms. In this section, we detail the
access control model. In the subsequent section, we examine the system
mechanisms that enforce the policy specified using the model.

4.1 Role-Based Access Control

Our access control model is derived from role-based access control (RBAC)
models [Sandhu et al. 1996]. Figure 2 shows the core relationships embod-
ied in an RBAC model. Fundamentally, a role-based access control model
permits (1) the aggregation of principals into the roles that they can
assume and (2) the aggregation of permissions into the roles that are
granted those permissions. This enables a principal to assume a role that is
commensurate with the rights needed for a task, so a principal can be
restricted to least privilege rights. In the UARC example, we want to define
roles that are assigned only those privileges needed for a participant in the
UARC application.

As shown in Figure 2, the assignment of principals to roles and permis-
sions to roles may be restricted by constraints. Constraints are necessary to
ensure that role specification can be restricted to obey system security
policy. For example, if separation of privileges between two roles is re-
quired by the system security policy, a constraint can be used to enforce
that restriction. It is also possible to prevent principals from being able to
write objects that may be executed. The problem is the specification of
these constraints. At present, constraint specification is not a well-devel-
oped field in RBAC. Bertino et al. [1999] define a permission constraint
language for workflow systems. While the language appears fairly com-
plete, it specifies constraints at the task-level, not the permission-level, so
it cannot express the requirements stated above. In UARC, we wish to
prevent all novice collaborators from obtaining any write permissions to

Fig. 2. Fundamental RBAC Concepts: Roles associate the principals that can assume them
with the permissions assigned to the role. Constraints may limit either the assignment of
principals to roles or the assignment of permissions to roles.

186 • T. Jaeger et al.

ACM Transactions on Information and System Security, Vol. 2, No. 2, May 1999.

any objects, and we want to restrict UARC scientists to reading and writing
of UARC objects only.

RBAC also eases permission management through permission aggrega-
tion and inheritance. Aggregations of objects into object groups and opera-
tions into operation groups are supported in some access control models
[Boebert and Kain 1985; Jaeger et al. 1996; Karjoth 1998]. 2 We envision
using object grouping to define a set of UARC-specific objects that may be
available. Another important form of aggregation is defined using context-
sensitive roles [Giuri and Iglio 1997; Lupu and Sloman 1997]. In a
context-sensitive role, permissions may be parameterized, such that a
single specification may apply in multiple contexts. This is useful to the
UARC application because different sessions may require that different
objects be shared. The UARC application can specify which objects are part
of a session, and a context-sensitive role limits the rights of the principals
in that role to the objects associated with that session.

RBAC models use a variety of role hierarchies to ease management of
permissions. First, a traditional role hierarchy enables superior roles to
inherit the rights of inferior roles. This hierarchy implements a strict
set-subset relationship on the rights between the superior and inferior
roles. Second, ARBAC97 [Sandhu et al. 1999] includes an administrative
role hierarchy in which the administrative rights of principals to modify
role definitions in the role hierarchy can be specified. Also, constraints can
be specified on the actions that administrative roles can perform. In UARC,
it is useful to permit users and UARC applications to modify the collabora-
tor role definitions. While this relationship should be embodied by a
administrative role hierarchy, in this paper we focus primarily on con-
straining the extent of the administrative modifications that are permitted.
Third, specification of the roles that a principal may activate can be
specified in a role activation hierarchy. Sandhu describes the need for role
activation hierarchies to enforce separation of privilege [Sandhu et al.
1994]. In the UARC example, not only do we need to know what roles can
be activated by a principal, but we need to know which role should be
activated, given particular content. We refer to this mechanism as role
selection, and we define a role selection hierarchy [Jaeger et al. 1997]. The
problem is to determine the appropriate role to be assigned to a particular
downloaded content, given its authenticated content description (e.g., a set
of attribute-value pairs). A role selection hierarchy is defined as (1) a graph
of nodes where each node maps a set of attributes and the sets of values
that they may assume to form a role and (2) a search algorithm that
determines how to find the matching node given a content description. We
define a particular instance of a role selection hierarchy in our access
control model below (see Figure 5).

2Despite the fact that not all of these models are considered to be explicitly RBAC models, we
consider this feature fundamental to RBAC models.

Flexible Control of Downloaded Executable Content • 187

ACM Transactions on Information and System Security, Vol. 2, No. 2, May 1999.

4.2 Access Control Model Overview

We make four observations about the practical difficulty of building an
access control model for applications composed of downloaded executable
content:

—delegations from multiple untrusted principals may be necessary;

—least privilege permissions may depend on both system and application
factors (e.g., application state);

—remote principals may have the knowledge to express access control
requirements of their applications, but they do not know the downloading
principal’s system;

—it is possible to describe application access control requirements across
multiple sessions.

First, we observed that the UARC application and collaborator content may
be assigned permissions from multiple principals, such as system adminis-
trators, downloading principals, and the UARC application itself. While
system administrators are trusted completely in our system, they may not
have the application knowledge necessary to properly restrict the collabo-
rator content. Second, we observed that UARC application and collaborator
content permissions may depend on a number of factors, including the
content provider, downloading principal, application state, and the con-
tent’s role in the application. For example, the files that are to be granted
to collaborator content depend on the downloading principal using the
UARC application and the set of files that this principal is sharing. Third,
although the UARC application may want to specify its collaborator con-
tent’s permissions, the UARC application developers probably do not know
the organization of the downloading principal’s system. The names and
locations of UARC recording and annotation files stored on a downloading
principal’s system are almost certainly not known by the UARC application
developers. Lastly, at a certain level of abstraction, the security require-
ments of applications do not change significantly between each run. For
example, each execution of the UARC application requires that only the
files explicitly opened for sharing by a downloading principal (i.e., collabo-
rator) may be shared. This knowledge should be applied to each execution
of the application.

We define an access control model that employs role hierarchies, manda-
tory access control limits, context-sensitive roles, and declarative permis-
sion transforms to address these issues. First, role hierarchies are defined
for role administration and role selection, as described in Section 4.1. For
example, the role administration hierarchy specifies that system adminis-
trators may specify the UARC application role. The role selection hierarchy
determines which role definition corresponds to which content principal.
The administrators of a role may specify (1) the principals that may assume
that role and (2) a set of mandatory access control limits on the permissions
that a role may obtain, called transform limits. A transform limit associates

188 • T. Jaeger et al.

ACM Transactions on Information and System Security, Vol. 2, No. 2, May 1999.

a delegator, role, and the permissions that the delegator may assign to the
role. Thus, system administrators may specify transform limits, which
permit users to delegate rights to read and modify their UARC files to the
UARC application, for the UARC application role. However, the extent to
which users can manage the permissions of the UARC application can be
restricted to prevent security breaches. The goal is to ensure that process
confinement is possible (e.g., separation of duty), viruses are prevented
(e.g., by preventing write access to executable objects), and Trojan horses
are contained (e.g., via limited rights). Using transform limits, the maximal
permissions that any principal may obtain are restricted to the union of
their transform limits.

Context-sensitive roles enable delegators to associate permissions with
principals on the basis of the principal’s context. A context-sensitive role
associates parameters with a role name and permissions. Thus, the value of
the parameters determines the particular permissions available to the role.
We use this concept to address two of the issues above: (1) to permit
delegators to choose delegations based on the current application state and
(2) to permit permissions to be specified abstractly and bound to the
current downloading principal’s state. In the first case, the UARC applica-
tion can restrict its collaborator content to the objects currently being
shared. In the second case, the UARC application can specify permissions
that apply to all its users because the system administrators and users can
define the meaning of application specific-object groups. For example, the
identity of the specific files that may be made available to the UARC
application may be determined by users (within transform limits specified
by system administrators).

Lastly, determining which permissions should be associated with what
context depends on the operations being executed. Therefore, the access
control model defines transforms that associate operations with permission
transformations. When an operation is invoked, any transforms associated
with that operation are executed. They may then add or remove the
permissions as specified in the transform. For example, when the user
loads a recording into the UARC application, the need to add a permission
to collaborator roles is triggered, so they may properly access this recording
and its annotations.

4.3 Access Control Model Definitions

We now formally define the security architecture’s access control model
concepts; the structure of the access control model is shown in Figure 3.

—Identity: A set of attribute-value pairs;

—Type: A relation between a type name and a set of operations that can be
invoked on the type;

—Object: A relation between a type and a unique object identifier;

Flexible Control of Downloaded Executable Content • 189

ACM Transactions on Information and System Security, Vol. 2, No. 2, May 1999.

—Object group: A function over a name, a set of identity parameters, and
a type that returns a set of objects;

—Operation group: A relation between a group name, a type, and a set of
operations that correspond to the name and type;

—Permissions: A relation between a permission type (positive or nega-
tive), an object group and operation groups that describe the operations
that can be performed (or precluded) on the objects in the object group;

—Transform: A relation between an operation and the permission changes
that its execution triggers;

—Transform limits: A relation between a delegator identity, delegatee
identity, and the permission set within which the delegator may grant
rights to the delegatee;

—Role: A relation between an identity and its transform limits;

—Role administration hierarchy: A graph consisting of nodes that
associate administrators with the roles that they may modify;

—Role selection hierarchy: A graph consisting of nodes that associate
identities with the roles that they must be assigned to;

—Principal: A relation between an identity, a set of transforms, a set of
transforms limits, and a set of its current permissions

The context of each role is determined by its identity. An identity
representation must be flexible enough to express the relevant, unique
execution contexts of the system. In some systems, an identity is reference

Fig. 3. Extended role-based access control model: The base RBAC model is extended. First,
identities are mapped to roles, so a role may be used for multiple contexts. Second, a role is
associated with transform limits (specified in terms of object groups and operation groups and
the identities that may delegate rights within those limits) that determine the permissions
that the role can ever obtain. Transforms are used to grant access to permissions within
transform limits.

190 • T. Jaeger et al.

ACM Transactions on Information and System Security, Vol. 2, No. 2, May 1999.

to a public key. However, more information than simply a provider’s public
key may be useful in defining a content’s permissions. As described in the
problem statement, UARC content may have different permissions based
on its provider, downloading principal, application, application role, and
application state. Thus, the access control model includes two sets of
identity attributes:

—Authentication: Content provider (e.g., public key), content digest;

—Context: Downloading principal, application, application role, applica-
tion instance identifier, download nonce.

Authentication identity attributes uniquely identify the content. Thus,
the values of these attributes may be reused if the same content is loaded
into another execution context. Context attributes identify a potentially
unique execution context for the content. For example, the same content
may be run by the same downloading principal in two separate protection
domains, and this identity representation enables the specification of two
different identities: one for each protection domain instance.

Objects are strongly-typed entities with unique and immutable names.
First, an object’s type is defined by its interface and implementation. An
interface defines the operations (i.e., methods) that can be invoked on the
object. One object may provide access to a set of other objects that it
manages (i.e., act as an object server). For example, consider a file system.
The file system object serves file objects. Logically, the open operation is
called on the file system, but read and write operations are invoked on files.
Second, we assume that objects have unique names within their name
space. Each object server is responsible for the association of names with
data and is trusted to maintain this association properly. For example, a
file system is trusted to return, when requested. the correct data in file
foo . Third, an object’s name and name space location are immutable.
Changing an object’s name or moving an object to another location in the
name space requires creation of a new object. This requirement and name
uniqueness aids in preventing time-of-check-to-time-of-use (TOCTTOU)
attacks [Bishop and Dilger 1996] because an object cannot be replaced by
another object with different permissions. Lastly, object names are ar-
ranged in a tree structure. Thus, links are not provided by the basic object
name space. It may be desirable to construct a more traditional name space
(e.g., UNIX path names with links) on top of this; but this is beyond the
scope of this paper.

