
Support for the File System Security Requirements of
Computational E-Mail Systems

Trent Jaeger and Atul Prakash
Software Systems Research Laboratory

Department of Electrical Engineering and Computer Science
University of Michigan, Ann Arbor, MI 48 109-2 122

E-mails: Cjaegertlaprakash} @eecs.umich.edu

ABSTRACT

Computational e-mail systems, which allow mail mes-
sages to contain command scripts that automatically ex-
ecute upon receipt, can be used as a basis for building a
variety of collaborative applications. However, their use
also presents a serious security problem because a com-
mand script from a sender may access/modify receiver’s
private files or execute applications on receiver’s behalf.
Existing solutions to the problem either severely restrict
I/O capability of scripts, limiting the range of applica-
tions that can be supported over computational e-mail,
or permit all I/O to scripts, potentially compromising
the security of the receiver’s files. Our model, called the
intersection model of security, permits I/O for e-mail
from trusted senders but without compromising the se-
curity of private files. We describe two implementations
of our security model: an interpreter-level implemen-
tation and an operating systems-level implementation.
We discuss the tradeoffs between the two implementa-
tions and suggest directions for future work.

KEYWORDS: File systems, security, computer-
supported cooperative work, groupware, collaboration
technology, computational e-mail, active e-mail.

1 INTRODUCTION

Electronic mail (e-mail) is a standard and popular mech-
anism for asynchronous communication, enabling users
to send messages to one another. Computational e-mail
[l, 2, 41, also called active or enabled e-mail, extends
the power of standard e-mail, allowing a message to
contain a command script. The command script in a
message is executed automatically when the message is
read, enabling a wide variety of actions to be encapsu-

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the ACM copyright notice and the
title of the publication and its date appear, and notice is given
that copying is by permission of the Association of Computing
Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.
CCS ‘94- 1 l/94 Fairfax Va., USA
0 1994 ACM O-89791 -732-4~94/0011..$3.50

lated in messages. For example, a sender can provide a
receiver with a nice interface for replying to a question
in the message, for reviewing a document contained in
the message, for voting via e-mail on an issue, for plac-
ing orders electronically, and for collaborative design.

Unfortunately, computational e-mail also presents a
major security risk. When a receiver reads a message
containing a command script, the command script is
executed under the receiver’s access rights. Malicious
users can write command scripts that can potentially:
(1) remove files from the receiver’s file system; (2) fill the
file system of the receiver’s machine to capacity; and (3)
start other applications under the guise of the receiver,
such as to send annoying mail messages addressed from
the receiver.

Besides computational e-mail, several other systems
allow command scripts to be executed, and need to ad-
dress the security problem. In Telescripti [13], a system
meant for building electronic marketplaces, clients can
send command scripts which execute at a server. In
Mosaic, the popular browsing tool based on World-wide
Web, an information server can be defined that enables
a command script to be run at a client who accesses the
server. Several groupware systems with replicated ar-
chitectures maintain consistency by broadcasting users’
commands that run at each site.

File security in the above systems is provided typi-
cally either by severely limiting the ways that I/O can
be performed within a command script or by trusting
users that will not send improper command scripts. Ei-
ther solution is somewhat unsatisfactory. Severely lim-
iting the I/O capability of scripts makes it difficult to
build collaborative applications that must access shared
files. On the other hand, permitting all I/O can cause
private files to be accidentally or maliciously accessed
or modified. We thus conclude that systems that utilize
the paradigm of passing command scripts either provide
security that is too restrictive or provide insufficient se-
curity.

In this paper, we present a security model that pro-

‘Telesecript is a registered trademark of General Magic, Inc.

1

vides a level of security between the above two extremes.
It enables users to collaborate using their shared files
while protecting each user’s private files. We investigate
several ways of implementing the model and discuss the
tradeoffs between the implementations. We also suggest
ways to tailor the security model in order to deal with
a variety of collaborative situations.

The structure of the paper is as follows. In Section
2, we examine how security is currently implemented in
several systems that use the command script paradigm.
In Section 3, we define our security model. In Section
4, we detail the implementation options for the secu-
rity model. In Section 5, we discuss some variations of
the security model that are useful for supporting var-
ious collaborative situations. In Section 6, we present
conclusions and directions for future work.

