
Lecture 13
 Project Discussion
Working with large

datasets
Atul Prakash

IMDB movies list

• Contains over 1 million lines.

• We want to run queries on it, such as
finding movies that contain a keyword or
movies that were released in a given year

• Takes around 30 seconds on my machine to
read the data in and do basic parsing on it

• Difficult to know if the answers to queries
are right

First Step
• Produce a smaller

dataset for testing

• Write a Java program to
read in the movies.list
file and write out (after
stripping out the
irrelevant lines at the
beginning), say, first 100
movies.

• For a better sample,
you could also do a
random subset of
lines (e.g., output a
line with probability
0.0001).

• Hint: The lines with
movies contain a tab
character. Others do
not.

I/O
• You can use the Scanner

class to read in the file
line by line.

• For writing out to a file,
you create a file
reference and make a
PrinterWriter object
from it. Now you can
write to it just like to
System.out.

File out = new File("outputfile.txt");
	 	 	 PrintWriter fop = new PrintWriter(out);

 fop.println("output string");
 …
 fop.close();

Note: Also, need to declare or catch FileNotFoundException

Java Memory
• Java allows up to 32

MB of memory to
programs by default.

• This may not be
enough.

• You can increase the
limit. Give "-
Xmx512m" option
to java to increase
memory to 512MB.

Measuring Performance
• How much time does

your program take to do
some work, e.g., reading
a file in?

• Use
System.getCurrentTime
Millis() to retrieve the
current time in
milliseconds since Jan. 1,
1970.

long start = System.currentTimeMillis();

… your code that you want to measure …

long endread = System.currentTimeMillis();
System.out.println("Read time: " + (endread-start)/1000.0 + " s");
	 	

Anecdotes: History of
Computer Time

• Jan. 1, 1970 reference point
comes from Unix operating
system, which originated
around that time.

• Y2000 bug: many computer
programs failed in 2000
because year was stored as
a 2-digit number in many
programs

• Year 2038 problem or
"Unix millenium bug": many
computer programs will fail
in 2038 because they use
32-bit integers to represent
time. If time is measured in
seconds, time will rollover
to 0 on Jan. 19th, 2038.

http://en.wikipedia.org/wiki/Year_2038_problem

Good Strategies for
Measuring Time

• Computers are fast, but the clock
resolution may be at the interval of 1/60
sec or millisecond

• Strategy: Measure time for n operations
and divide by n, rather than averaging t1,
t2, ..., tn, if ti are too small as compared to
clock resolution

Processing User
Queries

• File I/O is very slow
(around 30 seconds on
my computer to read in
the entire movies.list).

• Better to read the file
only once, store it in
memory and then
answer queries using the
in-memory data

Read movies.list
Store data in a list of movies
while (true) {

read search query
(if quit command) break;
search through the list and
output answer

}

Lists

• We showed how to build our own lists
using arrays earlier.

• Java provides a standard implementation as
well:

• ArrayLists

ArrayList
• ArrayList in Java: array-based lists.

• Suppose you have a class called Movie that
contains information about a movie (e.g.,
title, year)

ArrayList<Movie> a = new ArrayList<Movie>();

creates a reference to a list of objects a, which must all be of
class "Movie".

Generics in Java

• This notion of making a class
parameterized by type is called "generics".
The classes are "generic" for multiple types.

• Rather than defining different list classes for
different types of objects, one can use
generic classes.

Defining your own
generic list

• See attached file MyGenericList.java and its
test.
public class MyGenericList<T> { // list of values of type T
	 private T[] data; // list itself. null values at the end
	 int capacity; // maximum capacity of the list
	 int size; // current size of the list
	 static final int DEFAULT_CAPACITY = 100;

	 public void addElementv1(T a) {
	 	 // add an object a to the end of the list
	 	 	 getData()[size] = a;
	 	 	 size++;
	 }

	 public T getElement(int index) {
	 	 // find the element at given index
	 	 return getData()[index];
	 }

ArrayList<T> methods

• Lookup Java Documentation. Key methods:

• add(T element): add an element to the
list

• T get(int index): get an element

• int size(): get the size of the list

Example
import java.util.ArrayList;

public class ArrayListDemo {
	 public static void main(String[] args) {
	 	 ArrayList<Integer> intarray;
	 	 intarray = new ArrayList<Integer>();
	 	 intarray.add(4);
	 	 intarray.add(10);		
	 	 System.out.println("size of the list = " + intarray.size());
	 	 for (int i = 0; i < intarray.size(); i++) {
	 	 	 System.out.println(i + "th element: " + intarray.get(i));
	 	 }
	 }
}

size of the list = 2
0th element: 4
1th element: 10