The access control model supports the aggregation of objects and opera-
tions. The name space model supports the aggregation of objects into object
group identifiers. Formally, an object group identifier is a tuple: name~t,
a1, a2, ...! where: (1) name is the name of the object group; (2) t is the
object group’s type; and (3) a1 and a2 are object group parameters. Since
an identity determines the role’s context, identity attributes are used as
object group parameters. For example, object groups associated with a

Flexible Control of Downloaded Executable Content • 191

ACM Transactions on Information and System Security, Vol. 2, No. 2, May 1999.

particular UARC session include the application instance identifier at-
tribute as a parameter.

Operation aggregations simply permit a set of operations to be aggre-
gated into a higher level operation. This enables application developers to
map their objects operations to system policy-specific operations. Many
authorization systems use operation aggregation, including CORBA [Object
Management Group 1997] and NAPOLEAN [Thomsen et al. 1998].

Permissions define the operations that can be performed on object
groups. A permission may be either positive or negative (called the permis-
sion type), which specifies whether the permission is, respectively, allowed
or precluded. Negative permissions supersede positive ones in authoriza-
tion. That is, a negative permission prevents access to an operation,
regardless of the positive permissions that the principal may possess.
Negative permissions are valuable for expressing exceptions to positive
permissions over an object group. For example, access to all but one object
in an object group may be specified by one positive and one negative
permission. In general, any permission set can be represented solely by
positive permissions.

The access control model includes the concept of a transform, which
associates an operation with the permission changes that its execution
triggers. Permission changes are relations between change operations, add
or remove, and the permission change specifications. We define the exact
structure of permission change specifications in Section 5.4. Researchers
working on the J-Kernel project [Hawblitzel et al. 1998] are also concerned
about the proper revocation of delegated permissions (e.g., when the server
terminates). We are hopeful that revocations can also be represented as
transforms. An operation corresponds to a revocation event, such that the
associated transforms remove the appropriate operations.

In our access control model, a role is an association between an identity
and its transform limits. Transform limits associate delegators with the
permissions that they may delegate to the role. Transform limits are

Fig. 4. Principal P1’s permissions and its transform limits: The transform limits specify that
principals P2-P5 may delegate limited rights to P12.

192 • T. Jaeger et al.

ACM Transactions on Information and System Security, Vol. 2, No. 2, May 1999.

therefore used to authorize transforms. A transform may add a permission
only if (1) the delegator has the permission and (2) the permission is within
the transform limits of the delegator for the delegatee. Also, a principal can
only remove a permission that it is able to delegate. The result is that a
principal’s permissions are always a subset of the union of its transform
limit, as shown in Figure 4.

Transform limits alone do not ensure that a system’s security require-
ments are met. While transform limits can enforce a separation of duty
requirements, the fact that separation of duty is required between two roles
must also be expressed. Constraint specification is a largely open problem
in RBAC (as described in Section 4.1), so this access control model does not
include a constraint specification language. However, in Section 4.4, we
describe how static and dynamic separation of duty constraints can be
enforced using this access control model.

This access control model provides hierarchical representations for role
management, role administration, and role selection. Traditional role man-
agement and administration hierarchies are used [Sandhu 1999]. Role
management hierarchies are set-subset hierarchies with respect to trans-
form limits. We discuss role administration in terms of system administra-
tors, users, and applications. In general, system administrators limit the
permissions that the others may distribute. The actual determination of
the system administrator roles that correspond to different downloading
principals is determined by the role administration hierarchy. This assign-
ment is not particularly relevant in the UARC example, so we simply refer
to system administrators.

As we described above, role selection is more complex in our example
because a variety of identities may be assigned to content principals, and
each of these may be assigned different permissions.

Fortunately, we can define a total order on the identity attributes, such
that a role selection hierarchy that associates transform limits (which
define a role) with identity attributes can be created. In our model, the role
selection graph consists of five levels: (1) downloading principal; (2) content
provider; (3) application; (4) application role; and (5) protection domain
instance. Each node may refer to an attribute value, a role, and a set of
child nodes. The attribute value may indicate a specific value or a group of
values (with * indicating all). At each level, identity is compared to the
attribute values in the role selection hierarchy and the closest matching
value is selected. It is assumed that a close match at downloading a
principal is more important than a close match at the lower levels, such as
application and application role. We believe this is true for our UARC
example, but it is a heuristic.

As an example, consider the three-level role selection hierarchy in Figure
5. This role selection hierarchy assumes a specific set of downloading
principals. Given identity attribute values of provider 5UM and
application 5UARC, the transform limit TLU is found. Note that the role
selection hierarchy enables system administrators to limit the content

Flexible Control of Downloaded Executable Content • 193

ACM Transactions on Information and System Security, Vol. 2, No. 2, May 1999.

providers that can assume specific roles. For example, the UARC applica-
tion can define its transform limits for UARC role content (scientist and
novice). However, since the system administrators build the role selection
hierarchy, they can set the links that associate UARC collaborators with
those roles. So UM geologists can assume the role of scientists (transform
limits of TLS), but others can only be assigned to a novice role (transform
limits of TLN).

4.4 Enforcing Separation of Duty

We give a brief overview of how separation-of-duty security requirements
can be enforced using this access control model. For static separation of
duty, roles that obey the requirements of a static separation of duty can be
defined. A role defines a set of transform limits, and the rights that the
principal may have at any time are a subset of these limits. Since, due to
the separation of duty, transform limits have no shared rights (the roles
are in static separation of duty), the principals share no rights. The role
selection hierarchy defines which roles correspond to what content identi-
ties. Therefore, in order to ensure that two content identities are in static
separation of duty, the roles they are assigned must obey static separation
of duty.

A dynamic separation of duty is enforced as follows: Consider the
Chinese Wall security policy [Brewer and Nash 1989]. This policy specifies

Fig. 5. Role selection hierarchy: Defines transform limits for UARC application content and
content executing in the scientist and novice roles. Note that only the University of Michigan
can provide UARC application content, and only the UM geologists can assume the scientist
role in the specified policy graph.

194 • T. Jaeger et al.

ACM Transactions on Information and System Security, Vol. 2, No. 2, May 1999.

that a principal may have only one set of permissions out of many. If the
principal chooses an object in one set, then access to the objects in the other
sets is no longer permitted. Links from a specific node in the role selection
hierarchy may be defined to be in dynamic separation of duty. Therefore,
once one link is taken, the others are invalidated. Since the nodes con-
nected by links are in separation of duty and only one of the nodes may be
selected, the Chinese Wall policy may be enforced.

5. ARCHITECTURE

The goal of this architecture is to provide services for users to compose and
execute applications from downloaded executable content such that the
system’s and application’s security requirements can be enforced. The
architecture is designed to support the access control model defined in the
previous section. It provides services to determine the content’s identity,
determine the appropriate role for content, manage content permissions
within the role’s transform limits, and authorize content operations using
these permissions.

In the design of an architecture for controlling downloaded executable
content, we make the following assumptions. First, we assume that content
has access to a well-defined set of commands only, to perform system I/O or
other operations that need to be controlled. Second, the system’s trusted
computing base (TCB) provides address space separation among processes,
a means for identifying processes, and cryptographic services for authenti-
cating remote messages. Without trust in the TCB, it is not possible to
build trusted applications that run on it. A secure booting mechanism, such
as provided in Trusted Mach [Trusted Information Systems, Inc. 1994], is
designed to ensure that the proper TCB is booted when the system is
started. However, other means sufficient for establishing trust in the TCB
may be possible.

The trust model of our system is defined from the user’s perspective.
First, users trust a process we’ll call the client to make requests to
download content on their behalf. The client trusts our loader interface to
implement this request in such a way that the user’s security requirements
can be satisfied when the downloaded content is initiated. The loader
interface trusts a set of principals designated as certifying authorities. The
clients trust object servers to handle the objects they manage properly. For
example, a file system is expected to perform file operations correctly. The
clients trust content providers with the rights they are granted. However, a
content provider may try to obtain unauthorized access rights using its
legitimate rights and all means available to an attacker (e.g., read and
modify network traffic).

The architecture is shown in Figure 6. It provides an interface for any
downloading principals (clients or content itself) to download executable
content, called the loader interface (LI). The LI is supported by four
services: (1) an authentication service; (2) a derivation service; (3) a

Flexible Control of Downloaded Executable Content • 195

ACM Transactions on Information and System Security, Vol. 2, No. 2, May 1999.

transform management service; and (4) a reference monitor service (RMS).
The interaction between the architecture components is shown in Figure 7.
The downloading principal requests that content be loaded by calling LI.
The LI uses an authentication service (AS) that provides the cryptographic
operations necessary to determine the authenticated identity of the content
principal. LI uses the derivation service (DS) to determine the role for that
content principal and obtain the content principal’s transform limits.
Management of permissions during the content’s execution is controlled by
the transform management service (TMS). The TMS authorizes the execu-
tion of transforms with respect to the content principal’s transform limits.
LI uses the reference monitor service (RMS) to authorize content operations
using that principal’s permissions. In the following sections, we describe
the design of each of these services and how these designs support the
UARC application.

5.1 Loader Interface

The loader interface (LI) provides all principals with an interface to load
executable content, such that the system’s and application’s security re-
quirements can be enforced during its execution. In our example, clients
first use the LI to download the UARC application content. Next, the UARC
application uses the LI to retrieve outside content and load any collabora-
tor content sent to the UARC application.

The LI API shown below enables the downloading principal to examine
the status of each step in the load, so that they may make adjustments
should a step be rejected by the LI. For example, if the LI will only grant
the content a subset of the permissions required (determined by derive),
then the downloading principal may load another content that provides
similar functionality instead. Also, “all-in-one” methods retrieve and load
and set and load are provided for simple default loading.

Fig. 6. System architecture: Downloading principal requests that the loader interface (LI)
load content from the content server. The LI retrieves content, authenticates it, derives its
permissions, and loads it into a protection domain in which its permissions can be managed
and enforced.

196 • T. Jaeger et al.

ACM Transactions on Information and System Security, Vol. 2, No. 2, May 1999.

int init (in ulong comp_gid);
int retrieve (in ulong loadid, in string location_hint);
int set_data(in ulong loadid, in string data);
int retrieve_stamp(in ulong loadid, in string location_hint);
int set_stamp(in ulong loadid, in string stamp);
int set_identity(in ulong loadid, in string identity);
ulong verify(in ulong id);
ulong derive(in ulong id);
int choose_domain(in ulong loadid, in ulong domain, in permis-
sions required_perms);
ulong load(in ulong loadid, out ulong domain);
ulong retrieve_and_load(in string location_hint, in string
stamp_location_hint, in string identity, in int option, in int
modify_perms_p, out ulong intf);
ulong retrieve_and_load(in string location_hint, in string
stamp_location_hint);
ulong set_and_load(in string data, in string stamp, in string
identity, in int option, int modify_perms_p, out ulong intf);

The first method, init provides the downloading principal with a handle,
called a loadid. The loadid is a reference to a load request object managed
by the LI. A load request stores the status of a secure load. The LI requires

Fig. 7. System architecture APIs: The loader interface (LI) enables the downloading principal
(DP) to load content (C). The authentication service (AS) and derivation service (DS) use the
server’s policy database (PG) to retrieve authentication and derivation policies, respectively.
The reference monitor service (RMS) and transform management service (TMS) control
execution of loaded content.

Flexible Control of Downloaded Executable Content • 197

ACM Transactions on Information and System Security, Vol. 2, No. 2, May 1999.

that it can obtain the identity of the downloading principal securely (e.g.,
by the interpreter providing a thread identifier). Only the LI has direct
access to the load request data. The loader request data is as follows:

—The downloading principal;

—the content data;

—a content stamp (see below);

—a requested content identity;

—the target domain (e.g., process);

—a content principal (maps the identity to permissions and transform
limits).