2 PREVIOUS SOLUTIONS TO THE SECURITY
PROBLEM

Below, we provide a brief description of systems that
utilize command scripts and examine the security mech-
anisms used in each system. The systems are: (1)
ATOMICMAIL; (2) Safe-Tel; (3) Telescript; (4) Mo-
saic; and (5) collaborative systems based on replicated
architectures.

Borenstein has proposed several implementations for
computational e-mail, including ATOMICMAIL [l], in
which command scripts are written in LISP, and its suc-
cessor Safe-Tel [2], in which scripts are written in an-
other interpreted language, Tk/Tcl [7]. Borenstein has
recommended the use of Safe-Tel as the standard system
for computational e-mail, partly because Tk/Tcl pro
vides commands for building applications with graphi-
cal user interfaces and is available on a wide variety of
platforms. Furthermore, to ensure that computational
e-mail can be effectively used in a heterogeneous en-
vironment, e-mail messages of Safe-Tel use a MIME-
compatible [3] f ormat, and they can be sent and read
(executed) by Internet Mail systems such as mhn [12].

In ATOMICMAIL, file system security is provided
by modifying I/O functions in the scripting language to
prevent a script from accessing the file system, except
for a single public directory. A potential problem with
this solution is that since any computational e-mail mes-
sage can read or write to the public directory, anyone
can delete a file in that directory. So, the public direc-
tory is unlikely to be convenient to use as a group work
directory. To use it as a work directory, users have to
copy their work files to the public directory, keep track
of any new files created during the collaboration, and
then copy the files back to a safe directory.

Safe-Tel provides two interpreters: a trusted inter-
preter and an untrusted interpreter. The trusted inter-
preter provides no security, so it is meant to be used for
interaction with trusted sources. The untrusted inter-

preter provides tight security similar to ATOMICMAIL,
by replacing all the I/O functions with safer I/O func-
tions that disable all file I/O, except to a single public
directory. This provides security for the file system, but
it limits the ways in which computational e-mail can be
used. Borenstein recognized that this approach can be
too restrictive for many collaborative applications, so
he has left open the possibility of “power-augmenting
extensions” to the language.

Telescript [13] and Mosaic, the popular information
server, allow client/server processing to be specified us-
ing command scripts. In Telescript, clients send scripts
which execute at the server. File system security in Tele-
script is provided by eliminating the command script’s
ability to perform all I/O. Thus, Telescript’s security
is even more restrictive than ATOMICMAIL and Safe-
Tcl’s.

In Mosaic, an information server can be defined that
enables a command script to be run at the client when
the server is accessed. Suggestions for providing security
for Mosaic command scripts include: (1) reviewing com-
mand scripts before execution and (2) allowing access
to only pre-approved, “safe” scripts. The first approach
assumes that a user is qualified to judge whether a script
is safe or not. The second approach requires extra dili-
gence on the part of the administrators to catalog safe
scripts. Neither option provides a strong guarantee of
the security of the file system.

Several distributed applications use a replicated ar-
chitecture in which every command is executed at each
site [6, 81. For example, DistEdit [5, 61, a collaborative
editor toolkit, replicates an editor process for each user
in the collaboration. User commands are sent to each
editor process, to ensure the consistency of the editors’
buffers. Unfortunately, this also raises the possibility
that, for example, if one user issues a command to save
the editing buffer to a file, files with the same name of
other users may get overwritten. DistEdit avoids the
above problem by not broadcasting file I/O commands,
but, in general, system designers must identify and man-
ually close any security loopholes. This task could, in
general, be arduous and error-prone.

None of these systems provide access to shared files
and applications, which are necessary for collaboration,
while protecting private data. The restrictive security
provided by Safe-Tel’s untrusted interpreter and Tele-
script prevent access to shared data at its normal lo-
cation and prevent the execution of applications. On
the other hand, the Safe-Tel’s trusted interpreter and
the proposals for security in Mosaic provide no assur-
ance that private files will not be overwritten. DistE-
dit prevents the overwriting of private files but in an
application-specific way.

3 THE INTERSECTION MODEL OF SECURITY

In this section, we illustrate the security problem using
an example collaboration and define a security model
sufficient for this type of collaboration. This example
portrays a collaboration between two users using some
shared applications and data. Collaboration requires
that both users have access to the shared applications
and data. Security is still needed to protect each user’s
private information, however, since this information is
outside the scope of the collaboration.

