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Abstract

Querying source code interactively for information is a critical task in reverse engi-

neering of software. However, current source code query systems succeed in handling

only small subsets of the wide range of queries possible on code, trading generality

and expressive power for ease of implementation and practicality. We attribute this

to the absence of clean formalisms for modeling and querying source code. In this

paper, we present an algebraic framework (Source Code Algebra or SCA) that forms

the basis of our source code query system. The bene�ts of using SCA include the

integration of structural and 
ow information into a single source code data model, the

ability to process high-level source code queries (command-line, graphical, relational,

or pattern-based) by expressing them as equivalent SCA expressions, the use of SCA

itself as a powerful low-level source code query language, and opportunities for query

optimization. We present the SCA's data model and operators and show that a variety

of source code queries can be easily expressed using them. An algebraic model of source

code addresses the issues of conceptual integrity, expressive power, and performance of

a source code query system within a uni�ed framework.

Keywords: Reverse engineering, source code query, query languages, algebra, generalized

order-sorted algebra.
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1 Introduction

Programmers have become part historian, part detective,

and part clairvoyant.

Tom Corbi, in Program Understanding: Challenge for the 1990s [1].

In the last few years, software reverse engineering, code re-engineering, and program

understanding have emerged as the latest challenges in the �eld of software engineering.

Interest in these areas has been triggered by the presence of extremely large, di�cult-to-

maintain software systems, better known as legacy systems, which for reasons of economics

cannot be thrown away and rewritten.

One of the early conclusions in reverse engineering research is that a complete automa-

tion of the design recovery process is not feasible [1]. Given the current state-of-art in reverse

engineering technology, it is felt that reverse engineering of real systems can at best be auto-

mated 50 percent, and the rest must be by human participation [2]. This acceptance of the

critical role that must be played by a human reverse engineer has led to research in software

tools that can assist or support the human in this task.

Of the many tools that will be required to support reverse engineering, we are concerned

with the design of one: an interactive tool for querying source code to support the task of

software understanding and design recovery. Support for extracting relevant information

from source code has so far been left either to rudimentary, string searching tools like grep,

awk, etc. (which are capable of handling only trivial queries), or to general-purpose database

approaches that have limited querying power for the source code domain [3, 4, 5]. The need

for sophisticated querying tools for reverse engineering has been articulated by Biggersta�

in terms of a \conceptual grep" [6]. The purpose of a source code querying tool is to

help a human reverse engineer indulge in plausible reasoning [6] or domain bridging [7] | an

iterative process of guesswork and veri�cation that leads him or her to a better understanding

of what the source code is doing.
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Reverse engineers may need to make several types of queries. Queries may be based

on global structural information in the source code, e.g., relations between program entities

such as �les, functions, variables, types, etc. Queries can also be based on statement-level

structural information in the source code, e.g., looking for patterns (e.g., loops) that �t a

programming plan or a cliche [8, 9]. Queries may also be based on 
ow information derived by

static analyses such as data-
ow and control-
ow analyses, e.g., to locate program slices [10],

to �nd the variables whose values are a�ected by a particular statement, etc. Finally, a

reverse engineer may need to make queries that use both structural information as well as

program 
ow information.

Unfortunately, one of the fundamental problems designers of source code querying sys-

tems face is the lack of good underlying models to represent source code information and to

express queries. For example, in our previous work on building source code querying tools

SCAN [11] and SCRUPLE [8], and earlier in our work on the Evolution Support Environ-

ment System (ESE) [12], we found that no satisfactory choice for the underlying model to

represent program information was available. One option for us was to use the relational

model, as used in several systems such as OMEGA [5], CIA [3], and CIA++ [13]. The advan-

tage of that would have been the availability of a formal query language (based on relational

algebra) | our work in developing a query language and a query processor would have been

reduced. Unfortunately, it is di�cult, if not impossible, to use the relational model to make

queries for locating patterns in source code and to make queries based on data-
ow and

control-
ow. Another option would have been to use some other representation model such

as graphs or abstract syntax trees, as used in Rigi [14] or an object-based representation as

used in REFINE 1 [15] and in the approach of Heisler et al [16]. However, the problem with

those models would have been the lack of a query language with well-de�ned operators. Ei-

ther option was somewhat unsatisfactory. Current versions of SCRUPLE and SCAN ended

1REFINE is a trademark of Reasoning Systems
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up using an attributed syntax-tree representation whereas the ESE system used a relational

representation. In both cases, we felt a de�nite lack of either a powerful query language or

adequate modeling power.

In order to alleviate the above dilemma faced by designers of reverse engineering tools,

this paper proposes a source code algebra as the foundation for building source code query-

ing systems. An algebra de�nes a model for representing source code information and gives

a well-de�ned set of operators that can be used to make queries on the information. The

analogy is the use of relational algebra [17] as the foundation for relational database systems.

Algebras have also been used in the design of general-purpose query languages for the rela-

tional data model [17], the nested relational model [18], the extended relational model [19],

the object model [20, 21, 22, 23], and also in the design of a domain-speci�c query language

for structured o�ce documents [24]. The bene�ts of using an algebra as the basis for a query

language include the ability to provide formal speci�cations for query language constructs,

the ability to use the algebra itself as a low-level query language, and opportunities for query

optimization. The need for a special-purpose algebra for source code stems from the model-

ing limitations of above-mentioned data models for representing source code information and

the absence of appropriate operators for expressing queries of interest to reverse engineers.

The proposed source code algebra (SCA) e�ectively models source code information and

contains the necessary operators for making a variety of queries of interest to reverse engineers

on source code. The model views source code as a domain of typed objects with attributes

that store component information, relations with other objects, computation methods, and

any other relevant information. The model supports the notion of a collection of objects.