Content may be downloaded from the network or file system (via retrieve)
or uploaded from memory (via set data). In the case of a retrieve, the
downloading principal must locate and retrieve the content from a server
using some global object retrieval mechanism. We leverage existing work in
this area, such as using URLs to reference World-Wide Web (WWW)
objects. Using set data, the downloading principal provides the content
directly.

The content provider, or other sufficiently trusted principal, may create a
signed description of the content, called a content stamp. A content stamp’s
description specifies the identity of the content’s principal and includes
information necessary for the AS (see Section 5.2) to authenticate that
identity (e.g., including public key certificates). Content stamps are re-
trieved or uploaded to the LI using retrieve stamp and set stamp, respec-
tively.

The method set identity enables the downloading principal to annotate
the identity required for the content. The LI derives an identity from the
information in the content stamp. Set identity enables the downloading
principal to provide additional requirements for the identity. For example,
the downloading principal may wish to assign the content to a specific role.
Values for any subset of the identity fields (see Section 4) may be specified.
If the stamp provider and the downloading principal specify contradictory
identity requirements, then the content cannot be authenticated. The
identity is used by the AS to retrieve authentication policy to verify that
the content can assume that identity.

The verify method uses the content stamp to verify that the content can
be executed according to the specified identity (using the AS). The result of
verify is that an identity is assigned to the content (in its newly created
principal).

The derive method determines the content principal’s role and transform
limits. There may already be a principal associated with this identity, so
the method first determines if permissions need to be derived. If not, the LI
calls the DS interface (see Section 5.3). The RMS and TMS renforce and
manage, respectively, the permissions assigned to the principal.

198 • T. Jaeger et al.

ACM Transactions on Information and System Security, Vol. 2, No. 2, May 1999.

The LI may load content into a new or existing protection domain (e.g.,
process). For example, outside content that implements trusted libraries
(e.g., libc) may be loaded with UARC application content. The choose
domain method enables the downloading principal to load the content into
an existing protection domain. Content can be loaded into a protection
domain if the following security requirements are satisfied:

—The principal associated with the target protection domain is the down-
loading principal;

—If content is to be loaded into an existing protection domain, the intersec-
tion of the rights of the content principal and the existing domain does
not result in the loss of rights required by the existing domain;

—Neither downloading the principal or the content principal gains any
unauthorized rights due to sharing the domain;

—Neither downloading the principal or the content principal gains unau-
thorized access to secrets stored within the other’s portion of the domain.

First, downloading principals may only load content into their own
protection domains. Loading content into another principal’s protection
domain can be used to attack that other principal, so it is not permitted.
The second requirement states that the existing principal may specify that
certain required rights be preserved before the content load is permitted
(the required perms argument of the choose domain). The third require-
ment is enforced because when content is to be loaded into an existing
protection domain, the downloading and content principals are merged,
such that the permissions and transform limits of the two principals are
intersected. Thus, no unauthorized permissions are made available to the
merged content or the downloading principal, but the content may delegate
rights to others if it still possesses them. Lastly, content with secret
information may not be merged with other content, unless the other
content is trusted. Obviously, all information within the process’s address
space will be accessible to both content programs, so secrets cannot reliably
be kept from colocated content. Whether content has secrets that need to be
protected is specified in the content’s stamp.

The load method loads the content into the specified protection domain.
This method returns a reference (e.g., entry capability), so that the down-
loading principal may call the newly loaded content.

For UARC, the loader interface is used in the following manner to load
UARC application and collaborator content.

—UARC application
—id 5 init() : obtain the load identifier id
—retrieve(id, UARC-URL) : retrieve the UARC content from the

UARC web server
—retrieve_stamp(id, UARC-stamp-URL) : retrieve the UARC stamp

from the UARC-stamp-URL

Flexible Control of Downloaded Executable Content • 199

ACM Transactions on Information and System Security, Vol. 2, No. 2, May 1999.

—set_identity(id, “application 5UARC”) : set identity context field
application to UARC

—verify(id) : verify the content against its authentication require-
ments

—derive(id) : determine the role and derive the transform limits for
the UARC application

—new_domain 5 choose_domain(id, null, true) : create a new
domain for the content

—load(id, new_domain) : load the UARC application content into the
new domain

—Collaborator content
—id 5 init() : obtain the load identifier id
—set_data(id, collaborator content) : upload the content pro-

vided by the collaborator
—set_stamp(id, stamp) : upload the content stamp provided by the

collaborator
—set_identity(id, “application 5UARC; role 5collab; appl_inst

5session”) : state the identity context fields to be for the UARC
application, the collaborator’s role, and the UARC session

—verify(id) : verify the content against its authentication require-
ments

—derive(id) : determine the role and derive the transform limits for
the UARC collaborator content, if necessary

—collab_domain 5 choose_domain(id, null, true) : create a new
domain for the collaborator content

—load(id, collab_domain) : load the UARC collaborator content into
its new domain

The client principal uses the LI API to request that the UARC applica-
tion content and stamp be retrieved from the UARC web server. The
identity’s application attribute for the content is set to UARC by the
downloading principal to ensure that the content is intended for the UARC
application. After authentication and derivation, the content is loaded into
a new domain. Note that the default operation retrieve and load could have
been used to implement this download.

The download for outside content (e.g., the statistical analysis package) is
not shown, but proceeds using essentially the same calls, except that the
UARC application may load the content into its own domain. The UARC
application content could check the transform limits resulting from the
derive operation and determine whether colocation of this content is
possible without modifying the content’s required access rights (third
argument to choose domain).

UARC collaborator content is sent to the UARC application content by
collaborators. Therefore, the UARC application uses set data and set stamp
to initiate the load. In this case, UARC sets the following identity at-
tributes: (1) application is set to UARC; (2) the application role is set to the
collaborator’s role; and (3) the application instance is set to the UARC

200 • T. Jaeger et al.

ACM Transactions on Information and System Security, Vol. 2, No. 2, May 1999.

application instance identifier (e.g., process id). These are in addition to the
downloading principal and content provider. If this collaborator has down-
loaded content before, the content identity maps it to active authentication
requirements and an active principal (with a current set of rights). The
collaborator content is loaded into a new domain for the collaborator.

5.2 Authentication Service

The authentication service’s (AS) goal is to prove that downloaded content
meets the criteria necessary for it to assume a specific identity. As shown
in Figure 8, the AS uses a proposed content identity derived from the
content stamp and the downloading principal’s inputs set using commands
set/retrieve stamp and set identity, respectively, to retrieve authentication
requirements from the authentication policy database. This policy specifies
the tests that must be met before the content can be assigned to a principal
with that identity.

We show how the AS works by describing how it is used to verify the
authenticity of UARC application, outside, and collaborator content. UARC
application and outside content have the same authentication require-
ments, listed below.

(1) must have a valid signature from a trusted principal or the content
provider for the content and its stamp;

(2) must be unmodified;

Fig. 8. Authentication service protocol: The content stamp (set by set stamp or retrieve
stamp) and identity requirements specified by the downloading principal (using set identity)
are combined into a proposed identity. The verify command triggers the LI to initiate
authentication of the proposed identity with the AS. LI uses the AS to retrieve authentication
policy and verify that the content and content stamp are sufficient for the content to assume
the proposed identity.

Flexible Control of Downloaded Executable Content • 201

ACM Transactions on Information and System Security, Vol. 2, No. 2, May 1999.

(3) must be authored by a principal authorized to write UARC application
or outside content;

(4) must be claimed to be the requested content (UARC application or the
specific outside content); and

(5) must be an acceptable version.

For collaborator content to be executed, the download server must ensure
that it

(1) must have a valid signature from a trusted principal or content pro-
vider for the content and its description;

(2) must be unmodified,

(3) must be fresh (i.e., not a replay);

(4) must be for the UARC application;

(5) must be authored by a principal trusted to assume the requested UARC
role;

(6) must be authored by an active collaborator in this session;

(7) must be for a UARC role; and

(8) must be for the particular UARC session (i.e., application instance).

Note that some of the requirements for the collaborator content depend
on the state of the UARC application. For example, collaborator content
must be signed by an active UARC collaborator. The collaborator content
also has one extra authentication requirement: that it be fresh (i.e., not a
replay of a prior message). Freshness is an important requirement because
an unauthorized replay may cause the divergence of a collaborator state. If
the collaborators believe they are looking at the same application state, but
are not, incorrect results may be generated.

The LI employs the following approach in authenticating a content
identity using the AS. First, it composes a proposed content identity from
the input of the content provider and downloading principal. The proposed
identity is the union of the identity fields specified by the two principals.
This approach enables a content provider to propose an identity for its
content (in the content stamp) and for the downloading principal to
annotate this identity on the basis of the expected use of the content (using
set identity). The proposed identity is used to retrieve the system’s authen-
tication requirements. The role selection hierarchy is used to store authen-
tication requirements using the proposed identity. The LI then uses the AS
to verify that the content satisfies each of the requirements before the
content may assume that identity. The LI can verify that the content is
authorized by the system to assume the proposed identity.

The AS uses a content stamp to obtain the content provider’s proposed
identity for the content. The structure of a content stamp is shown in Table
I. In general, a content stamp is a list of attribute-value pairs that describe

202 • T. Jaeger et al.

ACM Transactions on Information and System Security, Vol. 2, No. 2, May 1999.

the different aspects of content: (1) its authentication data; (2) its descrip-
tive data; and (3) its application-specific security information, to be inter-
preted by the LI. Authentication attributes such as signature, digest, MAC,
and nonce enable the verification of the source, integrity, and freshness of
the UARC content. For example, the signature enables verification of the
source and integrity of the content stamp itself. Descriptive attributes such
as signer, manufacturer, type, name, role, application ID, and version range
describe the source of the content and its intended use. For example, UARC
collaborator content should indicate that it is for the UARC application
(name), that it implements a specific role within the UARC application
(role), and that it is for a specific application instance. Application at-
tributes provide application-specific information to the LI. The content
stamp may include a request for a set of permissions to be granted upon
download to enable it to execute (permissions) as well as the transforms
that are to be associated with operations (transforms). The content stamp
may also be used to specify roles for the application, including their
transform limits (role permissions). We also expect applications to specify
their key distribution requirements for application roles (role key distribu-
tion), but this discussion is beyond the scope of this paper.

The AS exports the following API to the LI so that it may authenticate
the proposed content identity. Other processes may also use this API, but
their results do not affect the state of any LI load request.

ulong init(in ulong prinid, in ulong dp);
ulong set_identity(in ulong auth_id, in identity_ref identity);
string get_policy(in ulong auth_id, in ulong dp);
int verify_sign(in ulong auth_id, in byte_array data, in
byte_array signature, in string signer, in ulong algorithm);
int verify_digest(in ulong auth_id, in byte_array data, in
byte_array digest, in ulong algorithm);

Table I. Example Content Attributes and Values for a Content Stamp

Categories Attributes Examples

Authentication Signature DSA signature [NIST 1994]
MAC MMH hash [Halevi and Krawczyk 1997]

Digest SHA-1 digest [NIST 1995]
Nonce Sequence number

Descriptive Signer Rating service
Provider IBM

Name UARC
Role Active

Application ID UARC ID
Version Range 1.0

Application Permissions Requested initial permissions
Transforms Load grants RW to Active

Secrets Yes/No
Role Specs Roles and their transform limits

Role Key Distribution SSL 3.0 [Freier et al. 1996]

Flexible Control of Downloaded Executable Content • 203

ACM Transactions on Information and System Security, Vol. 2, No. 2, May 1999.

int verify_mac(in ulong auth_id, in byte_array data, in byte
_array mac, in ulong algorithm);
int verify_attribute(in ulong auth_id, in string attr, in
string expected, in ulong required);
int member_attribute(in ulong auth_id, in string attr, in
string expecteds, in int ct, in ulong required);

Principals use the API in the following manner. First, init initiates an
authentication session and returns an auth id reference for subsequent
operations; set identity fixes the content identity to be authenticated. The
identity is used by the get policy method to retrieve the system’s authenti-
cation policy for the identity from the policy database.

