An Efficient Conditional-knowledge based
Optimistic Simulation Scheme

Atul Prakash

Rajalakshmi Subramanian

Department of Electrical Engineering and Computer Science
University of Michigan, Ann Arbor, MI 48109-2122.

email: aprakash@eecs.umich.edu

June 29, 1991

Abstract

We present in this paper a single-hop version of the conditional-
knowledge approach to optimistic simulations [10]. The algorithm has
potentially lower memory requirements than the conventional time-
warp algorithm and uses a single negative message between processes
for cancellation of multiple erroneously sent messages. In time-warp,
each processed message is stored both on the output queue of a process
and on the input queue of another process. In our algorithm, output
queues are not needed because causal dependency between events is
maintained by the receivers. A process upon rollback, simply sends a
single negative message to its immediate output neighbors who then
use the message to cancel appropriate events from their input queues.
To permit correct cancellation at the receiver, each regular message
carries only a single tuple describing the assumptions made in the gen-
eration of the message. Performance results indicate that the algorithm
compares favorably with conventional time-warp.

Index Terms: Distributed simulation, time-warp, discrete-event simula-
tion, optimistic computations, distributed algorithms.

1 Introduction

Discrete-event simulations are frequently needed in analyzing and predicting
performance of systems. However simulations often take enormous amount

of time. Distributed discrete-event simulation is potentially a powerful ap-
proach for getting speedups in discrete-event simulations [2, 4, 8] and is the
focus of this paper.

In distributed discrete-event simulation, the system being modeled, usu-
ally called the physical system, is viewed as consisting of a set of physical
processes that interact with each other at various points in simulation time.
For example, in a queuing network simulation, the servers can be thought
of as the physical processes that interact by sending jobs to each other in
simulation time. The distributed simulator is constructed by mapping each
physical process to a logical process. Logical processes (L Ps) execute in par-
allel on multiple processors and interactions are simulated via time-stamped
messages between logical processes. Fach LP maintains the state of the
physical process it models, as well as a local clock that denotes how far the
process has progressed in simulation time.

A sufficient condition for ensuring the correctness of a distributed simu-
lation is that each L P processes messages received in non-decreasing time-
stamp order [2, 4]. This ensures that causality constraints will be observed
at each LP and therefore in the entire simulation. There are two broad
classes of simulation algorithms to enforce the above policy on processing of
messages: conservative and optimistic. In conservative algorithms, an LP
avoids processing a message until it is certain that no causality violation can
occur. Therefore, before processing a message, an L P may have to block
and exchange state with other L Ps in order to ensure that no message with
lower time-stamp will arrive later. Optimistic algorithms on the other hand
allow messages to be processed immediately, but if later a causality error is
detected (by receipt of a message with a lower time-stamp than the local
clock), a rollback is carried out.

Optimistic algorithms potentially allow much more concurrency but at
the expense of rollbacks. Conservative algorithms include the null message
scheme [2, 4], deadlock detection and recovery scheme [5], an hierarchical
scheme [12], and conservative time windows [9]. The most well known op-
timistic algorithm is time-warp [8]. A survey of many of the distributed
simulation algorithms can be found in [6]. In this paper, our focus is on
optimistic techniques for distributed discrete-event simulation.

In the time-warp method based on the Virtual Time paradigm [8], as
well as in variations of time-warp [13, 14], a causality error occurs whenever
a message is received that contains a time-stamp smaller than that of the
last processed message. The event message causing the rollback is called
a straggler. Since the process being rolled back may have sent messages

that are inconsistent with the rolled-back state, cancellation events in the
form of anti-messages (also called negative messages) have to be sent to
annthilate or cancel the messages erroneously sent. In the time-warp pro-
tocol, anti-messages are an exact copy of the corresponding message except
for the message-type field. In order to send correct anti-messages, a pro-
cess maintains an Quiput Queue containing all the messages that had been
sent. Upon rollback, the Output Queue is examined, and anti-messages are
sent corresponding to all messages that originated in the preempted state.
Each process also maintains an Input Queuve containing accepted messages.
Upon receiving an anti-message, the process cancels the corresponding mes-
sage from its Input Queue (if such a message is found) and rolls back as
necessary.

