Working with Classes

Atul Prakash

Class

® Corresponds to real-world entities, such as
student, course, dog, animal, shape, etc.,
which are represented inside a program

® E.g,a class of students

® Objects or class instances: individual
instances that belong to the class

Filing Cabinet Analogy

® Think of a class as a drawer in a
filing cabinet

® Think of objects as folders
within the drawer. Each folder
has information about the
object

® Folders can be added/removed
over time

Example

public class Bicycle {
public int gear;
public int maxspeed;
¥

/* Create two bicycles */
. this code should be in main or another function ...

Bicycle bl
Bicycle b2
bl.gear = 10;
bl.maxspeed = 40;
b2.gear = 1;
b2 .maxspeed = 20;

new Bicycle();
new Bicycle();

The above code defines a drawer for containing
information about bicycles.We created two bicycles
with different gears and maximum speeds, respectively.

Static variables

® In a filing cabinet, there is often information
that is specific to a drawer, not a folder. In
our example:

® TJotal number of bicycles created
® Maximum possible speed of a bicycle

® Static variables are drawer-specific, rather
than folder-specific.

Static variables - sticky
notes on a drawer

Representation in Java

public class Bicycle {
public int gear;
public 1nt maxspeed;
public static int numberOfBicycles = 0;

ke

Bicycle bl = new Bicycle();
Bicycle.numberOfBicycles++;
Bicycle b2 = new Bicycle();
Bicycle.numberOfBicycles++;

bl.gear = 10;
bl.maxspeed = 40;
b2.gear = 1;

b2 .maxspeed = 20;

Which variables are object-specific, which ones are
global to the whole class!?

Constructors

® VWe want an invariant that the number of
bicycles created is always equal to the
numberOfBicycles.

® But, right now, there is no guarantee of that

public class Bicycle {
public int gear;
public 1nt maxspeed;
public static int numberOfBicycles = 0;

// code that uses the class...
Bicycle bl = new Bicycle(); Two bikes were created,

Bicycle b2 = new Bicycle();

but the user forgot to bump up
Bicycle.numberOfBicycles++;

the count

Constructors provide
safety

public class Bicycle {
public int gear;
public int maxspeed;
private static int numberOfBicycles = 0;

public Bicycle(int g, int s) {
this.gear = g;
this.maxspeed = s;
Bicycle.numberOfBicycles++;
}
¥
// Use
Bicycle bl = new Bicycle(10,40);
Bicycle b2 = new Bicycle(l, 20);
// Correct count will be printed
System.out.println(Bicycle.numberOfBicycles);

® Constructors are
public functions
within the class
with the same
name as the class
name.

® Parameters can be
passed in to
initialize the object

Details

public class Bicycle {
public int gear;
public int maxspeed;
public static int numberOfBicycles = 0;

public Bicycle(int g, int s) { g and S are pal”ametel’s
this.gear = g;
this.maxspeed = s; . : :)
Bicycle.numberOfBicycles++; th|S.gear means th|S Ob]eCtS
, gear value, etc.

this is a keyword in the
language

Variables in classes

public class Bicycle {
public int gear;
public int maxspeed;
public static int numberOfBicycles = 0;

public Bicycle(int g, int s) {

gear = g;
maxspeed = s;
numberOfBicycles++;

¥
}

OK to omit “this” in most places. The system figures out
that gear refers to this bicycle’s gear, etc.

Innermost rule

® Here, this.gear is

public class Bicycle {
public int gear; necessary. I here
publLic int maxspeed; are two variables

public static int numberOfBicycles = 0;

N | called gear in the
public Bicycle(int gear, int s) {

this.gear = gear; constructor.
maxspeed = s;
numberOfBicycles++; WIthOUt “this”,
ks .
} the innermost
this.gear -> bicycle’s gear variable definition of gear

gear -> local parameter gear
maxspeed -> bicycle’s maxspeed, since no local
variable with the same name

wins.