The remaining methods perform the authentication tasks. The API
enables verification of authentication requirements for cryptographic data
and identity attributes specified in the content stamp. The AS is supported
by a cryptographic API (e.g., CDSA [Open Group 1997]) that provides
support for certificate, trust, and key management in addition to signature,
message authentication code (MAC), and digest verification. Verify at-
tribute enables the AS to verify that an attribute has an expected value.
Member attribute enables the AS to verify that an attribute value is a
member of a specified set. Since some attribute values may be optional,
these methods enable the policy to specify whether a missing value is
acceptable. By setting the required argument to true, the content stamp
must specify an expected value. Otherwise, if the content stamp specifies a
value, the value must be an expected value.

The policy evaluated for the UARC application is shown below:

verify_sign(stamp, signature, “UARC-developers”, “DSA”)
verify_digest(content, content_digest, “SHA-1”)
verify_attribute(“author”, “UM-developers”, TRUE)
verify_attribute(“name”, “UARC”, TRUE)
verify_attribute(“version”, version_number, TRUE)

These tests are sufficient to verify the authentication requirements of the
UARC application and outside content, as stated at the beginning of this
section. We first verify that the signature of the stamp is valid. The signer
field in the stamp is used to specify the signer. The AS stores certificates
associated with principals (using the crypto API), so that it can retrieve the
appropriate public key. Next, the integrity of the downloaded content is
verified by computing its digest and checking that it is the same as the
content digest in the stamp. Then, we verify that the content stamp
fields—author, name, and version—correspond to the expected values
provided by the policy.

Content identity for the collaborator content is derived from both the
content stamp and the identity requirements set by the downloading
principal. The content stamp specifies the collaborator, content digest,
nonce, UARC application, collaborator’s UARC role, and UARC application
identifier. Each identity field specified in the content stamp is used
automatically in the identity. In addition, the UARC application acting on
behalf of the user (the downloading principal) may also specify the values

204 • T. Jaeger et al.

ACM Transactions on Information and System Security, Vol. 2, No. 2, May 1999.

of identity fields using the set identity method offered by the LI API. In this
case, the downloading principal specifies that the collaborator content
belongs to a specific role, has a specified nonce (sequence number), and is
for a specific application instance. The AS verifies that any identity fields
set by the content stamp and downloading principal are consistent. If the
downloading principal and content stamp specify contradictory identity
values, then the content authentication fails. The AS then retrieves the
following authentication requirements from this derived identity.

verify_sign(signature, signer, “DSA”)
verify_digest(content, digest, “SHA-1”)
verify_attribute(“name”, “UARC”, TRUE)
member_attribute(“author”, role_members(identity.appl_id,
identity.role), count, TRUE)
verify_attribute(“role”, identity.role, FALSE)
verify_attribute(“application ID”, identity.appl_id, TRUE)
verify_attribute(“nonce”, identity.nonce, TRUE)

In addition to verifying the integrity and application, as described above,
we must verify the content’s author, role, application, and freshness. The
author is verified by checking that the collaborator can assume the role
specified in the identity and is active (i.e., belongs to the role members of
the application instance). It is not required that the content stamp specify a
role for the content, but if one is specified it must be the same as the
identity’s role. The collaborator must specify an application instance to
prevent content from being run in the wrong application. Freshness is
verified by comparing the nonce value in the content stamp to the expected
nonce specified by the UARC application. Sequence numbers are used to
make the nonces predictable, so that verification is possible.

5.3 Derivation Service

Using the access control model defined in Section 4, principals are associ-
ated with transform limits within which they may obtain permissions via
transforms. The derivation service (DS) provides a mechanism for deriving
a principal’s transform limits. Also, the DS retrieves and executes initial-
ization transforms which may be specified by off-line principals, such as
system administrators and users.

In UARC, there are two types of permission derivations to consider: (1)
UARC application and (2) UARC content (both outside and collaborator).
First, system administrators must be able to limit the downloading princi-
pals’ rights that may be delegated to the UARC application, as described in
Section 2. To summarize here, the UARC application should be limited to
the following permissions:

—read access to UARC recordings of the downloading principal;

—write access to UARC annotations of the downloading principal;

—execute access to supporting applications;

Flexible Control of Downloaded Executable Content • 205

ACM Transactions on Information and System Security, Vol. 2, No. 2, May 1999.

—communication access to UARC managers, UARC data servers, and
UARC participants;

—read access to UARC web information.

System administrators must limit the rights that can be delegated to the
UARC application in order to protect the system from compromise, but it is
likely that both the users and the UARC application itself know more about
which rights are really needed. For example, downloading principals know
which recordings they are willing to grant to the UARC application.
However, in general, system administrators cannot trust users and appli-
cations to manage system permissions properly. Using our system, admin-
istrators can specify transform limits for downloading principals and the
UARC application within which they may manage the delegation of permis-
sions to the UARC application.

Second, the UARC application must be able to control the permissions
made available to a UARC collaborator and outside content in order to
ensure its proper execution. For example, recall the two collaborator roles,
scientist and novice. Scientists can upload recordings and annotations for
replay, trigger saves of recordings and annotations, and manage the
display of recording data. Novices can only view the collaboration and chat
with the scientists and other novices. The UARC application can make any
of its permissions available to these roles. However, for the application to
execute safely and correctly, only the permissions actively in use should be
made available. For example, scientists should only be able to access
recordings and annotations made available by some scientist. Using the

Fig. 9. Derivation service protocol: The loader interface (LI) calls the derivation service (DS)
upon a downloading principal’s derive request. The DS uses content identity to retrieve the
content’s transform limits and any initial permission delegations. Permissions may be
delegated to the content principal within the transform limits.

206 • T. Jaeger et al.

ACM Transactions on Information and System Security, Vol. 2, No. 2, May 1999.

access control model, the UARC application can define context-sensitive
roles, so the rights of the application principals can be kept consistent with
the state of the application. As the application state changes, transforms
activate the permissions implied by that state (as described in Section 5.4).

DS defines the following API to retrieve transform limits for specific
content.

ulong init(in ulong prinid);
ulong get_policy(in ulong derivation_id);
permission_array retrieve_transform_limits(in ulong derivation_id);
identity_ref_array retrieve_delegators(in ulong derivation_id);
transform_array int retrieve_transforms(in ulong derivation_id);
int retrieve_monitor_type(in ulong derivation_id);

The protocol for deriving transform limits is shown in Figure 9. First, the
LI uses init to create a derivation session for the principal. Next, the LI
uses the content principal’s identity to retrieve the security policy for the
content from the role selection hierarchy using the get policy. The policy
specifies the identity’s transform limits, initialization transforms (i.e.,
those from off-line principals such as the system administrator and user),
and monitoring mechanism.3 The four retrieve methods enable the down-
loading principal to view the derivation policy. For example, the potential
delegators for which transform limits are defined may be retrieved using
retrieve delegators.

We now examine how this mechanism works in the context of our UARC
example. First, the UARC application’s identity is used to retrieve its role
specification using the get policy. The identity of the UARC application
content consists of a downloading principal, content provider (UM develop-
ers), and its application identity (UARC). As described above, roles for
application content are defined by system administrators. The UARC
application role consists of two entries: (1) the transform limits for the
downloading principal and the UARC application itself, defined by the
system administrators and (2) initialization transforms specified by the
downloading principal and system administrator. The transform limits,
shown below, define the set of permissions within which system adminis-
trators, downloading principals, and the UARC application may delegate
permissions to the UARC application.4

—Transform Limits

—Role: Downloading principal5(dp); provider5UM; application5UARC

—Definer: System administrators

3We only describe one authorization mechanism in Section 5, but the architecture can support
an arbitrary number of authorization mechanisms.
4Permissions are defined using the following fields: positive or negative right, server, inter-
face, operations, object, and optional operation limits. Also, parameters in the context-
sensitive roles are compressed for readability from downloading principal 5dp ,
provider 5UM, and application 5UARCto dp , UM, and UARC, respectively. Lowercase values
for principal attributes (e.g., dp) are variables and uppercase values (e.g., UM) are literals.

Flexible Control of Downloaded Executable Content • 207

ACM Transactions on Information and System Security, Vol. 2, No. 2, May 1999.

—Delegator: System administrators
—$1, name2server, name2space, @open#, system%

—Delegator: Downloading principal5(dp)
—$1, file2server, file2server, @open#, system2file2server%
—$1, file2server, file, @read ? write#, writeable2files~dp, UM,

UARC!%
—$1, file2server, file, @read#, readonly2files~dp, UM, UARC!%
—$1, file2server, file, @exec#, num2analysis%

—Delegator: Downloading principal5(dp); provider5UM; application5UARC
—$1, net2server, net2server, @open#, system2net2server%
—$1, net2server, achannel, @connect#, session2mgr~dp, UM,

UARC!%
—$1, net2server, achannel, @connect#, data2server~dp, UM,

UARC!, max2bytes%
—$1, http2serv, url, @get#, http://www.uarc.org/notices.html }
—$1, net2server, achannel, @connect#, collaborators~dp, UM,

UARC!%

Transform limits associate a definer, delegator, and delegatee with the
permissions that the delegator may delegate to the delegatee. The definer
specifies object groups and the operations that delegators are allowed to
grant on them. In the case of UARC, system administrators define the
object groups in the transform limits. Only they may change the member-
ship of these object groups. Although we do not show them here, the
downloading principals and UARC application may also define transform
limits for this role, as long as the permissions specified are a subset of their
limits. For example, a specific downloading principal may want to define a
new object group that further restricts that downloading principal’s objects,
which may be made accessible to the UARC application.

These transform limits are specified using context-sensitive permissions.
The actual transform limits depend on the downloading principal and the
application in the content’s identity. For example, a variety of applications
may have session managers and data servers, but only those associated
with the UARC application are accessible. Also, the UARC collaborator
principals (i.e., scientists and novices) are limited to those approved by the
system administrator for collaboration with the downloading principal. The
mapping of objects to object groups must , however, still be maintained by
the system administrators, so the main advantage of using context-sensi-
tive permissions is to keep the role graphs simpler. More advantages are
seen for application roles described below.

Given these transform limits, the system administrators, the UARC
application, and the downloading principal may delegate rights to the
UARC application. Since these principals may not be active, they need
another way to get their transforms executed. We enable such offline
principals to specify initialization transforms which are to be executed by

208 • T. Jaeger et al.

ACM Transactions on Information and System Security, Vol. 2, No. 2, May 1999.

the transform management service (TMS, see Section 5.4) when the content
is started. In this example, we expect that both system administrators and
downloading principals will delegate their full transform limits at initial-
ization time.

The UARC application can delegate permissions to itself using its own
transforms, as described in Section 5.4.

The UARC application content specifies the roles for its collaborator
content and any outside content it controls. The UARC application is
restricted to defining roles whose transform limits are a subset of its own
permissions (i.e., union of the transform limits in its role). The UARC
application defines transform limits for itself and the system administra-
tors. System administrators always delegate access to the name server.
Note that the object groups defined in these transform limits are managed
by the UARC application. The UARC application content specifies the
following transform limits for the scientist role:

—Transform limits

—Role: downloading principal5(dp); provider5(cp); application5UARC;
role5scientist; appl id5(session)

—Definer: downloading principal5(dp); provider5UM; application5UARC

—Delegator: System administrators
—$1, name2server, name2space, @open#, system%

—Delegator: downloading principal5(dp); provider5UM; application5UARC
—$1, net2server, net2server, @open#, system2net2server%
—$1, file2server, file2server, @open#, system2file2server%
—$1, net2server, achannel, @connect#, uarc2data2servers~dp,

UM, UARC!%
—$1, file2server, file, @read ? write#, uarc2annotations~dp, UM,

UARC!%
—$1, file2server, file, @read#, uarc2replay~dp, UM, UARC!%
—$1, file2server, file, @exec#, num2analysis~dp, UM, UARC!%
—$1, uarc~dp, UM, UARC, session!, uarc, @open#, sessions%
—$1, uarc~dp, UM, UARC, session!, replay, @start ? annotate ?

stop#, replays%
—$1, uarc~dp, UM, UARC, session!, data2display, @show2data#,

displays%
—$1, uarc~dp, UM, UARC, session!, chat, @read ? write#, chats%

For the UARC role of novice the following transform limits are defined:

—Transform limits

—Role: downloading principal5(dp); provider5(cp); application5UARC;
role5novice; appl id5(session)

Flexible Control of Downloaded Executable Content • 209

ACM Transactions on Information and System Security, Vol. 2, No. 2, May 1999.