In [10, 11], we proposed an alternative protocol, called Filter, based
on conditional knowledge for optimistic simulations. This protocol helped
speed up cancellation of erroneous computations at the expense of maintain-
ing some additional state. In Filter, each message carries a list of assump-
tions that describe the set of straggler events that would cause the message
to be canceled. Upon receiving a straggler message, a process broadcasts
information about the straggler message to all the processes in the system
using a rollback-info message. Rollback-info messages are used by processes
to filter out any incoming erroneous messages as well as to rollback to an
earlier point if they had already seen an erroneous message.

The Filter protocol has the advantage that event cancellation is rapidly
done through a single message, but at the expense of higher overhead per
message in the form of attached assumption lists that can become quite long
for simulations with a large number of processes.

In this paper, we propose a similar protocol, called SFilter (single-hop
Filter), but where processes transmit only their local assumptions for one
hop, and not their entire assumption lists. Message cancellation is also done
one hop at a time rather than through a global broadcast. Limiting infor-
mation propagation to one hop at a time reduces the per message overhead
of our algorithm similar to that of time-warp, but retaining some of the
advantages of Filter.

In any optimistic scheme, somehow sufficient state has to maintained
so that processes can determine which events to cancel when a straggler
message arrives. In time-warp, each process maintains an Qutput Queue,
containing a copy of all messages that have been sent. Two of the fields
in each message are virtual send time and virtual receive time. The virtual
receive time is the virtual time at which the message is supposed to be

received by the destination process. The virtual send time is the simulation
time at which the message was generated and is always less than the virtual
receive time. The reason for saving the virtual send time with the message
is to correctly cancel messages when a process rolls back.

In the proposed SFilter algorithm, Output Queue is not required. In-
stead, each message carries a tuple, called the assumption tuple, that de-
scribes the assumption made in the generation of the message by the sender,
which if violated by a rollback of sender’s state, will cause the message to
become erroneous. Upon a rollback, a process sends a rollback-info message
to its neighbors whose purpose is to cancel any erroneously sent messages.
When a rollback-info message is received, a process simply cancels all mes-
sages whose assumption tuple is violated by the rollback-info message. If
the process had already processed one of the cancelled messages, process
rolls back (sending new rollback-info message to its neighbors).

Another scheme for replacing multiple anti-messages with a single neg-
ative message is using message bundling [3]. That scheme requires Output
Queues and ordered delivery of messages whereas our scheme does not re-
quire Output Queues and, as we will see, can be easily generalized to systems
with unordered delivery.

In our initial discussion, we make the following assumptions:

o The topology of the simulation is fixed.

e Communication is via reliable channels with ordered delivery of mes-
sages.

This assumptions will simplify the description of our protocol. In Section 4,
we discuss how both these assumptions can be removed, if needed.

As described in [10], we assume that each process maintains a mono-
tonically increasing counter, called State Counter, that is incremented every
time a message is processed or local simulation clock advanced. The state
counter always increases despite rollbacks; it can be thought of as modeling
progress of real time at the process.

In the next Section, we describe the SFilter protocol in more detail. In
Section 3, we report our experimental results comparing our implementation
of SFilter and time-warp. In Section 4, we discuss important issues of simu-
lations of systems with high fan-out or dynamic topologies, incorporation of
lazy cancellation in our scheme, simulation in shared-memory architectures,
and adaptation of SFilter to use communication protocols with unordered
delivery of messages.

2 Single-hop protocol

The assumption tuple sent with each regular (positive) message is of the
form (P, s,,t,), where P is the id of the sender, s, is the value of P’s state
counter when the message was sent, and t, is the virtual send time of the
message as in time-warp. This assumption tuple says that this message has
to be canceled if P rolls back to a virtual time less than ¢, when its state
counter has a value greater than s,. In other words, if process P rolls back
to an earlier virtual time after sending the message, the message becomes
eligible for cancellation.