In our example, two mechanical designers, who work
for different companies, collaborate to design an arti-
fact. An overview of their collaboration is shown in Fig-
ure 1. Designer A is sub-contracted to develop a part of
a system that is being designed by designer B. The two
designers collaborate on the design using a shared file
space maintained at designer B’s site. Since designer
A does not work for B’s company, B wants to ensure
privacy of some files from designer A.

Suppose that A makes a design decision and wants
B to approve it. The approval is based on some anal-
ysis information that is generated by a computer-aided
design (CAD) tool available to both designers. To get
B’s approval, A sends a computational e-mail message
to B that: (1) starts the CAD application; (2) has the
CAD application load the design data files; and (3) puts
the CAD application in a state that shows the analysis
of the design decision.

Upon receipt of the message from A, designer B
should be able to “read” the message (resulting in exe-
cution of the script contained in the message) and send
back a response. This collaboration should be sup-
ported by enough security so that designer B does not
have to worry about designer A stealing or accidentally
modifying any private data. However, since any process
designer B executes has, by default, the same access
rights as B, B should be concerned at this point.

The security requirements for A (the sender) in this
collaboration are listed below:

l Prevent access to private files: B should not
be able to access A’s private files. This implies
that the computational e-mail message cannot be
executed using the sender’s user ID.

l Allow access to shared files: In order to exe-
cute the script, the computational e-mail message
needs to be able to access both the CAD appli-
cation as well as the design data files. Therefore,
the security model needs to provide the ability to
execute shared applications (i.e., other scripts or
executable code) and to read/write shared files.

Now, we list designer B’s (the receiver’s) security
requirements:

Prevent access to private files: The compu-
tational e-mail script should not be able to ac-
cess/modify B’s private files. This implies that
the computational e-mail message needs to run
with more limited access rights than the receiver’s
normal access rights.

Permit access to shared and public files:
The computational e-mail script, and the CAD
application invoked by it, should be able to ac-
cess/modify files that are shared between A and
B.

Not affect access rights of other processes:
The e-mail message must be executed under more
limited access rights than B’s, but this should not
cause the access rights of B’s other processes on
the workstation to change. Otherwise, those pro-
cesses may be prevented from accessing necessary
files.

Make access requirements explicit: B should
know what access A requires, so as to be able to
determine whether or not to take the risk of exe-
cuting the message.

We define a security model, called the intersection
model, that represents the security requirements pre-
sented above. In the intersection model, the access
rights for each process in the collaboration are the access
rights that are common to both users in the collabora-
tion. The access rights available to a process using the
intersection model are shown in Figure 2. For example,
if designers A and B have read access to a CAD data
file, then the computational e-mail process also has read
access to this file. However, if designer A does not have
write access to the file, then the computational e-mail
process also does not have permission to write to that
file.

Another requirement of the intersection model is
that it permit processes that are active at the same time
and belong to the same user to have different access
rights. Using the intersection model, a user can under-
take multiple collaborations that have different access
rights. Consider Figure 3. Suppose that B, while exe-
cuting A’s computational e-mail message, is also execut-
ing a computational e-mail message from another user
C. The access rights of the two execution processes
must be different because the files shared between each
set of collaborating users are different.

4 IMPLEMENTATION

In this section, we investigate the implementation of
the intersection model via three different mechanisms
and compare the mechanisms: (1) by the use of tokens
and ACLs in the Andrew File System (AFS); (2) by

I
Company X I Company Y

I

Figure 1: Design Collaboration Example

Read Access Domain Write Access Domain

File File

Designer A I Designer B
I

Designer A I Designer B

Shareh Files

Figure 2: Intersection of Access Rights

-- - -..-... ‘.

PrivatA
Files ;’

,I

Share’d Files

Shared Files,
between A A./” .J

---- ------\
“/Private -‘\ Shared Files

Files ‘j, Used in Both
- i.,, ,’ Collaborations

Designer B

. .._ .-_._-.__ /’
Designer A

1
’ \--/,

Designer C

Shared Files
between A
and C

Figure 3: Multiple Processes with Different Access Rights

modifying the Safe-Tel interpreter; and (3) by the use
of user IDS, group IDS, and file permission mode bits
in Unix’. All of the implementations described in this
section require a mechanism to determine the identity
of the sender. If the sender’s identity cannot be deter-
mined, the implementation assumes the sender to be a
dummy user, nobody.