—Definer: downloading principal5(dp); provider5UM; application5UARC

—Delegator: System administrators
—$1, name2server, name2space, @open#, system%

—Delegator: downloading principal5(dp); provider5UM; application5UARC
—$1, uarc~dp, UM, UARC, session!, uarc, @open#, sessions%
—$1, uarc~dp, UM, UARC, session!, chat, @read ? write#, chats%

Recall that the membership of remote principals in the scientists or
novices groups is determined by the system administrators in the construc-
tion of the role selection hierarchy. Given a combination of downloading
principal, content provider, and application, the system administrators
determine the legal application roles by specifying links to application role
nodes in the role selection graph. Thus, the UARC application defines
transform limits for its application roles, but the system administrators
determine the precise assignment of principals to the role.

Scientists may be given the ability to start data analysis by loading an
existing recording or using data from the UARC data server. Also, scien-
tists may be able to perform numerical analyses and store recordings and
annotations for later use. The parameterized object groups specified indi-
cate that the objects to which access may be granted depends on the
downloading principal, application, and content provider. The other per-
missions describe rights to objects in the particular UARC session, so
further restriction based on context is not required. As specified, scientists
can join a session, start, stop, and annotate a replay in that session, choose
the data to display in the session, and engage in chat. UARC novices (e.g.,
high school students) may only join a session and engage in chat. They can,
of course, see the session data being displayed, but may not specify the data
to be displayed.

5.4 Transform Management Service

The transform management services (TMSs) manage the evolution of one or
more principal’s permissions. Since permissions are modified solely by
transforms, TMSs need only to authorize transforms to completely manage
the evolution of their principal’s permissions. In addition, TMSs define
delegation semantics for the architecture. Below, we list the design issues
for TMSs:

—Should a transform be applied before or after the operation executes?

—What happens when a second delegator delegates a permission already
possessed by the delegatee?

—What happens when a delegator revokes a permission delegated multiple
times?

—Which principals are capable of revoking permissions they did not
delegate?

210 • T. Jaeger et al.

ACM Transactions on Information and System Security, Vol. 2, No. 2, May 1999.

—If a right is revoked from the delegator, how does this affect the
delegatees of this right?

—If a transform delegates a set of rights, how does revocation of one of
these rights affect the delegation of the entire set?

We first define transforms and then develop the answers to these
questions.

We define transforms to be a tuple consisting of the following fields: (1)
triggering operations and (2) transform operations. The triggering and
transform operations define the association between a delegator and its
delegatees. When a delegator executes a triggering operation, the associ-
ated transform operations delegate rights to or revoke rights from the
delegatees. Because context-sensitive roles are used to define principals,
delegations may be specified either by permissions or the addition of objects
to object groups. As an example of the latter, when the user loads a UARC
recording, that recording file can be added to the replay files of the current
application instance. Management of permissions by managing object
groups is useful for applications because as objects become accessible to
applications, they can be added to the appropriate object group. Only those
objects that are in use may then be accessible to application content (e.g.,
collaborator content).

A transform operation is defined as a tuple: (1) operation; (2) change; and
(3) execution flag. The operation determines whether the change is an
addition or a removal. The change specifies either a permission or an object
and object group. This specifies the change in permissions performed by the
transform. The execution flag determines whether the transform is applied
before or after the operation itself is executed. The execution flag can also
express that all copies of a permission are to be revoked (i.e., a server may
revoke all permissions to an object it serves, as described below).

Given these requirements and the transform structure, each TMS works
as follows (see Figure 10). Upon a transform, the TMS authorizes the
transform against the transform limits for the delegator and delegatee. If
authorized, the TMS adds the permissions to the delegatee with an associ-
ation to the delegator (either before or after the operation, depending on
the execution flag). Thus, by default, a delegatee may obtain multiple
copies of a permission from multiple delegators; a delegator may only
revoke the permissions that it delegated. The UARC application is simple
in that it is the delegator of almost all the permissions in this example, but
it seems clear that multiple principals may delegate and revoke rights
independently. TMS supports separate delegations and revocations.

In some cases, however, a more privileged principal may be able to
revoke permissions delegated by others. We define two cases: (1) object
server revocation and (2) administrator revocation. First, it makes sense
that the UARC application is able to revoke permissions to its own objects,
regardless of the previous delegators. Therefore, we permit object servers to
revoke all permissions to their own objects regardless of the identity of the
original delegators. Second, the definers of transform limits may revoke

Flexible Control of Downloaded Executable Content • 211

ACM Transactions on Information and System Security, Vol. 2, No. 2, May 1999.

permissions on demand, regardless of the actual delegator, by revising the
transform limits.

Since a principal may not delegate a right that it does not possess, a
delegation must be revoked when the right is revoked from the delegator.
In order to enforce this requirement, the TMS must be able find the
permissions that it delegated and invalidate them. TMS maintains the
permissions that its principals delegated in a delegated permission set. An
entry in a delegated permission set contains a permission and the princi-
pals to whom it was delegated. When a permission is revoked from a
principal, the TMS checks its delegated permission set to see if it has
further delegated this permission. If so, all delegated permissions are
invalidated by calling the delegatees’ TMSs. We assume that such revoca-
tion is infrequent, so a highly optimized implementation is not necessary.

Since the revocation of rights need not mirror the delegation of rights in
all circumstances in UARC, we do not require that the revocation of one
right in a transform result in the revocation of all rights in that transform.
We leave such management to the discretion of the delegators and servers.
For example, the UARC application itself may delegate itself all the rights
in its transform limits in one transform. If the system administrator
removes a permission, the remaining rights should still be available.

The TMS API:
ulong assign(in ulong prinid, in ulong procid);
ulong apply_transform(in ulong prinid, in string transform);
ulong revoke_transform(in ulong prinid, in ulong transformid);

Fig. 10. Management service protocol: When a delegator executes an operation, the trans-
forms associated with that operation are triggered and apply transforms on the delegatee’s
transform management service (TMS) is invoked. If a transform is authorized, its operations
are applied such that the delegator either adds or removes permissions for the delegatee.

212 • T. Jaeger et al.

ACM Transactions on Information and System Security, Vol. 2, No. 2, May 1999.

Assign permits LI to assign a TMS to a specific principal and process.
The principal identifier prinid determines the principal’s permissions and
transform limits.

Apply transform authorizes and executes transforms on behalf of the
delegator. The delegator must be authorized to perform the specified
transform. A transform to grant or revoke a permission is authorized if the
permission is (1) possessed by the delegator/revoker and (2) within the
transform limits of the delegator/revoker for the delegatee. If a permission
is delegated, the TMS adds an active permission to the delegatee’s permis-
sion set. TMSs and RMSs use the same authorization mechanism, shown in
Figure 15 and detailed in Section 5.5

The apply transform operation returns an identifier for the applied
transform. This enables explicit revocation of transforms, using revoke
transform. This operation enables a specific transform to be revoked. In
addition, a transform may specify revocations independent of transforms.

We now examine how TMSs are used in the UARC example. At initializa-
tion time, the UARC application is delegated its full set of rights by the
initialization transforms retrieved in the previous section. These grant the
UARC application full access to the permissions in its transform limits.

When collaborator content is loaded, the UARC application defines
session-specific permissions for this content using a transform. An example
of such a transform is shown in Figure 11. In this case, the start scientist
operation provides scientist content with access to a set of object groups for
the session. Initially, each object group contains no members, so this
transform will be authorized.

Subsequent operations by the UARC application will update the member-
ship of these object groups. The transform in Figure 12 states that when
the UARC application executes the operation user start display, the speci-
fied recording and annotation files, as well as the replay data object, will be
added to their respective object groups. If authorized, this transform
enables principals to operate on these objects as specified by their rights to
them. In this operation, a user selects a recording file and an annotation
file for replay (called files r2file and a2file, respectively). As specified by

Fig. 11. Transform for object groups: When scientist content is started, it is granted access to
specified object groups. Membership in these groups may be null initially, and the groups
must be within the content principal’s transform limits for the transform to be authorized.

Flexible Control of Downloaded Executable Content • 213

ACM Transactions on Information and System Security, Vol. 2, No. 2, May 1999.

the transform, these files are to be added to the object groups
uarc2replays~dp, cp, appl, session! and uarc2annotations~dp, cp,
appl, session! prior to the operation’s execution. These transform opera-

tions must be authorized prior to the operation’s execution. user start
replay returns a reference to a replay object, and the transform specifies
that the replay object is added to the replays object group for the session
~uarc~dp, cp, appl, session!! after the operation returns.

Closure of a recording by the user should result in the removal of the
rights to the recording. For example, the transform shown in Figure 13
associates the user stop replay with a removal of the replay, recording file,
and annotation file permissions. The UARC application has access to these
permissions and is permitted to delegate them, so it can execute this
transform.

5.5 Reference Monitor Service

Reference monitor services (RMS) authorize a principal’s operations using
their permissions. When a request to perform an operation on an object is
made by a principal, its RMS compares that request to its permissions to
determine if a permission grants the request. For subsequent invocations of
the same operation, the system servers may provide their clients with
capabilities [Dennis and Van Horn 1966]. A capability associates a specific
object with the holder’s rights for performing operations on that object.
RMSs also support conversion of permissions into legal capabilities, ensur-
ing that these capabilities are unforgeable, unmodifiable, and revocable.

Fig. 12. Transform delegation: Upon the user start replay operation, delegate access to a
recording being replayed (x), its file (r2file), and its associated annotation file (a2file).

Fig. 13. Transform revocation: Upon user stop replay operation, remove access from a
recording being replayed (x), its file (r2file), and its associated annotation file (a2file).

214 • T. Jaeger et al.

ACM Transactions on Information and System Security, Vol. 2, No. 2, May 1999.

The UARC application performs operations on behalf of the downloading
principal that the RMS must authorize, such as the user start replay
command of the previous section. In this command, the user specifies the
name of two files to be opened, and it is the job of the RMS to determine

—whether the file server is accessible to the UARC application;

—whether the specified files may be opened; and

—whether subsequent file operations on the file data are permitted.

First, some security policies may restrict communication between pro-
cesses, so it is possible that a process may not even be permitted to send a
request to a file server. Second, the RMS must authorize opening the
specified files. This task is nontrivial because files are specified by name
and permissions are specified by object identifier to prevent time-of-check-
to-time-of-use (TOCTTOU) attacks [Bishop and Dilger 1996]. So the RMSs
and server must engage in a protocol that enables each RMS to properly
enforce the UARC application’s permissions. Lastly, the file server returns
a capability to the client which its RMS must intercept and authorize. The
RMS must authorize the creation of a capability for the UARC application
using its permissions, since to enforce system security policy the RMS must
be able to prevent a server from granting a right to a client. Also, the RMSs
maintain the UARC application’s capability set, so that it is not possible for
capabilities to be forged or modified, and capabilities may be immediately
revoked when the associated permissions are invalidated.