Class invariants

® Ve may want to guarantee certain
properties for all objects in a class. For

example, suppose we want all bikes to have
the following constraints:

® (0 <= gears

® 0 <= maxspeed <= |50

Problem

® A user of the class can violate the
constraints easily by accessing the class
variables directly

public class Bicycle {
public int gear;
public int maxspeed;

j..
/* Create two bicycles */

. this code should be in main or another function ...
Bicycle bl = new Bicycle(10, 40);

bl.gear = -100; // bad value, but legal in Java
bl.maxspeed = 5000;

Private variables and
public methods

® Solution: make variables private in the class

® Provide safe public methods for users to
read/write the variables

| leinas nriviata varinhla a_nd PUbI'C methOdS

public class Bicycle {
private int gear;
private int maxspeed;
public static int numberOfBicycles = 0;
public boolean setGear(int g)

public Bicycle(int g, int s) { if (g < @) return false;
assert(g >= 0); gear = g;
assert(s >= 0 & & s <= 150); return true;
gear = g; }
maxspeed = s;
numberOfBicycles++; . .
// invariant should be true at this point pUbllc int getGear'() {
1 return gear;

}

public boolean setSpeed(int s) { 1 // end class
1f (s <@ Il s > 150) {
return false;

maxspeed = s;
return true;

}

public int getSpeed() {
return maxspeed;

}

gear and maxspeed made private.Added setters and getters. (Eclipse can generate setters and getters.)

Parsing a Method

public boolean setSpeed(int s) {
if (s <@ Il s> 150) {
return false;

h

maxspeed = s;
return true;

® setSpeed takes a parameter s of type integer as
an argument

® |t returns a boolean value as a result

Getters and Setters

® Methods to read private variables are called
getters. Usually, named getVariableName().

® Methods to set private variables safely are
called setters. Usually, named
setVariableName().

Public versus Private

® private: visible only within the class
® private String myname;
® public: visible outside the class and package

® public String getName()

With gear and
maxspeed as private:

® Following is possible:
® Bicycle b = new Bicycle(10, 60);
® bgear =-2; // should be illegal
® b.maxspeed = -10;// should be illegal

Methods

® Besides getters and setters, additional
methods can exist to access or modify the
state of an object. In the filing drawer
analogy, think of a method as a standard
recipe attached to each folder that explains
how to access or modify the folder data

® Public methods: intended for outsider use

® Private methods: intended as helper
functions to assist the public methods. Not
accessible directly from outside the class

Testing Invariants

® How do we know that we implemented
setters correctly, respecting the invariants?

® Test the invariants at the end of the
constructor and at start and exit from each

public method

Adding invariants for safer code

public boolean setSpeed(int s) {
testInvariants();

if (s <0 Il s> 150) {
testInvariants();
return false;

}

maxspeed = s;
testInvariants();
return true;

}

private void testInvariants() {
assert (maxspeed >= 0);
assert (maxspeed <= 150);
assert (gear >= 0);

f you forget a check in setSpeed, hopefully, the invariant

checks will catch the error

Constant variables

® Variables can be declared as "final" to tell
Java that they will not change in value.

® public static final double Pl =
3.14159265358979323846;

Example

® double x = Math.PI;
® Declaration of Pl within the Math class:

® public final double Pl =
3.14159265358979323846;

Class methods

® You may need methods that are associated
with the drawer, rather than a particular
folder within the drawer

® For example, reading the number of
bicycles, which is a static variable

® Declare a method as “‘static’ to indicate

that it is not object-specific, but a class
method

public class Bicycle {
private int gear;
private int maxspeed;

private static int numberOfBicycles;

public static int getNumberOfBicycles() {
// 1nt x = this.gear; // illegal
return numberOfBicycles;

public Bicycle(int g, int s) {
gear = g;
maxspeed = s;
numberOfBicycles++;
}
.. rest same as before ..
¥
// usage:

int count = Bicycle.getNumberOfBycles();

Note the word static in getNumberOfBicycles()

Functions

® |n Python and C++, you are used to simply
using functions that do not belong to a
particular class

® Java does not permit functions to be
outside a class

® But, functions can emulated in Java by using
static methods and placing them in a class
like “Global” or in any class of your choice
and making them public

Example

double root = Math.sgrt (17.0);
double angle = 1.5;
double height = Math.sin (angle);

sqrt
public static double sqrt(double a)
Returns the correctly rounded positive square root of a double value. Special cases:

o If the argument is NaN or less than zero, then the result is NaN.
o If the argument is positive infinity, then the result is positive infinity.
o If the argument is positive zero or negative zero, then the result is the same as the argument.