Upon rolling back to time ¢,, a process P sends a rollback-info message
to its immediate output neighbors containing a rollback-info tuple of the
form (P,s,,t.), where s, is the value of P’s state counter at the time of
the rollback.! Rollback-info messages are negative messages that cancel
regular messages with conflicting assumptions. Unlike in time-warp, a single
rollback-info message can cancel several regular messages.

Upon receiving a rollback-info message, a process ¢ simply cancel any
messages that conflict with the rollback-info message, rolling back if the con-
flicting message had already been processed (and sending further rollback-
info messages). A message with an assumption tuple (P, s,,1,) is said to
conflict with a rollback-info tuple (P, s,,t,) if and only if s, < s, and ¢, > ¢,
[10, 11]. For example, an assumption tuple (P, 10,40) conflicts a rollback-
info tuple (P, 14,35). The above assumption tuple says that the message
assumes that P will not rollback to a virtual time lower than 40 after its
state counter advances past 10. The rollback-info tuple says that such an
event has occurred, namely P had to roll back to time 35 when its state
counter was at 14. Therefore, the message containing the assumption tuple
was sent from a rolled-back state and should be discarded.

Notice that the only extra field in a message in this scheme as compared
to time-warp is the state counter field. On the other hand, a single rollback-
info message to a process is sufficient to cancel all erroneously sent messages.
Furthermore, Output Queues are not required. In the following section, we
compare the performance of this scheme with our time-warp implementation.

'In our earlier algorithm, Filter, also based on conditional knowledge, rollback-info
messages were broadcast to all the processes in the system. Here, they are sent only one
hop since assumptions are also propagated for only a single hop.

3 Performance

We have developed a prototype of the SFilter algorithm, based on the single-
hop scheme described above, and compared its performance to our imple-
mentation of time-warp. The following subsections describe the environment
for the experiment, the assumptions made, and the initial results obtained.

3.1 Testbed

Our experiments were conducted on a network of 4 Sparc stations. Fach
logical process in our model was implemented as a separate UNIX process
for both time-warp and our algorithm. The processes were evenly spread
among the machines. The ISIS [1] toolkit was used for communication calls.
ISIS provides facilities for reliable communication and multicast messages.
Because of limitations of ISIS, both implementations are currently using
FIFO communication channels. Potential effect of use of communication
channels without ordered delivery is discussed in Section 4.

3.2 The Experiment

Standard benchmarks have not yet been formulated for distributed simula-
tions. We chose to model a 4*4 torus to measure the relative performance
between Time-Warp and single-hop algorithm.

The 4*4 torus approximately models a closed queuing network. A fixed
number of messages circulate through the network. Currently, the commu-
nication times are assumed to be 0. Flach process has two outgoing channels.
In our experiments we alternate between the outgoing channels while send-
ing output messages. [7] argues that the above type of configuration is useful
in testing parallel simulations, because it contains a reasonable amount of
inherent parallelism, it is homogeneous and symmetric, and a good mapping
from processes to processors can be found.

The message time-stamps were generated using a random number gen-
erator based on a normal distribution with mean 5.0, and variance 2.0. The
service times were based on an exponential distributed with rate 4.0. The
unit for measurement for CPU user and system time in the next two sections
is 1/60 second.

We conducted experiments with and without artificial delays (busy loops
to increase the time spent on processing each event). The results from both
experiments are shown in Figures 1-7. The results are plotted vs. message

density. Message density is the ratio of the initial number of messages in-
jected into the system and the number of processes in the system. The busy
loop that we used computes random numbers 200 times.

3.3 Parameters Measured

Efficiency: We define efliciency to be the number of events processed cor-
rectly divided by the total number of events executed. The total number of
events executed is computed under the assumption that state is checkpointed
after each and every event (i.e., messages executed during state restoration
because of less frequent checkpointing are excluded). In both algorithms,
number of correct events turns out to be (total number of events - events
cancelled due to anti-messages or rollback-info messages).

