
IMDB Data Set
Topics:  Parsing Input using 

Scanner class

Atul Prakash



IMDB Data Set
• Consists of several files:

• movies.list: contains 
<movies, year>

• actors.list: contains 
<actor, list of movies>

• actresses.list: 
<actress, list of 
movies>

• aka-titles.list: <title, 
aliases of the title>

• Bunch of other files, 
including other crew, 
fan ratings, awards, 
running times, etc. 



Example Queries

• List of movies released in a given year

• Search for movies, given keywords

• Find actors in a given movie (requires 
actors.list)

• Find actresses who have acted with a 
particular actor, e.g., Woody Allen (requires 
actresses.list and actors.list)



Some References

• IMDB dataset itself in plain-text downloadable files (download just the 
movies.list.gz for now, and uncompress it).

• http://www.imdb.com/interfaces

• An example report of some analysis of the IMDB dataset (glance through it):

• http://had.co.nz/data/movies/description.pdf

• A research paper on correlating Netflix dataset with IMDB to break 
anonymity of reviewers in Netflix (optional read -- shows an example of 
privacy risks): 

• http://www.cs.utexas.edu/~shmat/shmat_oak08netflix.pdf



Sample Contents (movies.list)
'Doctor Who': The Tom Baker Years (1991) (V)            1991
'Doctor Who': The Troughton Years (1991) (V)            1991
'Doctor Who': Then and Now (1987) (TV)                  1987
'Doctor Who': Thirty Years in the Tardis (1993) (TV)    1993
'Doctor Zhivago': The Making of a Russian Epic (1995) (TV)      1995
'Dog Day Afternoon': After the Filming (2006) (V)       2006
'Dog Day Afternoon': Casting the Controversy (2006) (V) 2006
'Dog Day Afternoon': Recreating the Facts (2006) (V)    2006
'Dog Day Afternoon': The Story (2006) (V)               2006
'Don't Talk' (1942)                                     1942
'Donnie Darko': Production Diary (2004) (V)             2004
'Dr. Who': Daleks - The Early Years (1993) (V)          1993
'Duel': A Conversation with Director Steven Spielberg (2004) (V)        2004
'Dune': Models and Miniatures (2006) (V)                2006
'Dune': Special Effects (2006) (V)                      2006
'Dune': Wardrobe Design (2006) (V)                      2006
'E' (1981)                                              1981

… 

Dune (1973)                     1973
Dune (1984)                     1984
Dune (2010)                     2010
Dune 2000 (1998) (VG)                   1998
Dune 7 (2002)                       2002
Dune Buddies (1978)                 1978
Dune Bug (1969)                     1969
Dune II: The Building of a Dynasty (1992) (VG)      1992
Dune Surfer (1988)                  1988
Dune Warriors (1990)                    1990
Dunechka (2004)                     2004
Dunera Boys, The (1985) (TV)                1985
Dunes of Destiny (2005)                 2005
Dung che sai duk (1994)                 1994

Format: <unique title, year>

Titles made unique by including the year of the 
release. Also,  articles written after comma. E.g., 
"The Godfather" is written as "Godfather, The".  
Annotations after the title:
(V): direct video release
(TV): made for TV
(VG): video game

More details on title formatting: 
http://www.imdb.com/help/show_leaf?titleformat



Reading in Data
• Several classes in Java to 

help parse and read 
input:

• String.split methods

• Scanner class

• StringTokenizer class

• Pattern and Matcher 
classes

• Reference with 
examples:

• http://www.javapractices.com/
topic/TopicAction.do?Id=87

• Or Google search for: 

• Java practices Parse 
text input



Example

• Sample input file
height = 167cm
mass =  65kg
disposition =  "grumpy"
this is the name = this is the value

• Format: key = value

• Strategy: read line by line. Use "=" as a 
seperator to extract key and value. Store 
in a list.



Scanner Class

• Scanner class is very powerful for string 
parsing and may be all you need in many 
cases

• For examples illustrated here, see: http://www.javabeat.net/tips/24-parsing-input-using-scanner.html

import java.util.Scanner;   // import Scanner class from java.util package
public class ScannerDemo {
	 public static void example1() {
	 	 Scanner scanner = new Scanner("EECS 282 is a great class");
	 	 while (scanner.hasNext()){
	 	 	 System.out.println(scanner.next());
	 	 }
	 }
	 public static void main(String[] args) {
	 	 example1();
	 }
}

EECS
282
is
a
great
class



Field-separated values

	 public static void stringScanningWithSeparator() {
	 	 Scanner scanner = new Scanner("George Washington, President, born 1732");
	 	 scanner.useDelimiter(",");
	 	 while (scanner.hasNext()) {
	 	 	 System.out.println(scanner.next()); // will print 3 items.
	 	 }
	 }

George Washington
 President
 born 1732

Here, comma is used as a separator.  Can use any 
string as a separator, e.g., "\t" (tab)

Default seperator: whitespace



What does the 
following print?

	 public static void stringScanningWithSeparator() {
	 	 Scanner scanner = new Scanner("George Washington, President, born 1732");
	 	 // scanner.useDelimiter(",");
	 	 while (scanner.hasNext()) {
	 	 	 System.out.println(scanner.next()); // will print 3 items.
	 	 }
	 }

Are spaces printed?
How are commas treated?