Collections can be viewed as either sets (e.g., a set of variable objects) or as sequences (e.g.,

a sequence of statement objects). Operators are then provided to operate on individual

objects and their collections. As in relational algebra, queries are expressed by writing

expressions using the given operators.

The paper is organized as follows. Section 2 discusses the type of queries on source code
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that we would like to be able to handle in the source code algebra. Section 3 discusses our

approach of using an algebra to support querying on source code. In order to specify the

algebra, we �rst de�ne a data representation model that is rich enough to capture relevant

information about the source code and then give a well-de�ned set of operators for the model

that can be used to express a variety of queries on the source code. Section 4 illustrates the

expressive power of the operators | it shows how di�erent kinds of queries on source code are

expressed using the given operators. Section 5 outlines design and performance issues in using

the algebra as the basis of a system to support source code querying. Section 6 compares our

algebra to other algebras that have been proposed for querying in other domains. Finally,

Section 7 presents our conclusions and future work.

2 Requirements of a Source Code Query System

While a well-researched survey of commonly-used source code queries continues to be un-

available, a comparative study of systems currently used to query code o�ers valuable clues

regarding the functionality that needs to be supported. In this section, we will present

sample source code queries and specify the requirements of a source code query system.

2.1 Examples of Source Code Queries

� Queries based on Global Structural Information:

The �rst category consists of queries that pertain to global structural information,

relating to �les, modules, functions, global de�nitions, etc.

1. What are the functions de�ned in the �le analyzer.c?

2. Find all global variable de�nitions of type matrix.

3. Find the �le that has the maximum number of functions.
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Query 1 pertains to the organization or high-level design of the program, speci�cally,

it concerns itself with the distribution of functions in �les. Query 2 detects the use of

a certain type de�nition. Query 3 is a numerical query based on program structure,

and is representative of a large class of source code queries that are based on software

metrics.

� Queries based on Syntactic Structure:

These are queries that deal with �ne-grain syntactic and structural information, such

as code patterns, structures of constructs, etc.

1. Show the body of the function sort().

2. Find patterns consisting of sequences of three if statements, possibly separated by

arbitrary statements.

3. Find all the iterative statements in the program.

Query 1 pertains to the abstract syntax of a function. Query 2 is essentially a syntactic

pattern at the level of statements, based on the implicit concept that a statement list

has the semantics of a sequence. Implicit in query 3 is the notion of generalization,

i.e., while, do, and for statements are specialized forms of iterative statements.

� Queries based on Program Flow Information:

These are queries that probe information 
ow between source code entities. Typically,

maintainers are interested in information that can be obtained by static analyses of

source code, such as de�nition and use of identi�ers, data-
ow information, control-
ow

information, etc.

1. Find all references to the identi�er counter.

2. Identify the set of all functions that are directly or indirectly invoked by the func-

tion sort().
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3. Find the subsequent uses of the variable v de�ned in statement s.

Query 1 is a common source code query based on the \refers-to" relationship between

an identi�er reference and its de�nition. Query 2 can be thought of as a recursive query

that computes the closure of the program call graph, starting from a given function.

Query 3 is an example of simple data 
ow analysis.

2.2 De�nition of a Source Code Query System

We de�ne a source code query system informally as an environment with the following

characteristics. First, it must provide a data model for source code which captures structural

as well as program 
ow information. Second, it must provide a query language that permits

the speci�cation of queries based on structural as well as 
ow information in a seamless

manner.

Ideally, the source code data model should be complete and minimal. Completeness

ensures that \all" information needed to query source code is available in the model. In the

absence of a formal notion of source code query completeness, we must settle for approximate

completeness based on the range of queries a model can handle. Minimality eliminates

redundant information from the data model. At the same time, the source code query

language should be expressive and usable. Expressiveness implies that any information that

exists in the data model or can be computed from it should be accessible using the query

language. Usability measures the ease with which such information can be derived. For

example, a declarative or applicative language is easier to use than a procedural language.

An implementation of a source code query system must include 1) a repository that

stores source code information according to the data model 2) tools that populate the repos-

itory with structural and/or program 
ow information, such as parsers, static analyzers, etc.

3) a interface for the user to specify queries, and 4) a query processor that handles queries

by examining the repository.
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2.3 Designing a Formal Query Language

To be expressive and usable, a source code query language, in our view, should have two

characteristics. First, it should be based on a formal framework. Second, it should be

non-procedural.

The arguments in favor of building a formal query language are compelling. The con-

structs of a formal language have well-de�ned semantics. It has been observed in the con-

text of query languages that formal frameworks such as relational algebra [17], relational

calculus [25], NST-Algebra 2[24], etc. have yielded powerful and expressive high-level query

languages, and have been argued to be functionally complete within their respective data

models. Well-de�ned semantics has led to clean implementations for query processors. In al-

gebraic frameworks such as relational algebra (both classical and extended), rules and heuris-

tics of algebraic transformation have been used for query optimization. In NST-Algebra, as

in relational algebra, the algebra can serve as an applicative query language.

A non-procedural query language is desirable because it greatly simpli�es the task of

expressing queries. In applicative languages such as algebras, a query is speci�ed as an

algebraic expression that must be evaluated to obtain the result. In declarative languages

such as calculi, a query is a logical assertion about the properties of the result. In either

case, there is no need for detailed procedural descriptions of queries.

In contrast, the lack of formal frameworks and the absence of non-procedural query

languages in many object-oriented data models has led to problems in query processing and

optimization [26].

2NST stands for Nested Sequence of Tuples
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3 Our Approach: An Algebra for Source Code

To facilitate queries on source code, we have developed a source code data model that cap-

tures the necessary structural and program 
ow information and designed a formal framework

to query the model for such information.