Average Rollback Distance: This is the number of events that are re-
executed on an average per rollback. We have measured this value under
the assumption that the state is checkpointed after each and every event.
However, if the state is checkpointed less frequently, the average rollback dis-
tance increases, since the number of messages to be processed now depends
on the distance between checkpoints.

System and User Times: These have been measured to show the relative
distribution of computation time in Time-Warp and SFilter.

Negative messages: Number of rollback-info messages or anti-messages
received in a simulation.

3.4 Results

In Figures 1 to 7, Time-Warp-1 and Time-Warp-2 refer to our implementa-
tion of Time-Warp with and without a busy user loop respectively. Simi-
larly, SFilter-1 and SFilter-2 refer to our implementation of SFilter with and
without a busy user loop.

As shown in Figure 5 we found that the total number of rollbacks using
SFilter is generally much lower than that using time-warp. We believe that
SFilter is doing better in reducing rollbacks because a single rollback-info
message cancels multiple erroneous messages, causing a negative computa-
tion (that cancels an erroneous computation) to propagate at a faster speed
than in time-warp.

Comparing negative messages (Figure 5), SFilter did much better than
time-warp for user functions with busy loop, especially at higher message
densities. This is explained partly by the higher number of rollbacks in

time-warp and partly by the need for often sending multiple anti-messages
in time-warp in place of one rollback-info message of SFilter.

For user functions without busy loop, we found that time-warp actually
used fewer negative messages than SFilter even though number of rollbacks
was higher. This is primarily due to the fact that every rollback in SFilter
required sending two negative (rollback-info) messages, whereas in time-
warp, probably one anti-message was suflicient if only one message needed
to be canceled. As discussed in Section 4, if we maintain an Qutput Queue
in SFilter, number of negative messages can be further reduced.

As shown in Figure 5, we found that the average rollback distance was
generally higher for SFilter than for time-warp for user functions with no
busy loop (SFilter-2 and Time-warp-2). We suspect that this is due to a
large number of events being processed quickly before a rollback-info message
arrives and the message causing a long rollback. In time-warp, averaging is
done over all the anti-messages, with rollback distance varying from small
values to large values. As seen in Figure 5, number of rollbacks was generally
higher for time-warp than for SFilter. For large busy loops, both algorithms
had much smaller average rollback distance (between 1 and 3), probably
because much fewer events were processed between rollbacks.

In Figure 5 we see that the efficiency for SFilter-1 increases significantly
for higher message densities over Time-Warp-1. However in the case of a
non-busy user function, we find that the efficiency for the two schemes is
comparable. Efficiency is related to number of negative messages, because
more the need for cancellation of messages, poorer the efficiency.

In our implementation, total CPU system time is closely correlated with
total number of messages, including negative messages, sent in the system.
As shown in Figure 5, SFilter generally did better than time-warp, except in
one case at low message densities. A profile of the system execution showed
that a significant amount of time taken in SFilter was due to the send-
ing of rollback-info messages. This overhead can be reduced by selectively
sending rollback-info messages only to the processes to which messages have
been sent since the rollback time (as described in Section 4), and not to all
processes connected via output channels as is being done currently in our
implementation.

CPU user time is much lower in all cases for SFilter compared to time-
warp, probably due to two factors: (1) generally higher efficiency of SFilter
in requiring lower number of events to complete the same simulation and
(2) fewer number of rollbacks (and hence less state restoration). Somewhat
to our surprise, simulations with busy loop used lower CPU user time than

simulations with busy loop. We found that total number of events executed
in the case with no user busy loop was significantly higher than the simu-
lation with busy loop, and that is probably contributing to the CPU user
time.

We think the biggest win with our algorithm is in the reduction in the
total number of rollbacks and use of one rollback-info message for cancel-
ing multiple messages. The two factors are contributing to lower CPU user
times and also system times. We are currently running our experiments on
a platform with high communication overheads. Looking at execution time
plots for SFilter-1 and time-warp-1 in Figure 5, it seems that if communica-
tion costs are lower, our algorithm should continue to do well. With reduced
effect of communication overheads with a busy user loop, the real time taken
for execution using SFilter was found to be much lower than that required
by time-warp.