To prevent access to the receiver’s private data, the
basic idea in the OS-baaed implementations of the in-
tersection model, which use AFS ACL’s and Unix mode
bits, is to first remove the access rights of the process
under which the computational e-mail executes. We
then give back some of the rights so that the process
has access rights to files accessible by both the sender
and the receiver. As the following sections show, there
does not seem to be an easy way to do the above using
AFS file protection mechanisms, but we can devise a
solution using Unix mode bits.

In the Safe-Tel implementation of the intersection
model, each I/O command is validated by the inter-
preter to determine if the command is legal with respect
to the intersection model. As we show, this model works
effectively as long as the Safe-Tel command script does
not execute any other non-Safe-Tel applications. If such
an application is allowed to be invoked, a security risk
arises because the application may perform I/O with-
out validating the I/O commands with respect to the
intersection model.

4.1 AFS-BASED APPROACH

First, we examine the ability to limit a user’s access
rights using the security model provided by AFS [lo].
AFS and Unix security models are often used together
to provide file system security, but much of their func-
tionality overlaps. In this section, we examine the use
of only the AFS-specific functionality.

File security in AFS [9] is provided by: (1) tokens
and (2) access control lists (ACLs). Tokens are granted
by an authentication server called Kerberos [ll]. The
AFS authenticat,ion mechanism compares the token
against each entry in the requested file’s ACL. If the
owner of the token matches a user on the ACL, or is a
member of a group on the ACL, access privileges asso
ciated with the matching ACL entry are granted.

To limit the access rights of a mail reader executing a
computational e-mail message on behalf of the receiver,
one possible way is to have the process give up the re-
ceiver’s token and then obtain a new token with fewer
access rights. Unfortunately, AFS permits each user to
carry only one token at a time on a particular machine.
This implies that, under AFS, all the receiver’s pro-
cesses have the same token-baaed access rights. Thus,
if the user’s mail reader gives up the token, the user’s

‘Unix ia a registered trademark of the Unix Open Foundation, Inc.

* Safe-Tel function that validates that the sender
* and the receiver have the access rights necessary to open
t a He with specified rights. Returns TRUE if both
* the sender and the receiver have the necessary access rights.

*I

valid-rights(sendet, receiver, file, rights)

t
/* Determine if both users have the necessary rights */
foreach wer in (sender, receiver}

foreach sight in rights
unless (hasright(user, right, file))
return FALSE;

return TRUE:

Figure 4: The validrights function

other applications on the workstation also lose the to-
ken (and the ability to read/write private files). Clearly,
such a situation is very undesirable!

We also considered requiring a sender and a receiver
who want to collaborate to create a new user-id that has
access to files shared between the two but no access to
their private files. Then the mail reader could execute
under this new user-id. The problem with this approach
is that it requires creation of these additional user-ids
for every possible combination of sender-receivers who
might collaborate. In most cases, establishing new user-
ids involves going through system administrators. We
feel that this problem will make this approach difficult
to use, if not impractical.

4.2 SAFE-TCL

We next describe an implementation of our security
model that uses the Safe-Tel’s untrusted interpreter as
its basis. Two capabilities need to be added to the
Safe-Tel’s interpreter to implement our security model:
(1) Safe-Tel’s I/O f unctions must be modified to check
the access rights of the sender and the receiver and (2)
the Safe-Tel functions that invoke external applications
need to be modified to determine whether it is safe to
execute an application from a command script.

Prior to performing a read or write operation, the
Safe-Tel functions that read or write to the file system
should call our function validlights shown in Fig-
ure 4. The validlights function checks the access
rights of the file (represented using ACLs and/or Unix
mode bits), in order to determine whether the sender
and the receiver have the necessary access rights to per-
form the operation.

It is more difficult to determine whet,her a non-Safe-
Tel application can be started safely from a Safe-Tel
script. This is because once such an application is
started, it is outside the control of the Safe-Tel inter-
preter. Therefore, the interpreter must be certain that

5

the application is safe to execute before the application
is started. This is not easy to do because it is not fea-
sible to determine what an executable application actu-
ally does by examining its object code. Also, seemingly
safe applications may provide the ability to start other
applications. From Emacs, for example, it is possible
to start a shell process, from which other, potentially
unsafe, applications can be executed.