The key feature of our approach is the modeling of source code as an algebra. Informally,

algebras are mathematical structures that consist of data types (sorts) and operations de�ned

on the data types (operators). We are interested in the design of a source code algebra (SCA).

The objective is to model the data types in the source code domain as sorts of the SCA, and to

design source code query primitives as operators of the SCA. A clear analogy can be found in

the relational data model, where the relational algebra serves as the underlying mathematical

model. By modeling source code as an algebra, we hope to address the con
icting issues

of conceptual integrity, expressive power, and performance of a source code query system

within a single formal framework.

We will begin this section with a brief description of relational algebra. The purpose

is to demonstrate how the domain of relations bene�ts from an algebraic framework, and

o�er a rationale for the use of algebras to model source code. Next, we will present our

source code data model, and show why SCA must belong to a class of algebras (generalized

order-sorted algebras) more powerful than that of relational algebra (one-sorted algebras).

Finally, we will outline the operators of SCA.

3.1 Relational Algebra

Classical relational algebra is an instance of a one-sorted algebra, i.e., it deals with only one

data type, namely relations. Relations are sets of tuples whose �elds have atomic values such

as integers, strings, etc. The primitive operators of the algebra are union ([), set di�erence

(�), select (�c), project (�a1;a2;:::;), and cartesian product (�) [17]. Join (1) is a derived

operator of the algebra (composition of � and �). Each of these operators takes relations
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as arguments, and produces new relations. For example, the �c operator takes a relation R

and produces a new relation R0 that contains only those tuples of R which satisfy a given

boolean condition c. The signatures of the operators are shown in Table 1.

Codd has shown that all information stored using relations can be accessed using the

�ve primitive operators of relational algebra. In that sense, the relational algebra is query-

complete [17]. Relational algebra has also been shown to be equivalent to relational calculus

[25]. Relational algebra (or its equivalent relational calculus) forms the basis of a wide variety

of relational database query languages such as SQL, QUEL, ISBL, and QBE [25]. However,

a major weakness of relational algebra is that it fails to include basic data types such as

integers, strings, etc. as elements of the algebra itself. Consequently, many operations

permitted in SQL (aggregate, sort, etc.) do not have well-de�ned semantics in terms of

relational algebra [24].

Relational algebra also helps in query optimization by algebraic transformations. Con-

sider the relational algebra expression �c1(�c2(R)). It so happens that � commutes with

itself, and we have the following identity:

�c1(�c2(R)) � �c2(�c1(R))

Now, if R contained a large number of tuples, and condition c2 was signi�cantly harder to

compute than c1, we could optimize an algebra expression which contained the subexpression

�c1(�c2(R)) by replacing the subexpression with �c2(�c1(R)). Many such identities that arise

in relational algebra are used in practice to optimize queries [25].

3.2 The Domain of Source Code

3.2.1 Many Data Types

An obvious di�erence between relational algebra and an algebra for source code is that the

latter must handle many di�erent kinds of data types. We will concern ourselves with source

code written in C. The data types that arise in source code modeling can be classi�ed into
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two broad groups:

� Atomic data types: These are the basic data types such as INTEGER, FLOAT,

BOOLEAN, CHAR, STRING, etc. Unlike relational algebra, SCA treats these basic

data types as elements of the algebra. This permits the introduction of operators such

as +, �, and, or, etc. as valid algebra operators.

� Composite data types (Objects): Some examples of composite data types in C

are the while-statement type, the relational-expression type, and so on. Two

di�erent kinds of source code objects are modeled in SCA:

{ Singular objects such as a while-statement, an identifier, etc. Typically,

these are constructs of the programming language which have a syntactic structure

given by the abstract syntax of the language. For example, a while-statement

object has two structural components, the condition (of type expression) and

the body (of type statement). Singular objects are analogous to nested relations

in the nested relational model [18].

{ Collective objects: These are collections of other objects. For example, the type

statement-list represents a sequence of objects of type statement. Similarly,

the type declaration-list represents a set of objects of type declaration.

3.2.2 Hierarchy of Data Types

An interesting feature that characterizes source code data types is the presence of a type

hierarchy or class hierarchy. For example, while-statements are a subtype of the type

statements (by specialization of behavior), in turn statements form a subtype of the type

program-objects. Consequently, during query processing, it should be possible to substitute

a while-statement in place of a statement, and a statement in place of a program-object.
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A pictorial representation of the C type hierarchy restricted to the type statement is shown

in Figure 1.

A critical requirement in the design of SCA then must be the ability to incorporate

the source code type hierarchy as an integral part of the algebraic framework. The algebra

must handle the notion of subtyping and inheritance, and support substitutability, a critical

feature which lets an instance of a subtype be used in place of a supertype.

3.2.3 Object Attributes

There are four di�erent kinds of attributes that may be associated with a source code object,

namely, components, references, annotations, and methods.

Componentsmodel syntactic or structural information. In the case of a while-statement

object, the components are its condition and body. Conceptually, a restriction of the source

code representation with respect to component attributes would yield the abstract syntax

tree of the program. Extracting structural information from source code and storing it in

the source code database is a part of the source code parsing process.

Referencesmodel the associations between objects. In addition to simple cross-referencing

information, they o�er a way of modeling resource 
ow relationships that occur between ob-

jects. One set of important data 
ow relationships in the source code domain model are the

\uses" and \de�nes" relationships (see STATEMENT in Figure 2). If a statement s uses

a variable v, a \uses" (and symmetrically, \used-by") exists between them. Similarly, if a

statement s de�nes a variable v, a \de�nes" (and symmetrically, \de�ned-by") exists between

them. Extracting and storing such information is the responsibility of 
ow analyzers.