4 Other Important Considerations

In this section, we remove the assumptions regarding fixed topology and
FIFO channels and discuss some of important considerations that are likely
to arise in the use of SFilter.

4.1 High fan-out or dynamic topology

If LP’s in the simulation have high fanout, or their set of immediate neigh-
bors is dynamic, it may make sense to still maintain an Output Queue. The
main purpose of the Output Queue would be to restrict sending of rollback-
info messages to just those processes that have seen a message requiring
cancellation rather than to a large set of processes. So, upon rollback, a
process would first examine its Qutput Queue to determine the set of pro-
cesses to which it had erroneously sent messages, and then it would send a
single rollback-info message to just those processes.

The main difference with time-warp here would be that only a single
rollback-info message is required for cancellation rather than a series of
anti-messages. In addition, if memory is a concern, the data part of the
message does not have to be saved in the Qutput Queue because rollback-
info messages do not use the data part.

4.2 Lazy cancellation

If an Qutput queue is maintained as described in the Section above, it is
straightforward to implement lazy cancellation. Basically, if the same mes-
sages are being generated after a rollback recovery, then rollback-info mes-
sages need not be sent. Of course, the messages in the Output Queue would
need to contain the data part for implementing lazy cancellation.

Even if an Output queue is not maintained, it is possible to implement
a variant of lazy cancellation, with the receiver of a rollback-info message
delaying cancellation and rollback until it starts receiving a different set of
messages.

4.3 Shared memory architectures

For shared memory architectures, we feel that direct cancellation [7] sub-
sumes both SFilter and time-warp. In direct cancellation, causal depen-
dency is explicitly maintained in a shared data structure, so the distinction
between whether sender or the receiver maintains causal dependency is not
there. So, we expect that direct cancellation is a better implementation for
shared memory architectures.

4.4 Non-ordered communication channels

Time-warp requires reliable, but not necessarily ordered, delivery of mes-
sages. We feel that in many environments it generally not much more ex-
pensive to implement protocols with ordered delivery over reliable delivery.
However, where there is a significant difference in performance of the two
communication protocols, it is important to consider how SFilter adapts to
non-ordered communication protocols.

The basic change required in SFilter is that a process (say) has to
buffer a rollback-info message (say from P) until all messages that were sent
by P prior to the rollback-info message have been received. (This is similar
to the requirement in time-warp that an anti-message has to buffered until
its corresponding regular message is received.)

Since P has to anyway keep track of unacknowledged messages (for re-
liable delivery), one way to implement such a protocol would be for P to
simply inform ¢ when all messages to ¢ prior to a rollback-info message
have been acknowledged. ¢ can use that information to discard the corre-
sponding rollback-info message if it is in the buffer.

10

When () receives a message from P, it should simply cancel the message
before processing if it conflicts with a buffered rollback-info message from
P (called filtering in Filter [10, 11]). This checking for conflict is likely to
be of comparable cost to checking against anti-messages that is required in
time-warp.

Overall, we feel that the use of an unordered reliable communication
protocol is likely to largely maintain the benefits of SFilter (a major benefit
being the use of a single rollback-info message for canceling multiple mes-
sages). Unfortunately, we could not carry out experiments to determine that
at the present time because the ISIS communication package only provides
communication protocols with ordered delivery. It would be interesting to
see experiments being done on other platforms or using other communica-
tion packages and get a more detailed analysis of effect of using ordered vs.
unordered messages on optimistic simulations.

5 Conclusions

We presented an interesting algorithm for carrying out optimistic simula-
tions. The algorithm does not require processes to maintain an Output
Queue (especially for simulations with low fanouts) and uses a single nega-
tive message to cancel several erroneously sent messages. Initial performance
results indicate that the algorithm does seem to offer several improvements
over time-warp. We hope that this paper will lead to further study of the
approach, especially on platforms more suitable for distributed simulations.
We are currently trying to port our system and our time-warp implementa-
tion to oplatforms with lower communication overheads (initially to Meiko,
a transputer-based system), to see the effect of lower communication over-
heads on our results.