A key issue in the design of the RMSs is the definition of the trust model
between the RMSs and servers. The RMSs can control communication
between processes (e.g., block IPCs to unauthorized servers), but since the
servers determine the semantics of any operation, the RMSs trust that the
semantics of the operations defined by the servers are implemented by the
server. Servers define the mapping between data and object identifiers, so
the RMSs also trust the servers to make this association correctly. Other-
wise, the RMSs cannot effectively implement access control on server
operations unless no communication is permitted.

An effective authorization mechanism must (1) mediate all operations;
(2) protect itself from tampering; and (3) be simple enough to enable
validation [Anderson 1972]. The RMS is designed to satisfy these three
criteria. The RMS protocol is shown in Figure 14. First, the LI assigns an
RMS to a principal. An RMS stores both the capabilities and permissions of
the principals it manages. An RMS intercepts all of its principals’ interdo-
main operation requests, and it authorizes whether the principals can
perform the operations specified in the requests.

Authorization requirements for an operation are determined by the
operation’s signature. Each interface defines the signatures (i.e., their
arguments, return values, and types) of its operations using a component
interface definition language (IDL). There are three potential authorization
requirements: (1) the authorization to perform the operation; (2) the
authorization to transfer the capabilities in the operation; (3) the authori-

Flexible Control of Downloaded Executable Content • 215

ACM Transactions on Information and System Security, Vol. 2, No. 2, May 1999.

zation of the response; and (4) the authorization to transfer the capabilities
in the operation’s response. First, an operation is permitted by an RMS if
the client process has a valid capability to perform the requested operation
on the server and object (first argument in the operation). Next, the
signature may indicate that an operation passes capabilities to the server.
These must be authorized by the server’s RMS. The server’s RMS permits
responses to operations to the client. Finally, the operation’s signature may
indicate that the return value is a capability. These are authorized by the
client’s RMS. The RMS caches the capabilities delegated to its principals
and provides capability references for them. Since processes only hold
capability references, the capability cannot be forged or modified, and
immediate revocation is possible.

Servers may also specify further security constraints to be enforced by
the RMS. For example, a server can update the quantity of a resource used
by the process, and the RMS can authorize whether this exceeds usage
requirements. If the usage limit is exceeded, the result is not returned and
the capability is invalidated.

A capability consists of the following fields: (1) server; (2) interface; (3)
object identifier; and (4) rights. The server field identifies a unique server
process identifier. Therefore, the capabilities are bound to a specific pro-
cess. A process may include a set of components, each of which may define
multiple interfaces. The interfaces determine the type of the object upon
which the operation is invoked. The object identifier and rights are the
traditional fields in a capability. The rights may be extended to enforce
limited use operations, as described below.

Fig. 14. Reference monitor service protocol: When a source performs an operation, its
assigned reference monitor service (RMS) authorizes the operation using the source principal’s
capabilities. If authorized, the operation’s destination RMS authorizes the delegation of any
capabilities in the operation. The destination performs the operation and returns the result to
the source. This result may include capabilities whose transfer is authorized by the source’s
RMS. References to the capabilities are returned to the source, rather than the capabilities
themselves, to prevent forgery and modification.

216 • T. Jaeger et al.

ACM Transactions on Information and System Security, Vol. 2, No. 2, May 1999.

Our architecture permits creation of multiple RMSs that may control the
operations of one or more content processes (i.e., domains). The use of
multiple RMSs enables a different security policy to be enforced on differ-
ent protection domains. Therefore, each of the policies described above can
be assigned and enforced. Each RMS provides the following API:

int assign(in ulong prinid, in ulong procid);
ulong self_identity();
ulong auth_service(in ulong prinid);
int authorize(in ulong client, in ulong server, in ulong type,
in ulong object, in ulong ops);

The assign command assigns an RMS to a content process and principal.
Only the LI may use this command to transfer control of the content to an
RMS. The RMS uses the principal identifier prinid object to find the
principal and its permissions for the content process. The RMS both reads
and updates the principal’s capabilities.

A process may obtain its own identity using the self identity command.
Knowing one’s identity is useful for determining which names need to be
resolved into capabilities. For example, the UARC collaborator content uses
its identity to determine the UARC session to which it belongs.

The RMS authorization mechanism is shown in Figure 15. To authorize
the delegation of a capability, the RMS must find (1) permission in the
principal’s permission set that grants use of the operation on the object and
type in the server and (2) no negative permission in the principal’s
permission set precluding the operation on the object and type in the
server.

Typically, operations are authorized transparently to the client and
server. However, a principal may manually verify whether a particular

Fig. 15. Authorization mechanism for authorizing transforms and capability delegations.

Flexible Control of Downloaded Executable Content • 217

ACM Transactions on Information and System Security, Vol. 2, No. 2, May 1999.

operation is permitted. Principals may retrieve the RMS for a specified
principal using the auth service function. Principals may then request that
the content’s RMS authorize its operation using the authorize command.

We now examine how the RMS supports the UARC application. When the
UARC application is initiated, it has a set of transform limits within which
permissions may be delegated, and an initial set of permissions delegated
by the downloading principal to access, respectively, UARC files and
remote principals. However, in order to use these permissions, the UARC
application must be able to identify the file and network server processes.
A system name server that converts logical names to capabilitiesis is
defined. The UARC application, however, cannot even access the name
server without a capability. System administrators not only grant the
UARC application permission to access the name server, but the UARC
application must be initiated with a capability to the name server.

The name server capability is provided by the LI using a content
initialization operation, init component, which all content must define for
this purpose. Since RMS knows the signature of this operation, it knows
that a name server capability is passed to the content process. The RMS
permits the content principal to obtain the capability if it is permitted to
resolve names using the specified name server. Thus, RMS can be used to
restrict the name servers to which a content process can communicate. The
RMS stores the capability and provides the UARC application with a
reference to the capability, which it uses in operation requests to the name
server.

Using the name server capability reference, the UARC application re-
quests capabilities for the file and network servers. First, it obtains
capability references to perform open operations on these servers. Using
these references, the UARC application can then open specific files and
communication channels. For example, it can specify the identity of the
recording and annotation files to be opened when the downloading princi-
pal executes the user start replay operation. When a file is opened, a
capability for accessing the file is returned by the file server. RMS
recognizes capability delegation using the operation’s signature, and autho-
rizes delegation using the content principal’s permissions. RMS then re-
turns a capability reference to the files to the UARC application, so the
UARC application may only perform authorized operations on the files.

In addition, the server may use RMS to help it enforce its security
requirements. In particular, a server may collaborate with the RMS to
enforce limited use of its operations. In Section 5, the UARC application is
restricted to download no more than max2bytes from the UARC data
server. Capabilities may be extended to include operation limits. In this
case, the rights field in the capability refers to a sequence of structures of
the form: (1) operations bit map; (2) current value; and (3) limit. That is,
each operation may have a limit associated with it. The current value
indicates how much of the limit has been used. Since it is difficult for the
RMS to determine how to increment the current value on an arbitrary

218 • T. Jaeger et al.

ACM Transactions on Information and System Security, Vol. 2, No. 2, May 1999.

operation, it must depend on the server to provide such information.
Therefore, limit restrictions cannot be enforced without the server’s cooper-
ation. Servers may provide a capability in addition to the return data,
including an updated limits field. The RMS can then authorize the updated
limit against its security requirements. If the limit is exceeded, the
resultant value is not returned, but an error is returned instead.

The UARC application receives content it needs to execute from collabo-
rators. Once the collaborator content is loaded, it is also granted a capabil-
ity reference to the name server. It uses this reference to obtain capabilities
to servers, including the UARC application instance in which the content is
loaded. Multiple UARC application instances may be running in one
system, so the collaborator content must determine its instance before it
can ask for a capability. The application identifier is part of the collabora-
tor content principal’s identity, and the collaborator content can use the
RMSs self identity operation to retrieve its identity. It can then construct a
description of the UARC application instance sufficient to retrieve its
capability from the name server. Note that it cannot obtain a capability to
another UARC application instance because it only has permissions to
access its own instance.

When a principal’s permission is revoked, any capabilities associated
with that permission must also be revoked. The simplest way to address a
revocation is to invalidate all the principal’s capabilities. When a reference
to an invalid capability is used in an operation, the capability may be
reauthorized by the RMS. One of the bits in the capability’s rights field is
reserved for signaling whether the capability is valid (i.e., the valid bit).
Permission revocation ensures that any further delegations of this, now
invalid, capability are revoked.

6. IMPLEMENTATION

We implemented the described security architecture in IBM’s Lava operat-
ing system environment. Lava enables composition of component-based
operating system on a small nucleus (about 12K of code) upon which system
services and applications can be configured dynamically. Lava prototypes
run on Intel Pentium, Pentium Pro, and Pentium II machines.

6.1 Implementation Model

A Lava architecture to support UARC clients is shown in Figure 16. Lava
architecture consists of a nucleus, loader interface, reference monitors,
name server, and components. The nucleus, loader interface, and reference
monitors comprise the TCB of the system. In addition, the system’s security
depends on the integrity of the security policy. For such reasons, the
system policy is stored on a secure server. Updates to the policy are limited
by a role administration hierarchy. In general, system administrators
manage all roles except those internal to an application. Only the applica-
tion principals can manage those roles.

Flexible Control of Downloaded Executable Content • 219

ACM Transactions on Information and System Security, Vol. 2, No. 2, May 1999.

The nucleus provides fundamental operating system functionality: tasks
(e.g., processes), threads, address spaces, interprocess communication
(IPC), flexible memory management, and interrupts. The nucleus also
provides an IPC redirection model (called Clans & Chiefs [Liedtke 1992]) in
which a monitor can be assigned to a task, and the nucleus automatically
redirects all intertask IPCs to or from the controlled task to the monitor.
This mechanism’s semantics determine that all the tasks belonging to a
monitor can send IPCs freely; however, in order to control communication
between each pair of tasks, each individual task must be assigned a
monitor. The nucleus identifies the sender of any IPC.

The loader interface (LI) implements the services described in Section
5.1. It also includes the authentication service (AS) and derivation service
(DS) components. The loader interface handles requests from the down-
loading principal to load content into new or existing tasks. As described in
Section 5, this composite LI authenticates the content principal (according
to the AS interface), derives its transform limits (according to the DS
interface), and loads the content such that a reference monitor can effec-
tively enforce those permissions.

A reference monitor includes the transform management service (TMS)
and reference monitor service (RMS) components (see Sections 5.4 and 5.5,
respectively). The loader interface loads reference monitors and tasks in
such a way that the nucleus automatically redirects any intertask IPC to
the monitors. For example, when C1 invokes an operation on C2, it is
implemented as an IPC that is automatically redirected to C1’s and C2’s
monitors prior to C2 receiving the operation (shown in Figure 16). A
monitor has access to capabilities, permissions, and transform limits, and
intercepts its task’s IPCs so it can authorize operations on strongly-typed
objects, prevent capability forgery, control permission and capability dele-
gation, and provide immediate revocation.

Fig. 16. Lava system architecture: Loader interface includes authentication and derivation
services of the architecture. It creates tasks and assigns each task to its own monitor. A
monitor implements both the transform management and reference monitor services.

220 • T. Jaeger et al.

ACM Transactions on Information and System Security, Vol. 2, No. 2, May 1999.

A component is a set of interfaces and implementations. The set of
interfaces defines the set of types of objects that a component may serve.
Note that a component may be either a client or server, depending on the
situation. All components are trusted to behave according to the server
trust model defined in Section 5.5. An interface defines a set of methods
that may be invoked on objects with that interface. Components are loaded
into tasks. Multiple components (even the same one multiple times) may be
loaded into a single task.

In Lava, tasks are multithreaded, so IPCs are sent to threads not tasks.
Thus, method invocation requires the following information: task, thread,
component instance (since there may be multiple instances of the same
component in the same task), interface, object, and method. Capabilities
(see Section 5.5) determine which methods can be invoked by a principal.
So Lava capabilities have the following fields: task and thread (server),
component instance and interface (interface), object, and method (opera-
tion).