Annotations are used to store all other relevant information about source code objects.

Typical annotations to a source code object are line numbers, metrics, etc.

An attribute of an object can also be a method or a function that is computed on-the-
y.

Methods are usually computed to obtain reference or annotation information, during query
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execution. Methods are a standard feature of object-oriented data models [27], and can be

used to introduce complex and specialized algorithms into the data model. For example,

e�cient algorithms for data 
ow analysis such as live variable analysis, available expression

analysis, etc. [28] can be used to compute the attributes such as \live" (see STATEMENT in

Figure 2), which computes the set of live variables for a given statement, and their respective

next statements in the \uses" chain. While the algebra, in principle, should be powerful

enough for such computations, methods can be used as hooks to incorporate specialized

algorithms on grounds of e�ciency.

It is important to point out here that new attributes may be added to objects during

a query. These can be thought of as derived attributes, and their computation is analogous

to the view generation problem in relational databases [25]. In section 3.3, we will introduce

the extend operator, which lets new attributes to be added to objects.

3.2.4 A Suitable Algebra for Source Code

As seen in the previous sections, an algebra for source code marks a major departure from

relational algebra because it must 1) support a wide variety of atomic and composite data

types, and 2) incorporate the notion of a type hierarchy within the algebra itself.

The �rst condition can be satis�ed if, instead of using the class of one-sorted algebras, we

use the class of many-sorted algebras [29, 30] to model SCA. Unlike one-sorted algebras that

model a single data type, many-sorted algebras can model a variety of atomic and composite

data types and the operations on those types within a single algebraic framework.

However, to handle type hierarchies within the overall framework of many-sorted alge-

bras, it is �rst necessary to de�ne a partial order on the di�erent types (sorts) of the algebra

based on the subtype of or subsort of relationship. The issue of ordering the sorts of a many-

sorted algebra was �rst addressed as a theoretical problem by Goguen and Meseguer [31]

who proposed an order-sorted algebra based on the interpretation of subsorts (subtypes) as
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subsets. The interpretation of subsorts was later relaxed in the work of Bruce and Wegner

on generalized order-sorted algebras to a weaker form of behavioral compatibility [32]. Essen-

tially, a sort is a subsort of another if the former is behaviorally compatible with (i.e., can

be substituted for) the latter.

A generalized order-sorted algebra is thus a many-sorted algebra with a partial order

de�ned on its sorts. Intuitively, it is apparent that SCA can be modeled as a generalized

order-sorted algebra where the sorts are the various source code data types (atomic and

composite) ordered by the subtype of relationship. The concept of behavioral compatibil-

ity is particularly suitable because a while-statement is indeed a behavioral subtype of

a statement (as opposed to being a subset or a restriction) since it contains additional

attributes.

We now use a formal de�nition of generalized order-sorted algebras to characterize SCA:

De�nition 1: Let S be a set of sorts. In SCA, S contains all the atomic data types

and composite data types discussed in section 3.2.1. Thus,

ATOM = fINTEGER,BOOLEAN,FLOAT,: : :g

COMP = fwhile-statement,: : : ,statement,: : : ,statement-list,: : :g

S = ATOM [ COMP

De�nition 2: A generalized order-sorted algebra A is a 3-tuple < S;�; OP >, where S

is a set of sorts, � a partial ordering de�ned on the sorts, and OP a set of functions (called

the operator set) such that:

1. a set As, called the carrier set or domain of s, is de�ned for each s 2 S

2. the signature of a function � 2 OP is given by

� : As1 �As2 � � � � �Asn �! As
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where s1; s2; : : : ; sn; s are elements of S.

3. if t � si, then elements of At can substitute as elements of Asi.

In SCA, the partial order � is given by the subtype of relationship. The set OP contains

operators for atomic data, objects, and collections of objects such as sets and sequences.

The details of the SCA operators are presented in the next section.

3.3 Source Code Algebra Operators

Given the source code data model in SCA, the next task is to de�ne the algebra operators

that are relevant to the task of querying source code. We have used and extended oper-

ators from pre-existing object algebras for set operations, generalizing them to operate on

sequences wherever possible, and proposed appropriate operators for sequences. Operators

for sequences have only recently begun to be proposed in literature [33, 34]. We have intro-

duced seq extract, a powerful new operator for sequences which uses regular expressions as

the basis for extracting subsequences. SCA o�ers a uni�ed approach to querying collections,

whether they be sets or sequences. This is a departure from earlier approaches where the

data model is either essentially set-oriented or sequence-oriented. Using the SCA operators,

source code queries can be expressed as algebraic expressions. An evaluation of an algebraic

expression on the source code representation yields the result of the query.

It is necessary to point out here that the SCA query language is domain independent

with respect to the programming language of the source code. This is an extremely valuable

feature (as seen in the case of relational query languages), and essentially means that an

implementation of a SCA query processor would work unchanged across di�erent SCA do-

main models. Basically, SCA provides a set of query operators that can be used to query a

graph (or network) of generic objects. Some of these operators are customized to work well

in the domain of source code, nevertheless, they are not tied to any speci�c programming

language. Together, the SCA operators constitute an object algebra for source code. The
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SCA domain model however, varies from one programming language to another and must

be redesigned to re
ect the speci�cs of a given programming language.

The operators of SCA can be classi�ed into di�erent categories based on the data types

they operate upon. Table 2 shows SCA operators de�ned on atomic data types. Operators

shown in Table 3 are de�ned on individual objects. Table 4 shows operators de�ned on

collections, i.e., both sets and sequences. Operators speci�c to sets and sequences are shown

in Tables 5 and 6 respectively.

In the remainder of this section, we will discuss the semantics of SCA operators.