To solve this problem, we require that application
programmers and/or end users must identify applica-
tions that are safe and list ways in which they can be
executed safely. For example, if one chooses to classify
Emacs as a safe application then one needs to ensure
that it is invoked in a manner that it will be actually
safe. For example, one may choose to allow the sender
to provide only a file name and a line number as input
to Emacs. There are other loopholes that have to be
closed as well before Emacs can be used safely, how-
ever. For example, we cannot let the computational e-
mail script edit the . emacs file, which determines how
Emacs is loaded. The sender may insert some unsafe ac-
tions that are run automatically when Emacs is started.
Therefore, it is not necessarily trivial to ensure that an
application is invoked in a safe manner.

Our implementation of valid-exec, a function to
determine if an application should be allowed to be exe-
cuted from a script, is shown in Figure 5. It makes three
checks: (1) whether the sender and receiver have the
necessary access rights to the application; (2) whether
the application is on the list of safe applications; and
(3) whether the argument list has a safe structure. If
an application fails any of the three tests and it does
not appear on a list of definitely unsafe applications,
then the receiver is given the option of executing the
application anyway. A list of known unsafe applications
may be maintained by the system/users for this pur-
pose. For instance, applications such as Unix shells,
rm, etc., might be classified as being unsafe. Users are
strongly dissuaded from running applications that fail
the above validation checks, but if they consider an ap-
plication to be safe, they may still run the script.

The addition of validlights and valid-exec
changes the way that the untrusted interpreter is used.
Since shared files can be accessed irrespective of where
they are located, the need for a special public directory
for I/O for this purpose no longer exists. Also, the mod-
ified interpreter allows access to applications that have
been determined to be safe.

One advantage of using the Safe-Tel implementation
is that it is portable. This enables users to collaborate
using Safe-Tel in a heterogeneous environment. The
other two implementations, based on AFS ACL’s and on
Unix mode bits, require that the appropriate operating
system be present.

* Safe-Tel function that validates that an application,
* specified by its complete file name and with
t input arguments “args”, can be invoked safely
* from a co-and script being executed by a receiver.
* Returns TRUE if the application and its args are safe
t or if the receiver permits the application to be run.
*

valid*xec(aender, receiver, application, args)

(

/* Determine if the application is accessible and safe */
if (validrights(sender, receiver, applicahon, etecule) &AL

(safeappl(applica&n) &&
(safeargs(opplicalion, args))
execcmd9(applicalion, arga);

/* Give the user the option to OK the fn’s exec */
else if (!unsafeirppl(applicalion) &&

has-right(receiver, ezecule, applicalion) &AL
(userak (sender, receiver, applicalion, args))

execcmd(application, arggs);
else

reporterr();

1

Figure 5: The valid_exec Function

4.3 UNIX MODE BITS

File system security in Unix is provided using mode bits.
Mode bits represent the read, write, and execute privi-
leges of three types of user levels: (1) owner; (2) group;
and (3) others. The mode bits representation of access
rights is global; that is, every request for access to a
file sees the same mode bits value (unless the mode bits
are changed, of course). Mode bits cannot be used to
represent negative rights.

The access rights of a process are determined by the
following values: (1) an effective user ID and (2) a set of
supplementary group IDS. The effective user ID of a pre
cess indicates the owner access rights of the process; the
process can access any file with the same user ID, with
permissions specified by the owner mode bits of that file.
The supplementary group IDS of a process specifies a set
of groups for which the process has group access rights;
the process can access any file whose group ID belongs
to the set, with permissions specified by the group mode
bits for that file. Unix provides super-user functions to
set the user ID and the supplementary group IDS for
any process.

The super-user function seteuid changes the effec-
tive user ID of a process. We use this capability to deny
access to the receiver’s files. The super-user function
setgroups assigns a set of supplementary group IDS to
a user process. We use this capability to add back access
to files shared between, fhe sender and the receiver.

An interesting characteristic of the Unix mode bits
representation is that for any process, its effective user
ID and supplementary group IDS are allowed to be inde-

6

pendent. For example, the super-user can set the sup-
plementary group IDS of a process to include a group
that does not contain the effective user ID of the pro-
cess.

We utilize the flexibility allowed between effective
the user ID and the supplementary group IDS to meet
the security requirements of our example. We list the
pseudo-code for a function called intersectlights in
Figure 6. This function, invoked by the mail reader run-
ning with setuid bit on, enables the mail reader pro-
cess to set its effective user ID and supplementary group
IDS so that it will execute a command script with access
rights common to both the sender and the receiver.