Reading Typed Values

	 public static void scanInts() {
	 	 Scanner scanner = new Scanner("1 3");
	 	 int first = scanner.nextInt();
	 	 int second = scanner.nextInt();
	 	 System.out.println("first = " + first + "; second = " + second);
	 }
	

Output: 
first = 1; second = 3

Similar methods: nextBoolean, nextByte, 
nextDouble, etc. To read String, just use next() 



Checking Input Type 
Before Reading

• Use hasNextType method, where Type is 
the type being read, e.g., hasNextInt, 
hasNextBoolean, hasNext, hasNextLine

	 public static void scanTypes() {
	 	 Scanner scanner = new Scanner("1 3 5 7 9 11 abc 13 def 15");
	 	 while (scanner.hasNextInt()){
	 	     System.out.println(scanner.nextInt());
	 	 }
	 } 1

3
5
7
9
11

hasNextInt() returns false on 
"abc"



Reading Files

• Scanner s = new Scanner(FileObject)

• Creates a scanner on a file object

• Examples of file objects:

• System.in: standard input, by default, 
terminal input

• File in = new File(filepath);



Example

	 public static void scanLinesFromFile() {

	 	 File in = new File("/Users/aprakash/Documents/282/workspace/282/input.txt");
	 	 Scanner scanner = new Scanner(in); 
	 	 int linenum = 1;
	 	 while (scanner.hasNextLine()) {
	 	 	 String line = scanner.nextLine();
	 	 	 System.out.println(linenum + ": " + line);
	 	 	 linenum++;
	 	 }
	 	 scanner.close();  // important to close scanners on files.
	 }



File Paths on Windows

	 	 // parse a file containing lines with part1,part2
	 	 // For windows, you would do something like
	 	 File in = new File("C:\\282\\input.txt"); 
	 	

Two backslashes needed because "\" is also used 
in other ways, e.g., \n, \t. It must be "escaped" with 
another backslash.

 // or you can use forward-slashes. Java will convert / to \\:
	 	 File in = new File("C:/282/input.txt");
	 	 // You can also use relative path names, e.g., "282/input.txt".
	 	 // In Eclipse, go to Run->Run Configurations...->Arguments to 
        // set current directory. Relative paths are with respect to the current

   // directory.



Closing files

• scanner.close() is important. It closes the 
scanner object, as well as the file bound to 
it. Otherwise, file remains open and 
consumes an operating system resource. 

• Always close files when done reading them.



Exceptions in I/O

• Unfortunately, Eclipse gives an error in the 
above code about an uncaught exception: 
FileNotFoundException 



Reason

	 	 File in = new File("/Users/aprakash/Documents/282/workspace/282/input.txt");
	 	 Scanner scanner = new Scanner(in); 

What if the file does not exist?
Unlike run-time errors (e.g., divide by 0), Java 

requires you to handle I/O exceptions



Declaring the thrown 
exception

	 public static void scanLinesFromFile() throws FileNotFoundException {
	 	 // parse a file containing lines with part1,part2
	 	 // For windows, you would do something like
	 	 // File in = new File("C:\\282\\input.txt"); 
	 	 // or you can use forward-slashes on Windows. Java will convert:
	 	 // File in = new File("C:/282/input.txt");
	 	 // You can also use relative path names, e.g., "282/input.txt".
	 	 // In Eclipse, go to Run->Run Configurations...->Arguments to set current directory)
	 	 File in = new File("/Users/aprakash/Documents/282/workspace/282/input.txt");
	 	 Scanner scanner = new Scanner(in); 
	 	 int linenum = 1;
	 	 while (scanner.hasNextLine()) {
	 	 	 String line = scanner.nextLine();
	 	 	 System.out.println(linenum + ": " + line);
	 	 	 linenum++;
	 	 }
	 	 scanner.close();  // important to close scanners on files.
	 }



Alternative -- Catch 
Exceptions

	 public static void scanLinesFromFile2()  {
	 	 File in = new File("/Users/aprakash/Documents/282/workspace/282/input.txt");
	 	 Scanner scanner;
	 	 try {
	 	 	 scanner = new Scanner(in); 
	 	 } catch (FileNotFoundException e) {
	 	 	 System.out.println("File not found");
	 	 	 return;
	 	 }
	 	 int linenum = 1;
	 	 while (scanner.hasNextLine()) {
	 	 	 String line = scanner.nextLine();
	 	 	 System.out.println(linenum + ": " + line);
	 	 	 linenum++;
	 	 }
	 	 scanner.close();  // important to close scanners on files.
	 }



Summary

• Scanner class is useful for reading files and 
parsing them.

• Other useful methods for parsing: String 
class functions. E.g., trim() method, 
lastIndexOf(String), substring(int start, int 
end), and split() methods.