3.3.1 Operators for Individual Objects

The operators on individual objects are shown in Table 3 and brie
y described below:

< attribute >

Given an object and an attribute name of the object, < attribute > (object) returns the

value of the given attribute. For example, if f is a �le, then the name attribute of f is given

by name(f).

If the attribute is a method, its value must be computed before it is returned.

closure

Given an object and a list of attribute names, closure computes a transitive closure, or

reachability graph. closure �nds the set of all objects reachable from the original object

using only the named attributes as `links'. For example, closure on the attribute \calls"

would result in all the functions directly and indirectly called by a function.

identical

Given two objects, identical tests whether they are the same object.
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3.3.2 Operators for Collections

The operators on object collections are shown in Table 4 and brie
y described below:

select, pick

These operators act as �lters.

Given a set (sequence) of objects and an algebraic expression that evaluates to a boolean

value, select returns a subset (subsequence) of the objects for which the expression evaluates

to TRUE. This has been extended from select in relational algebra.

Given a set (sequence) of objects and an algebraic expression that evaluates to a boolean

value, pick returns a single object for which the expression evaluates to TRUE. If there are

multiple candidate objects for which the expression evaluates to TRUE, any one of them

may be returned.

project, extend, product

These are restructuring operators, i.e., they can be used to create new types of objects.

Given a collection of objects and a list of valid attributes of the objects, project returns

a collection of new objects which contain only the listed attributes. This is extended from

the project operator in relational algebra. It also o�ers a way to rename attributes.

Given a collection of objects, a new attribute name, and an algebraic expression, extend

returns a collection of new objects which have all the attributes of the input objects and

also the new attribute whose value is obtained by evaluating the algebraic expression. This

is equivalent to the � operator in NST-Algebra [24], and the extend operator in Schek and

Scholl's extended relational algebra [35]. extend is an extremely powerful operator that

allows new attributes to be added to existing type de�nitions.

Given two collections of objects, product returns a set of objects obtained by system-

atically combining all possible pairs of objects between the two collections. This operator is
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similar to the cartesian product in relational algebra.

forall, exists, member of

These are boolean operators, i.e, they can be used to test the truth or falsehood of assertions.

Given a collection of elements and an algebraic expression that evaluates to a boolean

value, forall returns TRUE if for all elements in the collection, the boolean expression

evaluates to TRUE. This is a derived operator, whose semantics is equivalent to the truth

of the expression:

size of(select<boolean expression>(< objectcollection >)) = size of(< objectcollection >)

Given a collection of elements and an algebraic expression that evaluates to a boolean

value, exists returns TRUE if for some element in the collection, the boolean expression

evaluates to TRUE. This is a derived operator, whose semantics is equivalent to the truth

of the expression:

size of(select<boolean expression>(< objectcollection >)) 6= 0 .

Given a collection of elements and an element, member of returns TRUE if the ele-

ment belongs to the collection. If the element is an object, the object identity is used to

decide membership.

apply, reduce

These are higher-order operators, i.e, they involve the application of other operators to a

collection of elements.

Given a collection and a unary operator, apply returns a new collection obtained by ap-

plying the operator to each element in the input set. This is similar to the lambda abstraction

in lambda calculus.

Given a collection and a binary operator, reduce returns a new collection obtained by

applying the operator recursively over the elements in the input set.
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retrieve

Given a collection of objects and an attribute name, retrieve returns a collection comprising

the values of the speci�ed attribute for each object in the initial collection. This is a derived

operator, whose semantics can be expressed as:

apply<attribute>(< objectcollection >)

size of

Given collection, size of returns the size of the collection.


atten

Given a collection of collections, 
atten reduces the nesting by merging the member collec-

tions into one collection.

3.3.3 Set Operators

Table 5 shows operators that operate exclusively on sets. They are brie
y described below:

union, intersection, di�erence

The de�nitions of these operators are derived from their equivalents in relational algebra.

subset of

Given two sets, subset of returns TRUE if the �rst is a subset of the second.

set to seq

Given a set, set to seq returns a sequence consisting of the same elements. The choice of

the order of elements is arbitrary.
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3.3.4 Sequence Operators

Table 6 shows operators that operate exclusively on sequences. They are brie
y described

below:

head, tail

Given a sequence of elements, and a number n, head returns a sequence consisting of the

�rst n elements, and tail returns a sequence consisting of the last n elements.

concat

Given two sequences, concat returns a concatenated sequence.

order

order accepts a sequence and returns a sequence ordered by 1) the values of the objects

if it is a sequence of atomic data items, or 2) the values of the attribute if the elements

are objects. The order returned is increasing or decreasing based on whether the parameter

< ord > is 0 <0 or 0 >0.

seq extract

Given a sequence and a regular expression (the < pattern >), seq extract returns a subse-

quence of the input sequence which matches the regular expression. Additional constraints

about the pattern can be expressed using an assertion (the < boolean expression >).

For example, a < pattern > could be:

(while-statement,statement*,if-statement,statement*,while-statement)
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seq extract would then return a subsequence of the input sequence which starts and ends

with a while-statement, and has an if-statement somewhere in between.

Existing sequence manipulation languages provide little or no support for extracting

subsequences based on sequence patterns. We have attempted to address this problem by

introducing the seq extract operator.

seq element

Given a sequence and an integer-valued expression (the < index >), seq element returns

the sequence element at position < index >.

subseq of

Given two sequences, subseq of returns TRUE if the �rst is a subsequence of the second.

seq to set

Given a sequence, seq to set returns a set consisting of the same elements.

4 Source Code Queries as SCA Expressions

We now demonstrate the power of SCA by expressing some C source code queries as SCA

expressions. This exercise shows the use of SCA as a low level source code query language.