When the Lava client is booted (we assume a secure boot mechanism
[Wobber et al. 1994]), the nucleus starts the loader interface which, in turn,
starts the security services (e.g., AS and DS), basic system services (e.g.,
name server and device drivers), and an initial task for the potential
downloading principals (e.g., login). The loader interface uses password
authentication to verify a downloading principal. However, smart card
authentication is preferred, so the downloading principal does not have to
trust the client with its secrets.

A secure machine stores the system administrators’ security policy for
their user community. Security policy specifies authentication require-
ments, transform limits, and initialization transforms in role hierarchies.
Access control lists are used to protect the policy from unauthorized
modification. Any client system is trusted to retrieve entries from the
database.

The downloading principal task can then request that other content be
loaded, such as other systems support (e.g., device drivers) or applications,
such as the UARC application, by using the loader interface. When a
component is downloaded, its security policy is retrieved from the server for
authentication and permission derivation.

Tasks like verifying signatures (including the management of public key
certificates) and digests are performed using the cryptographic services of
the IBM KeyWorks Toolkit. This toolkit implements the Open Group’s
Common Data Security Architecture (CDSA) [Open Group 1997] crypto-
graphic API. It provides comprehensive services for protection of secrets,
trust management, and a variety of cryptographic algorithms and proto-
cols.

The derivation service is not performance-critical, so it is implemented
much as described in Section 5.3. The derived transform limits are then
uploaded to the appropriate monitor. Applications maintain there own
transforms and request that monitors execute them as they desire. Of
course, the monitors verify that all transforms are legal. The delegator’s

Flexible Control of Downloaded Executable Content • 221

ACM Transactions on Information and System Security, Vol. 2, No. 2, May 1999.

monitor verifies that the delegator has the specified permissions; the
delegatee’s monitor verifies that the permissions being delegated are
within the transform limit for the delegator-delegatee pair.

The key part of the implementation is how individual operations are
handled by the reference monitors. Reference monitors must authorize
operations and delegation of capabilities. We start with the specification of
an operation. In Lava, tasks define protection domains, so monitors are
designed to authorize intertask operations and responses. An intertask
operation specifies (1) the destination task and thread; (2) the component
instance; (3) the interface; (4) the operation identifier; and (5) the operation
arguments. Because the signature of a response is different from the
signature of a request, the monitor must be able to determine both the
operation and the whether it is a request or response. The operation can be
uniquely determined by the interface and operation identifier. Whether the
operation is a request or response is determined by the value of the
component instance. No component instance is required on a response, so
the value is null.

In order to minimize authorization overhead, the monitors must have an
efficient mechanism to retrieve permissions and capabilities. A monitor
must perform the following operations:

(1) Given a capability reference, determine if the associated capability
permits the specified operation;

(2) Given a capability delegation, determine if the principal already has
the capability;

(3) Given a capability delegation, determine if the principal has a permis-
sion that permits it to use the capability;

(4) Given a reduction in permissions, invalidate the effected capabilities.

We expect case 1 and 2 to be the most frequent, so we optimize for them.
First, the capability references created by monitors given to the client
directly, identify the location of the capability in the monitor. Thus,
monitors can retrieve capabilities from references directly. Second, moni-
tors must determine whether they need to authorize the transfer of a
capability. If the destination has the specified capability already, then
authorization is not necessary. A problem is that if different processes have
different references to the same capability, then a reference conversion step
(reference for process A is converted to a reference to the same capability in
process B) is required for the transfer. To eliminate this step, monitors use
the same capability reference for capabilities to the same object. This
reference is determined by the server’s monitor to ensure that it is the
same for all clients. The reference number is a combination of component
instance and reference, so it is unique over all components. Therefore, a
two-step process is needed to retrieve a capability: (1) find the component’s
capabilities; and (2) find the capability at the specific reference.

222 • T. Jaeger et al.

ACM Transactions on Information and System Security, Vol. 2, No. 2, May 1999.

In the third case, authorization using permissions is not as performance-
critical because it is only done to gain a capability to an object, and
capabilities are used on all subsequent accesses. Permissions are simply
hashed by the server, component instance, interface, and object identifier.
They must be accessed to authorize the delegation of a capability or
execution of a transform. Recall that the access control model supports
hierarchical object identifier spaces, so multiple permissions may need to
be examined to authorize an operation. The authorization mechanism first
finds the permission for the object identifier specified, then for the parent
object identifier, and so on. Of course, all ancestors of an object identifier
must be checked for a negative permission because any negative permission
precludes the operation.

The fourth case occurs when a transform removes a permission from a
principal. The removal of a permission may or may not affect the principal’s
current capability set. For example, a capability may be backed by multiple
permissions delegated from multiple sources, so it is not necessary to
revoke the capability when one permission is removed. But the problem is
that potentially many capabilities may be affected by a revocation (e.g., if it
occurs at an nonleaf object identifier). In general, all capabilities whose
object identifiers begin with the identifier specified in the removed permis-
sion must be revalidated. At present, we simply scan the set of capabilities
for such entries and reset their valid bit. Exploring whether a more
efficient mechanism is needed is future work.

An initial performance analysis of the system has been done previously
[Jaeger et al. 1998]. We summarize the results briefly here. We examined
the optimal performance of Lava’s security architecture capability authori-
zation. First, we estimated the optimal expected performance using micro-
benchmarks of the Lava nucleus IPC, operation analysis, and capability
authorization. We then measured the actual performance of an implemen-
tation of these mechanisms. The estimated optimal performance is about 4
ms, but the actual measured performance is about 9.5 ms. The difference is
largely attributable to some cache and TLB misses. With further analysis,
these may be reduced or eliminated, but a macroanalysis is also necessary.
Note that in this performance analysis the principals’ capabilities are
stored in a simple array, and in the protocol described here a second array
access is necessary (for the component). We are developing a more flexible
redirection mechanism than Clans & Chiefs, which, in many cases, will
enable a single monitor to redirect a destination for multiple processes
[Jaeger et al. 1999].

7. CONCLUSIONS AND FUTURE WORK

We presented a system architecture that enables flexible access control of
execution of downloaded content, using both system and application secu-
rity requirements. Design and implementation of this system shows that it
is feasible to construct an architecture that can support both system and
application-specific access control policies. We show that a variety of

Flexible Control of Downloaded Executable Content • 223

ACM Transactions on Information and System Security, Vol. 2, No. 2, May 1999.

application access control requirements can be enforced, so that little, if
any, ad hoc application security infrastructure needs to be built. The access
control model enables privileged principals to specify mandatory access
control policies. They may also specify access control domains, within which
less privileged principals may perform discretionary access control. For
example, system administrators can define what rights users and applica-
tion developers can delegate to content. If they desire, users and applica-
tion developers can further restrict these limits, even maintaining consis-
tency between application state and the commensurate security
requirements. We demonstrate the architecture by defining access control
policies for a collaborative application, and believe that many distributed
applications that use content will benefit from such flexibility.

We describe an implementation of our architecture in the Lava operating
system environment. The Lava-based system consists of a nucleus, loader
interface, reference monitors, and components. The nucleus provides basic
operating system primitives (tasks, threads, IPC, etc.) and automatic IPC
redirection. The loader interface derives principals (permissions, trans-
forms, and transform limits) and loads content so that a system reference
monitor can enforce the principal’s access control policy. Since the nucleus
automatically redirects IPCs to the reference monitor, it is able to autho-
rize all intertask operations, authorize delegations, and revoke delegations.

Using the Kain and Landwehr [1986] capability taxonomy, we rate the
system as abdab. The rights associated with a new capability depend on
the security policy (even for newly created objects), so restricted access may
be inserted in a new capability (1 5 a). Subsequent policy changes lead to
marking capabilities invalid (e.g., if the transform limits are changed, 2 5

b). Capability copying (i.e., delegation) is controlled by monitors, so rights
are determined by a trusted process (3 5 d). When a capability is provided
for access, it is not changed unless it has been marked for reverification
due to a transform limit change (4 5 a). Lastly, access checking is
performed using the available access rights (5 5 b).

We are interested in examining the trade-offs between performance and
policy complexity. We have some initial performance results that an
authorized IPC (i.e., capability validation) takes 9.5 ms [Jaeger 1998],
which is many times faster than IPC in other systems, and we believe that
further optimizations are possible (the current ideal time is 4 ms). While
these performance results are promising, further optimization is possible
by removing one of the reference monitors from the IPC path. We have
designed an IPC redirection protocol that enables flexible assignment of
reference monitors to IPC paths [Jaeger et al. 1999]. Protocols for the
management and enforcement of security policies need to be designed. We
are also examining other domains, particularly the composition of operat-
ing systems from components, so we expect that new policy requirements
will arise. The effect of the enforcement of these requirements on perfor-
mance will be examined.

224 • T. Jaeger et al.

ACM Transactions on Information and System Security, Vol. 2, No. 2, May 1999.

ACKNOWLEDGMENTS

We thank the anonymous reviewers and Ravi Sandhu for their helpful
guidance in the preparation of this paper. We also thank our colleagues at
the IBM Thomas J. Watson Research Center: Paul Karger, Larry Koved,
Yoonho Park, Seva Panteleenko, J. R. Rao, David Safford, Jonathon Sha-
piro, John Tracey, Volkmar Uhlig, and Leendert van Doorn. We also thank
colleagues with whom we had the pleasure of several discussions and, with
some, of collaboration, including Ed Felten, Li Gong, Peter Honeyman, Avi
Rubin, and Dan Wallach.

REFERENCES

ANDERSON, J. P. 1972. Computer security technology planning study. Tech. Rep.
ESD-TR-73-51. James P. Anderson and Co., Fort Washington, PA.

BELANI, E., VAHDAT, A., ANDERSON, T., AND DAHLIN, M. 1998. The CRISIS wide area security
architecture. In Proceedings of the 7th USENIX Security Symposium (Jan.). USENIX
Assoc., Berkeley, CA, 15–29.

BERTINO, E., FERRARI, E., AND ATLURI, V. 1999. The specification and enforcement of
authorization constraints in workflow management systems. ACM Trans. Inf. Syst. Secur.
1, 2 (Feb.), 65–104.

BISHOP, M. AND DILGER, M. 1996. Checking for race conditions in file accesses. Comput. Syst.
9, 2, 131–152.

BOEBERT, W. E. AND KAIN, R. Y. 1985. A practical alternative to hierarchical integrity
policies. In Proceedings of the 8th National Conference on Computer Security. 18–27.

BORENSTEIN, N. S. 1992. Computational mail as network infrastructure for computer-
supported cooperative work. In Proceedings of the ACM Conference on Computer-Supported
Cooperative Work (CSCW ’92, Toronto, Canada, Oct. 31–Nov. 4), M. Mantel and R. Baecker,
Eds. ACM Press, New York, NY, 67–74.

BORENSTEIN, N. S. 1994. Email with a mind of its own: The Safe-Tcl language for enabled
mail. In ULPAA ’94. 389–402.

BREWER, D. F. C. AND NASH, M. J. 1989. The Chinese Wall security policy. In Proceedings of
the IEEE Symposium on Research in Security and Privacy (Oakland, CA). IEEE Computer
Society Press, Los Alamitos, CA, 206–214.

CLAUER, R. C. E. AL. 1995. A prototype upper atmospheric collaboratory (UARC). In
Applications of Data Handling and Visualization Technique in Atmospheric Space
Sciences. 105–112.

CORP. FOR NATIONAL RESEARCH INITIATIVES, 1998. Grail home page. grail.cnri.reston.va.us/
grail/

DEAN, D., FELTEN, E., AND WALLACH, D. 1996. Java security: From HotJava to Netscape and
beyond. In Proceedings of the IEEE Symposium on Security and Privacy (Oakland, CA,
May). IEEE Press, Piscataway, NJ.