In the intersectlights function, first, the owner
access rights are removed by changing the effective user
ID of the mail reader process to a dummy user’s ID (e.g.,
nobody). Then, access rights to files to which both the
sender and the receiver have group access rights are
added by resetting the supplementary group IDS of the
mail reader process to only those group IDS to which
both the sender and receiver belong.

The mapping between user IDS and supplementary
group IDS is maintained in the file /etc/group. Each
supplementary group ID is associated with a list of user
IDS that have access rights to that group. Note that
it is not necessary to add the dummy user ID to the
/etc/group file entry for the supplementary group IDS
of the process. This is because the super-user function
setgroups does not require that the user ID of a process
appear on the /etc/groupentries for the supplementary
group IDS of the process. Since no special access rights
are added for the dummy user, each process can use
the same dummy user. The dummy user, the sender,
and the receiver all have others access rights, so these
access rights are unaffected.

We have implemented this function and tested it by
starting Emacs processes to edit specific files. The vari-
ables in the test cases are: (1) the sender’s groups; (2)
the files; (3) the file’s group; and (4) whether the file
has others access rights. The receiver is a member of
the scan and ssrlroot groups but not of the faculty
group. The following four cases were tested: (1) the
sender belongs to a subset of the receiver’s groups; (2)
the sender belongs to a superset of the receiver’s groups;
(3) the sender and the receiver have no groups in com-
mon; and (4) the sender wants the receiver to access a
file for which the receiver does not have access rights.
In Table 1, we show the test cases variables and the re-
sults: (1) the intersection of groups between the sender
and the receiver (n groups) and (2) whether the files
are accessed. As can be seen, the results satisfy the
requirements of the intersection model.

The Unix implementation of our security model of-
fers the following advantages: (1) it makes the inter-
section model available to a wide variety of Unix appli-
cations and (2) it does not require information about

* Super-user function only!!!
+ Determine grospa that are common between
a aendet and receiver.
* Set effective UID of process to nobody to limit
+ user rights
* Set groups of process to groups to limit group
+ rights to just the input group
* Run cmda using these limited rights
*I

#include<sys/types.h> /* For setgid */
#include<grp.h> /* For group fns */

intersect_rights(aender, receiver, cmds)

/* Save old effective UJD and groups of process */
saveid();

/* Get intersection of users’ groups */
groups = intersectgrps(sender,teceiver);

/* Count the number of groups in the intersection set
mcrzgrp = length(gtoups);

/* Set the effective user ID and the group IDS */
seteuid(nobody); /* Set elT. uid to nobody */
i = 0;
foreach group in groups

/* Get group entry for each group */
grent = getgmam(group);
/* Get gid for the group from entry */
group-gids[i++] = grent->gr-gid;

/* Set groups of process to members of groupa */
setgroups(mazgrp, group-gids);

execcmds(cmda); /* Run script commands */

/* Reset effective UID and groups of process */
resetid();

?

Figure 6: The intersectrights Function

7

Sender’s Groups Files File Group Others Rights? n Groups Accessed?

scan group.file ssrlroot No scan No
group.tex scan No Yes

project-tasks ssrlroot Yes Yes
ssrlroot group.file ssrlroot No ssrlroot Yes
scan group.tex scan No scan Yes
faculty project-tasks ssrlroot Yes Yes
faculty profile.gwm faculty No No

project-tasks ssrlroot Yes Yes
ssrlroot profile.gwm faculty No ssrlroot No
scan scan
faculty

Table 1: Test cases for the function intersectlights. The receiver belongs to the scan and ssrlroot groups but
not to the f acuity group.

which applications are safe. The Unix function exec
validates that each application file is accessible before it
actually executes the application.

5 VARIATIONS OF THE INTERSECTION MODEL

The intersection model extends the range of applica-
tions that can be safely supported using computational
e-mail. However, there are scenarios where even this
model is not adequate. We discuss potential ways of
addressing those situations.

l Access to some private files: In some scenar-
ios, a sender may request that a receiver perform
an action using a file that is private to the receiver.
For example, one programmer may want another
programmer to fix a function for which the second
programmer is responsible. The first programmer
does not have write access to the program code
file, so the intersection model will not grant write
access to the file.