1. Query: What are the functions de�ned in the �le analyzer.c?:

funcs(pickname=0analyzer:c(FILE))

First, the �le anaylzer.c is selected, and then its attribute funcs (the set of func-
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tions de�ned in the �le) is retrieved.

2. Query: Show the body of the function sort():

body(pickname=0sort(FUNCTION))

The function sort() is selected and its body retrieved.

3. Query: Find the number of iterative statements in the program.:

size of(ITERATION-STATEMENT)

The objects of type iteration-statement are counted. This includes all objects

of types do-statement, while-statement, and for-statement (the subtypes of

iteration-statement).

4. Query: Find the �le that has the maximum number of functions:

head1(orderno of func;>(set to seq(extend
no of func:=size of(funcs)(FILE))))

First, the �le objects are extended with a new �eld, namely no of func. The set of

these new objects is then converted into a sequence and arranged in decreasing order

of their no of func. The head of this sequence is the �le with maximum functions.

5. Query: Find all sequences of two if-statements, possibly separated by arbitrary state-

ment lists:

applyseq extract(ifstatement;statement�;ifstatement):TRUE
(STATEMENTLIST)
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The unary operator seq-extract operates on every statement-list and extracts,

wherever applicable, the subsequences that �t the pattern of two if-statements with

other statements in between.

6. Query: Create a new view of caller-callee relationships, such that if function A directly

calls function B, B is contained in the callee set of A:

extendcalls:=retrievefuncdef (selectobjecttype=0FUNC�CALL(closurecomponent))
(FUNCTION)

This is an instance of transitive closure computation. closure (on component at-

tributes) is used to �nd all nodes within the de�nition of a function. From these

nodes, only FUNC-CALL nodes are selected, and the respective FUNCTION nodes

retrieved. The set of these callee FUNCTION nodes is assigned to the calls attribute

for each caller function. Note how extend has been used to generate a new view (calls

relationships) of the source code database.

7. Query: Find all the functions directly or indirectly called by function sort():

closurecalls(pickname=0sort(FUNCTION)

This query uses the view de�ned in the previous query, namely the calls relation-

ship between functions. By computing the transitive closure on calls links, the entire

call graph starting at sort() can be easily generated.

8. Query: Which functions in analyzer.c are called by functions in main.c?:
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intersection(funcs(pickname=0analyzer:c (FILE)),


atten(applyclosurecalls (funcs(pickname=0main:c (FILE)))))

First, the functions in �le analyzer.c are selected. Second, the functions in �le main.c

are selected, and for each function, the set of functions it calls are obtained (using the

apply and closure operators). The result is a set of sets of functions. The 
atten

operator 
attens the nested set into a single set of functions called from the �le main.c.

The intersection operator is then used to locate only those functions that are de�ned

in analyzer.c.

5 Incorporating SCA into a Reverse Engineering Sys-

tem

Figure 3 shows how SCA would �t into the design of a query system. Source code �les are

processed using tools such as parsers, static analyzers, etc. and the necessary information

(according to the SCA data model) is stored in a repository. A user interacts with the system,

in principle, through a variety of high-level languages, or by specifying SCA expressions

directly. Queries are mapped to SCA expressions, the SCA optimizer tries to simplify the

expressions, and �nally, the SCA evaluator evaluates the expression and returns the results

to the user.

We expect that many source code queries will be expressed using high-level query lan-

guages or invoked through graphical user interfaces. High-level queries in the appropriate

form (e.g., graphical, command-line, relational, or pattern-based) will be translated into

equivalent SCA expressions. An SCA expression can then be evaluated using a standard
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SCA evaluator, which will serve as a common query processing engine. The analogy from

relational database systems is the translation of SQL to expressions based on relational

algebra.

Where high-level queries available to the user are not su�ciently expressive, the SCA

itself can be used as a low-level source code query language. Users familiar with SCA can

exploit the power of the algebra by expressing queries directly as SCA expressions, thus

bypassing the high-level query interface. Queries that involve structural as well as 
ow

information are ideal candidates for such treatment.

An obvious issue in the above architecture is whether SCA expressions can be evaluated

e�ciently. While the study of SCA optimization is currently in progress, we have strong

grounds to believe that important performance gains can be achieved using our approach.

One reason is that many of the set operators in SCA are extended from relational and

extended relational algebras, for which optimizations already exist [21, 35]. Furthermore,

many sequence operators introduced in SCA (such as seq-extract) can be implemented

using e�cient algorithms developed in our work on the SCRUPLE system.

Obviously, the above is only an outline of the ideas required to incorporate the frame-

work in a query system. Open issues exist and a more complete discussion would go beyond

the scope of the paper. However, what we have attempted to do is show that the model

is worth pursuing because of the following merits. First, given a query processor based on

the model, it would ease the design of source code query systems. Second, techniques used

for optimizing queries in other algebraic models can also be applied to our model. And

third, whenever available query optimizers are not good enough, our model allows design-

ers to incorporate specialized code analysis algorithms easily into the model using method

attributes.

To further investigate design and implementation issues, a prototype of the current

system is being built using REFINE, an object-oriented source code database system [36].

Several key components such as the parser and the query processor for handling objects, col-
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lections, and sets have been built. Sequence algorithms were tested in the SCRUPLE system

and need to be incorporated into the query processor. Performance results for operating on

sequences were promising and are available in [8].

6 Comparison of SCA with other Query Algebras

The most well-known query algebra is the relational algebra. Query languages for the nested

and extended relational models have also been developed by relaxing the �rst normal form

restriction of relational algebra [18, 19]. The primary data type in these models is the

relation, which is a set of tuples.