DENNIS, J. B. AND VAN HORN, E. C. 1966. Programming semantics for multiprogrammed
computations. Commun. ACM 9, 3 (Mar.), 143–155.

DORWARD, S., PIKE, R., AND WINTERBOTTOM, P. 1996. Inferno: la commedia interattiva.
inferno.bell-labs.com

ELECTRIC COMMUNITIES, 1999. Using the EC Ttrust manager to secure Java. www.
communities.com/company/papers/trust/index.html

FOLEY, S. AND JACOB, J. 1991. Specifying security for CSCW systems. In Proceedings of the
Fourth IEEE Workshop on Computer Security Foundations. IEEE Computer Society Press,
Los Alamitos, CA, 136–145.

FREIER, A. O., KARLTON, P., AND KOCHER, P. C. 1996. The SSL Protocol Version 3.0. Internet
Draft.

GALLO, F. S. 1996. Penguin: Java done right. Perl J. 1, 2, 10–12.

Flexible Control of Downloaded Executable Content • 225

ACM Transactions on Information and System Security, Vol. 2, No. 2, May 1999.

GASSER, M. AND MCDERMOTT, E. 1990. An architecture for practical delegation in a
distributed system. In Proceedings of the IEEE Symposium on Research in Security and
Privacy (Oakland, CA). IEEE Computer Society Press, Los Alamitos, CA, 20–30.

GIURI, L. AND IGLIO, P. 1997. Role templates for content-based access control. In Proceedings
of the Second ACM Workshop on Role-based Access Control (RBAC ’97, Fairfax, VA, Nov.
6–7, 1997), C. Youman, E. Coyne, and T. Jaeger, Eds. ACM Press, New York, NY, 153–159.

GOLDBERG, Y., SAFRAN, M., AND SHAPIRO, E. 1992. Active mail—a framework for implementing
groupware. In Proceedings of the ACM Conference on Computer-Supported Cooperative
Work (CSCW ’92, Toronto, Canada, Oct. 31–Nov. 4), M. Mantel and R. Baecker, Eds. ACM
Press, New York, NY, 75–83.

GONG, L. 1997. Enclaves: Enabling secure communication over the internet. IEEE J. Sel.
Areas Commun. 15, 3 (Apr.).

GONG, L. 1997. Java security: Present and near future. IEEE Micro 17, 3, 14–19.
GOSLING, J., JOY, B., AND STEELE, G. 1996. The Java Language Specification.

Addison-Wesley, Reading, MA.
GRIMM, R. AND BERSHAD, B. N. 1998. Providing policy-neutral and transparent access control

in extensible systems. Technical Report Number UW-CSE-98-02-02. University of Wash-
ington, Seattle, WA.

HAGIMONT, D. AND ISMAIL, L. 1997. A protection scheme for mobile agents on Java. In
Proceedings of the 3rd Annual ACM/IEEE International Conference on Mobile Computing
and Networking (MOBICOM ’97, Budapest, Hungary, Sept. 26–30, 1997), L. Pap, K.
Sohraby, D. B. Johnson, and C. Rose, Eds. ACM Press, New York, NY, 215–222.

HALEVI, S. AND KRAWCZYK, H. 1997. MMH: Software message authentication in the Gbit/s
rates. In Proceedings of the Fourth Workshop on Fast Encryption.

HAWBLITZEL, C., CHANG, C.-C., CZAJKOWSKI, G., HU, D., AND VON EICKEN,
T. 1998. Implementing multiple protection domains in Java. In Proceedings of the 1998
USENIX Conference. USENIX Assoc., Berkeley, CA.

ISLAM, N., ANAND, R., JAEGER, T., AND RAO, J. R. 1997. A flexible security model for using
Internet content. IEEE Softw. 14, 5 (Sept.).

JAEGER, T., ELPHINSTONE, K., LIEDTKE, J., PANTELEENKO, V., AND PARK, Y. 1999. Flexible
access control using IPC redirection. In Proceedings of the 7th Workshop on Hot Topics in
Operating Systems.

JAEGER, T., GIRAUD, F., ISLAM, N., AND LIEDTKE, J. 1997. A role-based access control model for
protection domain derivation and management. In Proceedings of the Second ACM Work-
shop on Role-based Access Control (RBAC ’97, Fairfax, VA, Nov. 6–7, 1997), C. Youman, E.
Coyne, and T. Jaeger, Eds. ACM Press, New York, NY, 95–106.

JAEGER, T., LIEDTKE, J., AND ISLAM, N. 1998. Operating system protection for fine-grained
programs. In Proceedings of the 7th USENIX Security Symposium (Jan.). USENIX Assoc.,
Berkeley, CA, 143–156.

JAEGER, T. AND PRAKASH, A. 1994. Support for the file system security requirements of
computational E-mail systems. In Proceedings of the 2nd ACM Conference on Computer and
Communications Security (Fairfax, VA, Nov. 2–4), D. Denning, R. Pyle, R. Ganesan, and R.
Sandhu, Eds. ACM Press, New York, NY, 1–9.

JAEGER, T. AND PRAKASH, A. 1995. Implementation of a discretionary access control model for
script-based systems. In Proceedings of the 8th IEEE Workshop on Computer Security
Foundations. IEEE Computer Society Press, Los Alamitos, CA, 70–84.

JAEGER, T., RUBIN, A., AND PRAKASH, A. 1996. Building systems that flexibly control
downloaded executable content. In Proceedings of the 6th USENIX Security
Symposium. USENIX Assoc., Berkeley, CA, 131–148.

KAIN, R. Y. AND LANDWEHR, C. E. 1986. On access checking in capability-based systems. In
Proceedings of the 1986 IEEE Symposium on Security and Privacy (Oakland, CA, Apr. 7-9,
1986). IEEE Computer Society Press, Los Alamitos, CA, 95–100.

KARJOTH, G. 1998. Authorization in CORBA security. In Proceedings of the Conference on
ESORICS.

KNISTER, M. AND PRAKASH, A. 1993. Issues in the design of a toolkit for supporting multiple
group editors. Comput. Syst. 6, 2, 135–166.

226 • T. Jaeger et al.

ACM Transactions on Information and System Security, Vol. 2, No. 2, May 1999.

LAMPSON, B., ABADI, M., BURROWS, M., AND WOBBER, E. 1992. Authentication in distributed
systems: theory and practice. ACM Trans. Comput. Syst. 10, 4 (Nov. 1992), 265–310.

LEE, J., PRAKASH, A., JAEGER, T., AND WU, G. 1996. Supporting multi-user multi-applet
workspaces in CBE. In Proceedings of the 6th ACM Conference on Computer-Supported
Coorperative Work (CSCW ’96, Boston MA, Nov.). ACM Press, New York, NY, 344–353.

LEVY, J. Y. AND OUSTERHOUT, J. K. 1995. Safe Tcl: A toolbox for constructing electronic
meeting places. In Proceedings of the First USENIX Workshop on Electronic
Commerce. USENIX Assoc., Berkeley, CA, 133–135.

LIEDTKE, J. 1992. Clans & chiefs. In Architektur von Rechensystemen. Springer-Verlag,
Vienna, Austria.

LIEDTKE, J. 1995. On m-kernel construction. In Proceedings of the 15th ACM Symposium on
Operating Systems Principles (SIGOPS ’95, Copper Mountain Resort, CO, Dec. 3–6), M. B.
Jones, Ed. ACM Press, New York, NY.

LUPU, E. AND SLOMAN, M. 1997. Reconciling role based management and role based access
control. In Proceedings of the Second ACM Workshop on Role-based Access Control (RBAC
’97, Fairfax, VA, Nov. 6–7, 1997), C. Youman, E. Coyne, and T. Jaeger, Eds. ACM Press,
New York, NY, 135–141.

MINEAR, S. E. 1995. Providing policy control over object operations in a Mach-based
system. In Proceedings of the 5th USENIX Security Symposium. USENIX Assoc., Berkeley,
CA.

MINSKY, N. H. AND UNGUREANU, V. 1998. Unified support for heterogenous security policies in
distributed systems. In Proceedings of the 7th USENIX Security Symposium
(Jan.). USENIX Assoc., Berkeley, CA, 131–142.

NIST, 1994. NIST FIPS PUB 186, Digital Signature Standard. U.S. Department of
Commerce.

NIST, 1995. NIST FIPS PUB 180-1, Secure Hash Standard. National Institute of Standards
and Technology, Gaithersburg, MD.

NETSCAPE CORP., 1997. Introduction to the capabilities classes. Netscape Corp.. Available
from developer.netscape.com/library/

NETSCAPE CORP., 1999. The Navigator Java environment: current security issues. Netscape
Corp.. Available at developer.netscape.com/docs/manuals/javasecurity.html.

OBJECT MANAGEMENT GROUP, 1997. Security service specification. In CORBAservices:
Common Object Services Specification, Object Management Group. Available from http://
www.omg.org

THE OPEN GROUP, 1997. Common security: CDSA and CSSM. Available from http://
www.opengroup.org

OUSTERHOUT, J. K. 1994. Tcl and the Tk Toolkit. Addison-Wesley Professional Computing
Series. Addison-Wesley Longman Publ. Co., Inc., Reading, MA.

OUSTERHOUT, J. K., LEVY, J. Y., AND WELCH, B. B. 1998. The Safe-Tcl security model. In
Proceedings of the 23rd USENIX Annual Conference. USENIX Assoc., Berkeley, CA.

SALTZER, J. H. AND SCHROEDER, M. D. 1975. The protection of information in computer
systems. Proc. IEEE 63, 9 (Sept.), 1278–1308.

SANDHU, R. 1998. Role activation hierarchies. In Proceedings of the Third ACM Workshop on
Role-Based Access Control (RBAC ’98, Fairfax, VA, Oct. 22–23, 1998), C. Youman and T.
Jaeger, Eds. ACM Press, New York, NY, 33–40.

SANDHU, R. S., BHAMIDIPATI, V., AND MUNAWER, Q. 1999. The ARBAC97 model for role-based
administration of roles. ACM Trans. Inf. Syst. Secur. 1, 2 (Feb.).

SANDHU, R. S., COYNE, E. J., FEINSTEIN, H. L., AND YOUMAN, C. E. 1996. Role-based access
control models. IEEE Comput. 29, 2, 38–47.

SUN MICROSYSTEMS, 1999. Frequently asked questions: Java security. Sun Microsystems,
Inc., Mountain View, CA.

THOMSEN, D., O’BRIEN, D., AND BOGLE, J. 1998. Role based access control framework for
network enterprises. In Proceedings of the 14th Conference on Computer Security
Applications. IEEE Computer Society Press, Los Alamitos, CA.

TRUSTED INFORMATION SYSTEMS, INC., 1994. Trusted Mach System Architecture (TIS TMACH
Edoc-0001-94A ed.). Trusted Information Systems, Inc..

Flexible Control of Downloaded Executable Content • 227

ACM Transactions on Information and System Security, Vol. 2, No. 2, May 1999.

WALLACH, D. S. AND FELTEN, E. W. 1998. Understanding Java stack introspection. In
Proceedings of the 1998 IEEE Symposium on Security and Privacy. IEEE Computer Society
Press, Los Alamitos, CA.

WHITE, J. E. 1995. Telescript Language Reference Manual. Available from www.genmagic-
.com.

WOBBER, E., ABADI, M., BURROWS, M., AND LAMPSON, B. 1994. Authentication in the Taos
operating system. ACM Trans. Comput. Syst. 12, 1 (Feb. 1994), 3–32.

Received: May 1997; revised: April 1998; accepted: October 1998

228 • T. Jaeger et al.

ACM Transactions on Information and System Security, Vol. 2, No. 2, May 1999.