One way to provide such access in the Safe-Tel in-
terpreter is to modify the validlights function
to ask the receiver to approve additional rights
before permitting such access. Since the receiver
owns the file, access can be added relatively easily
using Safe-Tel. A limitation of this approach is
that if the Safe-Tel interpreter invokes a process
that is not written in Safe-Tel, validlights and
valid-exec have no control over the access rights
of that process.

Allowing such access in the implementation based
on Unix mode bits appears difficult. The problem
is that these permissions are checked on Unix sys-
tem calls, and those system calls do not ask the
user for approval of additional rights when private
files are accessed. Unless a mechanism for asking

users to approve additional rights upon file access
can be designed, giving selective permission to the
mail reader to access some private files, but not
all, appears difficult.

l No execute rights: In this case, a receiver allows
a sender’s script to read and write data using the
access rights of the intersection model, but does
not want the computational mail to execute any
external applications. This model is just the in-
tersection model with all execute rights removed.
The easiest way to do this appears to be to limit
access to the exec function (and its variants) from
the e-mail script.

6 CONCLUSIONS

We defined a security model that permits access to
files shared between a sender and a receiver during the
execution of a computational e-mail message but that
does not compromise the security of private files. We
called this model the intersection model. Two imple-
mentations are provided for this security model: (1) a
Safe-Tel implementation and (2) a Unix implementa-
tion. The AFS’s security model was found to be too
restrictive to implement the intersection model.

The Safe-Tel and Unix implementations each have
different advantages. The Safe-Tel solution is more
portable and somewhat easier to extend. However, it is
difficult to ensure that an executable program started
by a Safe-Tel script is safe. The Unix solution enables
both a script and executable programs invoked from it
to be run safely. The Unix-based solution, however, is
not easily extensible to permit variations of the inter-
section model. Therefore, we believe that parallel de-
velopment of security models for collaboration at both
the interpreter level and at the operating system level is

a

necessary. We plan to explore the interactions between
the implementations at the two levels in the future.

ACKNOWLEDGEMENTS

We thank the referees for helpful comments. This work
is supported in part by the National Science Foundation
under the cooperative agreement IRI-9216848.

REFERENCES

PI

PI

[31

PI

[51

N. S. Borenstein. Computational mail as a network
infrastructure for computer-supported cooperative
work. In CSCW 92 Proceedings, pages 67-74, 1992.

N. S. Borenstein. Email with a mind of its own:
The Safe-Tel language for enabled mail. In UL-
PAA ‘94, 1994. Available via anonymous ftp from
ics.uci.edu in the file mrose/safe-tcl/safe-tc1.tar.Z.

N. S. Borenstein and N. Freed. MIME (Multipur-
pose Internet Mail Extensions): Mechanisms for
specifying and describing the format of internet
message bodies. RFC 1521.

Y. Goldberg, M. Safran, and E. Shapiro. Active
Mail - a framework for implementing groupware.
In CSCW 92 Proceedings, pages 75-83, 1992.

M. Knister and A. Prakash. DistEdit: A dis-
tributed toolkit for supporting multiple group edi-
tors. In Proceedings of the Third ACM Conference

PI

PI

PI

PI

WI

Pll

P21
P31

on Computer-Supported Cooperative Work, pages
343-355, October 1990.

M. Knister and A. Prakash. Issues in the design
of a toolkit for supporting multiple group editors.
Computing Systems, 6(2):135-166, 1993.

J. Ousterhout. Tel and the Tk Toolkit. Addison-
Wesley, 1994.

A. Prakash and H. Shim. DistView: Support
for building efficient collaborative applications us-
ing replicated objects. In Proceedings of the Fifth
ACM Conference on Computer-Supported Cooper-
ative Work, October 1994.

M. Satyanarayanan. Integrating security in a large
distributed system. ACM Transactions on Com-
puter Systems, 7(3):247-280, August 1989.

M. Satyanarayanan. Scalable, secure, and highly
available distributed file access. IEEE Computer,
23(5):9-21, May 1990.

J. G. Steiner, C. Neumann, and J. J. Schiller. Ker-
beros: An authentication service for open network
systems. In Proceedings of the Usenix Conference,
pages 191-202, 1988.

J. Sweet. A multi-media e-mail tutorial with MH.

J. E. White. Telescript technology: The founda-
tion for the electronic marketplace. General Magic
White Paper.

9