Inspired by the relational model, some object-oriented database systems have attempted

to develop object algebras to serve as a basis for their query languages. Some of these

algebras are the PDM algebra [20], Osborn's algebra [21], Straube and Ozsu's algebra [23],

and Shaw and Zdonik's algebra [22]. The object algebras treat all their data types as �rst

class objects and, compared to relational algebra, permit considerably more orthogonality

between objects and type constructors. Object algebras di�er from one another in the

range of their supported types and, more importantly, in their operators. One of the major

drawbacks of these algebras is that they fail to provide modeling and operator support

for data type collections such as sequences. Like relational algebra, object algebras are

essentially set-oriented.

Unlike set algebras, the �eld of sequence algebras is in its infancy. The NST-algebra [24]

is a many-sorted algebra used as a query language for structured o�ce documents, a domain

where nested sequences arise naturally. Documents are modeled as nested sequences of tuples

(NST). However, there is no support for extracting subsequences in NST-algebra.

Figure 4 shows the world of query algebras using a Venn diagram. Di�erent query

algebras are positioned in the diagram based on the data types supported by them. It shows

that the relational algebras (1,2 and 3) fall within the larger class of set algebras. It shows
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that Osborn's object algebra (5) supports objects and sets, but does not support sequences.

Similarly, NST-Algebra supports sequences, but does not support sets.

Since SCA (10) is essentially an algebra of objects, sets, and sequences, it belongs to

the intersection set of object, set, and sequence algebras.

7 Conclusion

We began this paper by presenting the requirements of a source code query system. A useful

source code query system must model information pertaining to program structure (global

as well as �ne-grained) and program 
ow in a seamless manner. A powerful query language

should then be used to extract the information present in the model.

We introduced Source Code Algebra (SCA), a formal framework that models source

code as an algebra of objects. Our solution views source code as a domain of strongly-typed

objects (and their collections) with attributes, and supports type hierarchies as an integral

part of the model. A set of well-de�ned algebraic operators are de�ned to extract information

from the model. Theoretically, SCA belongs to the class of generalized order-sorted algebras.

Modeling source code as an algebra has important bene�ts in terms of query languages.

We have shown, with examples, how SCA can be used as a low-level source code query

language. Queries written in high-level query languages (command-line, graphical, pattern-

based, etc.) can also be processed by mapping them to equivalent SCA expressions and

evaluating them using a standard SCA evaluator. Since SCA expressions can be simpli�ed

using rules of algebraic transformation, source code queries mapped to SCA expressions can

be optimized. From a theoretical point of view, high level query languages built on top of

SCA will have well-de�ned semantics.

The implementation of a prototype source code query system based on SCA is in

progress. The prototype will allow us to investigate issues such as SCA optimization strate-

gies and view generation mechanisms similar to those in the relational model.
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Operator Signature Description

union,di�erence RELATION � RELATION �! RELATION Standard set operators

intersection

select RELATION �! RELATION Returns a subset of

the tuples based on a

boolean condition

project RELATION �! RELATION Returns a relation with

only the speci�ed

attributes

cartesian product RELATION � RELATION �! RELATION Combines the tuples

in two relations

exhaustively

join (natural) RELATION � RELATION �! RELATION Cartesian product fol-

lowed by select

Table 1: Relational Algebra Operators
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Operator Semantics

+,�,�,= arithmetic operators

and,or,not boolean operators

=,<,>,�,� relational operators

Table 2: SCA Operators for Atomic Data Types
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Operator Description

< attribute > signature: COMP �! ANY

syntax: < attribute > (< object >)

closure signature: COMP �! SET(COMP)

syntax: closure<attribute list>(< object >)

identical signature: COMP1 � COMP1 �! BOOL

syntax: identical (< object1 >;< object2 >)

Table 3: SCA Operators for Individual Objects
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Operators Description

select signature: COLLECTION(ANY1) �! COLLECTION(ANY1)

syntax: select<boolean expression>(< objectcollection >)

pick signature: COLLECTION(ANY1) �! ANY1

syntax: pick(< objectcollection >)

project signature: COLLECTION(COMP1) �! COLLECTION(COMP2)

syntax: project<old attribute list;new attribute list>(< objectcollection >)

extend signature: COLLECTION(COMP1) �! COLLECTION(COMP2)

syntax: extend<attribute:=algebraic expression>(< objectcollection >)

product signature: COLLECTION(COMP1) � COLLECTION(COMP2) �! SET(COMP3)

syntax: product(< objectcollection1>;< objectcollection2>)

forall signature: COLLECTION(ANY) �! BOOL

syntax: forall<boolean expression>(< objectcollection >)

exists signature: COLLECTION(ANY) �! BOOL

syntax: exists<boolean expression>(< objectcollection >)

member of signature: ANY1 � COLLECTION(ANY1) �! BOOL

syntax: member of(< object >;< objectcollection >)

apply signature: COLLECTION(ANY1) �! COLLECTION(ANY2)

syntax: apply<operator>(< objectcollection >)

reduce signature: COLLECTION(ANY) �! ANY

syntax: reduce<operator>(< objectcollection >)

retrieve signature: COLLECTION(COMP) �! COLLECTION(ANY)

syntax: retrieve<attribute>(< objectcollection >)

size of signature: COLLECTION(ANY) �! INT

syntax: size of(< objectcollection >)


atten signature: COLLECTION(COLLECTION(COMP1)) �! COLLECTION(COMP1)

syntax: 
atten(< objectcollection >)

