
Practical Unit Testing
jUnit
Atul Prakash

Unit Testing

• Software must be reliable for it to be useful

• You would not like a microwave oven or TV
that keeps misbehaving. It could be even
dangerous

• Same thing with software. Today, software
controls your car, iPod, cellphone, your
records at the university, etc. It is
everywhere even though you don't see it.

Role of Testing in
Development

• Typically, companies spend 50-60% of their
software budgets on testing. More than on
development.

• If bugs remain in the code after release, it is
usually expensive to fix them.

• Bad publicity; releasing patches on a time
cycle that is not under your control; legal
liability; fixes may break other things; etc.

Unit Testing

• As you write each module (e.g., class), write
the corresponding tests.

• If you find a bug in your code that is not
uncovered by testing, add a test case as well
that exhibits the bug first. That way, you will
prevent the bug from creeping back again.

• Software changes all the time. Testing helps
ensure that changes don't break old tests.

Testing we have seen so
far...

• SpaceshipGameTest: we wrote that to test
some of the functions provided by the
game.

• Assignment 4:

• SquareShipTest: test a square-shaped ship.

• BirdOfPreyTest: test a ship of another
shape

Making testing
convenient

• Break your tests into small, independent
tests. That way, you can say that your
program passes m out of n tests. Fixes will
be easier as well.

• What is it that you would like to see
improved in the way we have been testing
so far?

jUnit

• jUnit is a standard unit testing framework
for Java.

• pyUnit: similar framework in Python

• cppUnit: a similar framework for C++

Sample Program and
Test

• Download the zip file from Pragmatic Unit
Testing book to a directory of your choice.

Add the files to jGrasp
or Eclipse

• unzip the downloaded files to a directory.

• In jGrasp, go to Project -> New… and go
to the directory containing the downloaded
files. Create a project there called
junittesting.

• Add the files "Largest.java" and
"TestLargest.java" to the junittesting
project.

Take a few minutes ...

• Read through the tests that are there in the
TestLargest.java. Understand what they are
doing.

• Largest takes an int array and finds the
largest value in that array

Test structure 10 import junit.framework.*;
11
12 public class TestLargest extends TestCase {
13
14 public TestLargest(String name) {
15 super(name);
16 }
17
20 public void testOrder() {
21
22 assertEquals(9, Largest.largest(new int[] {9,8,7}));
23
24 assertEquals(9, Largest.largest(new int[] {8,9,7}));
25
26
27 assertEquals(9, Largest.largest(new int[] {7,8,9}));
28
29
30 }
31
37 public void testEmpty() {
38 try {
39 Largest.largest(new int[] {});
40 fail("Should have thrown an exception");
41 } catch (RuntimeException e) {
42 assertTrue(true);
43 }
44 }
45
46
48 public void testOrder2() {
49 int[] arr = new int[3];
50 arr[0] = 8;
51 arr[1] = 9;
52 arr[2] = 7;
53 assertEquals(9, Largest.largest(arr));
54 }

58 }

Junit Tests
• Class inherits from

TestCase

• Constructor needed as
given.

• It provides a few new
methods:

• assertEquals(value,
expression)

• assertTrue(expr)

• assertFalse(expr)

• fail(msg)

• Each test run till it
either completes or an
assertion fails

Assertions
• Assertions are simply a

condition that you
expect to be true at a
given point in the
program, based on its
specs:

• We saw:

• assert expression

• If the expression is false,
the program quits.

jUnit Assertions
• jUnit provides a few

additional ways of
expressing assertions.

• assertTrue(expr) is similar to

• assert expr

• assertFalse(expr) is similar to:

• assert !expr

• assertEquals(val, expr) is similar
to:

• assert val ==expr

• fail(msg) is similar to

• assert false

• But it also prints a msg.

Example Test

48 public void testOrder2() {
49 int[] arr = new int[3];
50 arr[0] = 8;
51 arr[1] = 9;
52 arr[2] = 7;
53 assertEquals(9, Largest.largest(arr));
54 }

Equivalent test

48 public void testOrder2() {
49 int[] arr = new int[3];
50 arr[0] = 8;
51 arr[1] = 9;
52 arr[2] = 7;
53 assertTrue(Largest.largest(arr) == 9);
54 }

jUnit: Pros

• Unlike our tests so far, jUnit is more flexible. If one
test fails (because an assertion failed), it continues
to the next test.

• No main required. jUnit provides one in its
junit.textui.TestRunner class.

Digression: Java Code
Organization

• Java provides a way to organize code

• Not use a package: Default package

• Using packages

Packages

• Naming packages

• The package names matches the
directory name and can be hierarchical

• java.util has classes stored in

• [path-to-java-packages]/java/util

Declaring your file to
be within a package

• At the top of your source file, you add
package edu.um.eecs282.hello;

class HelloWorld {

 // …

}

• For this example

• File name = HelloWorld.java

• Class name = HelloWorld.class

• Location = [path-to]edu/um/eecs285/hello

CLASSPATH
• jar files: Packages in Java

are often compressed
into a jar file. E.g.,
junit-4.5.jar.

• To extract (you do
not need to though),
you can use the jar
command:

• jar xf junit-4.5.jar

• Java uses an
environment variable
called CLASSPATH to
find jar files or other
packages.

• Format:
dir1;dir2…;dirN on
Windows

• dir1:dir2:…:dirN on
Unix/Mac OS.

jGrasp and jUnit

• You need to tell jGrasp where the jUnit
package is.

• Go to Settings -> Path/ClassPath -> Project
…

• Add the directory containing junit's jar file
to the path.

jGrasp and jUnit
• jUnit provides its own main method for

running tests. From command-line
(provided your CLASSPATH includes junit's
jar file):

• java junit.textui.TestRunner TestLargest

• Tell jGrasp to use that:

• Settings->Compiler Settings -> Project
<unittesting>

• Select the Flags/Args tab under Compiler

Modify FLAG2 for Run

Running the tests

• Compile the project and run TestLargest

• You should see the list of failed tests and
the line number

Eclipse

• Eclipse is much easier. Simply select junit
version 4 if you are given the choice (or the
latest version) anywhere.

• File->Import -> General -> FileSystem

•

Select From directory

Next steps

• Click on the directory "utj". You should see
the files on the right side. Deselect all and
select Largest.java and TestLargest.java.

Fix errors

• TestLargest.java may show errors. Hover
your mouse over the word "junit" and
select a fix to reorganize the project. You
may have to add junit3 to the project in
Eclipse.

Run the test

• Run the TestLargest as a jUnit test. You
should see a window showing the failed
tests. Clicking on the failed line should take
you to that line in TestLargest.

• Select Project -> Run, when you have
selected TestLargest.

Common Next Steps

• Read through your test and the code to
see why the test failed.

• Set breakpoints and use a debugger if
necessary to help identify the problems.

• For jGrasp, you will have to change the
FLAG2 settings for the Debugger.