Acknowledgments

This work was supported by the National Science Foundation under the

Grant NSF-CCR-8909674.

11

Rollbacks

50000

40000

30000

20000

10000

Message Density

12

Time-Warp-1
Time-Warp-2
SFilter-1
SFilter-2

Negative messages

70000

60000 -

50000

40000 -~

30000 -~

20000 -

10000

—D&—— Time-Warp-1
—&—— Time-Warp2
—8— SFilter-1
—&—— SFilter-2

)
IN
o

Message Density

10

Average Rollback Distance

—D&—— Time-Warp-1
—&—— Time-Warp-2
—8— SFilter-1
—&—— SFilter-2

Message Density

14

10

Efficiency (%)

60

50

40

30

20

10

©

N

Message Density

15

Time-Warp-1
Time-Warp-2
SFilter-1
SFilter-2

CPU System Time

60000

50000

40000 -~

30000

20000 -

10000 -

—D&—— Time-Warp-1
—&—— Time-Warp-2
—8&—— SFilter-1
—&—— SFilter-2

Message Density

16

10

CPU User Time

200000

—D&—— Time-Warp-1
—&—— Time-Warp-2
—8— SFilter-1
——— SFilter-2

100000

Message Density

17

Real Time in seconds

7000

6000

5000

4000

3000

2000

1000

—D&—— Time-Warp-1
—&—— Time-Warp-2
—8— SFilter-1
—&—— SFilter-2

Message Density

18

10

References

[1]
[2]
[3]

[12]

The ISIS System Manual, Version 2.0, April 1990.
R.E. Bryant. Simulation on a distributed system. COMPSAC, 1979.

J. Butler and V. Wallentine. Message bundling in time warp. In Sim-
ulation Work and Progress, 1991 Western Simulation Multiconference,
January 1991.

K.M. Chandy and J. Misra. Distributed simulation: A case study in
design and verification of distributed programs. IFFE TSFE, 1979.

K.M. Chandy and J. Misra. Asynchronous distributed simulation via a
sequence of parallel computations. CACM, 24(11):198-206, April 1981.

Richard M. Fujimoto. Parallel discrete event simulation. Communica-

tions of the ACM, 33(10):30-53, October 1990.

Richard M. Fujimoto. Time warp on a shared memory multiproces-
sor. Transactions of the Society for Computer Simulation, 6(3):211-239,
July 1990.

David R. Jefferson. Virtual time. Trans. on Programming Languages
and Systems, 7(3):404-425, July 1985.

B.D. Lubachevsky. Efficient distributed event-driven simulations of
multiple-loop networks. Communications of the ACM, 32:111-123, Jan-
uary 1989.

A. Prakash and R. Subramanian. Conditional knowledge approach to
optimistic distributed simulations. Technical Report CSE-TR-86-91,
Department of EECS, U. of Michigan, Ann Arbor, 1991.

A. Prakash and R. Subramanian. Filter: An algorithm for reducing
cascaded rollbacks in optimistic distributed simulations. In Proc. of the
24th Annual Stmulation Symposium, 1991 Simulation Multiconference,
New Orleans, pages 123132, April 1991.

Atul Prakash and C.V. Ramamoorthy. Hierarchical distributed simula-
tions. Eighth International Conference on Distributed Computing, San
Jose, pages 341-348, 1988.

19

[13]

P. Reiher, S. Bellenot, and D. Jefferson. Temporal decomposition of
simulations under the time warp operating system. Proc. of the SCS
Multiconference on Advances in Parallel and Distributed Simulation,
23(1):47-54, January 1991.

L.M. Sokol, D.P. Briscoe, and A.P. Wieland. MTW: A strategy for
scheduling discrete simulation events for concurrent execution. Proceed-
ings of the SCS Multiconference on Distributed Simulation, 19(3):34-42,
July 1988.

20