Table 4: SCA Operators for Collections
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Operator Description

union signature: SET(ANY1) � SET(ANY1) �! SET(ANY1)

syntax: union(< set >;< set >)

intersection signature: SET(ANY1) � SET(ANY1) �! SET(ANY1)

syntax: intersection(< set >;< set >)

di�erence signature: SET(ANY1) � SET(ANY1) �! SET(ANY1)

syntax: di�erence(< set >;< set >)

subset of signature: SET(ANY1) � SET(ANY1) �! BOOL

syntax: subset of(< set >;< set >)

set to seq signature: SET(ANY1) �! SEQ(ANY1)

syntax: set to seq(< set >)

Table 5: SCA Operators speci�c to Sets
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Operator Description

head signature: SEQ(ANY1) �! SEQ(ANY1)

syntax: head<n>(< objectseq >)

tail signature: SEQ(ANY1) �! SEQ(ANY1)

syntax: tail<n>(< objectseq >)

concat signature: SEQ(ANY1) � SEQ(ANY1) �! SEQ(ANY1)

syntax: concat(< objectseq >;< objectseq >)

order signature: SEQ(ANY1) �! SEQ(ANY1)

syntax: order<attribute>;<ord>(< objectseq >)

seq extract signature: SEQ(ANY1) �! SEQ(ANY1)

syntax: seq extract<pattern>:<boolean expression>(< objectseq >)

seq element signature: SEQ(ANY1) �! ANY1

syntax: seq element<index>(< objectseq >)

subseq of signature: SEQ(ANY1) � SEQ(ANY1) �! BOOL

syntax: subseq of(< objectseq >;< objectseq >)

seq to set signature: SEQ(ANY1) �! SET(ANY1)

syntax: seq to set(< objectseq >)

Table 6: SCA Operators speci�c to Sequences
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statement

expression−stmt compound−stmt selection−stmt iteration−stmt jump−stmtlabeled−stmt

label−lstmt

case−lstmt

default−lstmt if−sstmt switch−sstmt

while−istmt

do−istmt

for−istmt

goto−jstmt

continue−jstmt

break−jstmt

return−jstmt

Figure 1: Type Hierarchy for C Statements
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type IDENTIFIER-REF subtype of EXPRESSION
......
id:IDENTIFIER inverse id-references

endtype
type IDENTIFIER subtype of PROGRAM-OBJECT

......
name:STRING
id-references:SET(IDENTIFIER-REF) inverse id

endtype
type FUNC-CALL subtype of EXPRESSION

......
funcdef:FUNCTION
arguments:EXPR-LIST

endtype

type FUNCTION subtype of PROGRAM-OBJECT
......
type-spec:TYPENAME
name:STRING
parameters:PARAM-LIST
body:COMPOUND-STMT

endtype

type FILE subtype of PROGRAM-OBJECT
......
name:STRING
funcs:SET(FUNCTION)
decls:SET(DECLARATION)

endtype

type STATEMENT subtype of PROGRAM-OBJECT
......
line-no:SET(FUNCTION)
uses:SET(VARIABLE) inverse used-by
de�nes:SET(VARIABLE) inverse de�ned-by
live:SET(VARIABLE) method live-compute

endtype
...........

Figure 2: A part of the SCA Domain Model
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Figure 3: SCA-based Source Code Query System
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Sequence Algebras

Object Algebras

Set Algebras

Relational Algebras
  Nested Relational Algebras
    Extended Relational Algebras

1 2
3 4

5  6  7

8

9

10

1. Codd’s relational algebra
2. Jaeschke’s nested relational algebra
3. Schek and Scholl’s algebra, 1986
4. Schek and Scholl’s algebra, 1990
5. Osborn’s object algebra
6. Shaw and Zdonik’s object algebra
7. PDM algebra
8. Straube and Ozsu’s object algebra
9. NST−Algebra

10.Source Code Algebra (SCA)

Figure 4: SCA in comparison with other Query Algebras
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FOOTNOTES

� No. 1: Page 4. REFINE is a trademark of Reasoning Systems.

� No. 2: Page 9. NST stands for Nested Sequence of Tuples.
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MATHEMATICAL SYMBOLS

� (Sigma) (often appears with subscripts: page 10,11)
[ (Union)
� (Pi)

� (Times)
1 (Join)
2 (in)

� (Equivalent)
�! (maps to)



International Journal of Software Engineering and Knowledge Engineering 45

AUTHOR BIOGRAPHIES

Santanu Paul
Santanu Paul received his B.Tech degree in Computer Science from the Indian Institute of
Technology, Madras, in 1990 and an M.S. in Computer Science and Engineering from the
University of Michigan in 1992.

At present, he is a Ph.D. candidate at the University of Michigan, Ann Arbor. His inter-
ests include databases, reverse engineering, and multimedia systems. Santanu Paul received
an IBM Canada Graduate Research Fellowship during 1991-93 and a Rackham Predoctoral
Fellowship for 1994-95. He is a student member of the IEEE Computer Society. He can
be reached at the Software Systems Research Laboratory, Dept. of EECS, University of
Michigan, Ann Arbor, MI-48109, and through email at santanu@eecs.umich.edu.

Atul Prakash
Atul Prakash received his B.Tech. degree in Electrical Engineering from the Indian

Institute of Technology, New Delhi in 1982, and M.S. and Ph.D. degrees in Computer Science
from the University of California at Berkeley in 1984 and 1989 respectively.

Since 1989, he has been with the Department of Electrical Engineering and Computer
Science at the University of Michigan, Ann Arbor, where currently he is an Assistant Pro-
fessor. His research interests include toolkits and architectures for supporting computer-
supported cooperative work, support for reengineering of software, and parallel simulation.
He is a member of the ACM and the IEEE Computer Society. He can be reached at the
Software Systems Research Laboratory, Dept. of EECS, University of Michigan, Ann Arbor,
MI-48109, and through email at aprakash@eecs.umich.edu.