Otherwise, the result is the double value closest to the true mathematical square root of the argument value.
Parameters:
a - a value.

Returns:
the positive square root of a. If the argument is NaN or less than zero, the result is NaN.

sqrt and sin functions in Math class: They are class
methods, not object methods. They can be used
without creating Math objects.

Code for the Math
class

http://www.docjar.com/html/api/java/lang/Math.java.html

Or google search for "Math java source”

main program in Java

® To run a Java program: ® When the method
java <Classname> completes, the program
ends.
® Java executes
<Classname>.main() ® [tis OK for multiple
method. classes to have main()
methods. E.g.,
® Must be declared SpaceshipGame and
static since it is class- :
specific, not object- Only one is executed.

specific

javadoc

® Java provides an automatic HTML
documentation generator from code.

® |t generates HTML from the code +
comments

® For it to work, the comments must follow a
certain style

® Javadoc enclosed within /** and */

Source
code

HTML
docs

124
125
126
127
128
129
130
131
132
133
134
135
136
137
138

Ccos

E I R B I
*

*

*/

Example

Returns the trigonometric cosine of an angle. Special cases:
<1i>If the argument is NaN or an infinity, then the
result is NaN.

<p>The computed result must be within 1 ulp of the exact result.
Results must be semi-monotonic.

@param a an angle, in radians.
@return the cosine of the argument.

public static double cos(double a) {

}

return StrictMath.cos(a); // default impl. delegates to StrictMath

public static double cos(double a)
Returns the trigonometric cosine of an angle. Special cases:
e If the argument is NaN or an infinity, then the result is NaN.
The computed result must be within 1 ulp of the exact result. Results must be semi-monotonic.

Parameters:

a - an angle, in radians.

Returns:

the cosine of the argument.

Special tags in Javadoc

® (@param <tab> parameter <tab> description
® @return <tab> description of what is returned

® (@author <tab> name of the author

The above show up properly formatted in HTML

Eclipse and Javadoc

Eclipse can automatically insert Javadoc-
style comment stub for you.

Select a method name, go to Source ->
Generate Element Comment

To generate javadoc files, do Project ->
generate Javadoc...

Browse to the project’s doc directory to
see the generated HTML files

Command-line Javadoc

® Use the javadoc command
® E.g., % javadoc <|ava files>

® More details on Javadoc. Read:
http://java.sun.com/j2se/1.5.0/docs/
tooldocs/windows/javadoc.html

Object References

® Dog d; ® d = new Dog("Fido",
"woof");
® disa to a
dog. It is not the ® d now refers to a dog
actual dog. object

® d=null

® nullis a special
object to help
initialize references.

Like O.

Dog class code

public class Dog {
String name;
String bark;

public Dog(String name, String bark) {
this.name = name; ConStrUCtor
this.bark = bark;
) method
public void bark() {
System.out.println(bark); methOd on a dog
}

H

Dog d; // Does not create a dog. Just a reference to do

d = new Dog("Fido", "woof");
d.bark(); d —

Creating Objects

® Usually, done using the new operator.
® Point p = new Point(10, 15);

® Dog d = new Dog("ﬁdO", "WOO'f");

e

d refers to an
object of type
Dog

create a new dog object
whose name is fido and who woofs

Assigning Object
References

® Dogdl,d2; e d2 =dI
® Creates two object ® Only copies the
references reference, not the
object
e d| = new Dog("Fido",
"woof"); d1 —
d2— |

dl—

Aliasing of references

wy Name: "Fido”
¥ | bark: "woof"

ammge Name: "Fido"
¥ | bark: "huff"

® What are dl.getBark() and d2.getBark()?

Java Variables

® All variables in Java are really pointers or
references to objects.

® Fxceptions: variables of primitive types,
such as int, boolean, float, double, long,
short, etc.

® Array variables are always references

Example: Primitive
Types vs. object types

public static void main(String[] args) {

int 1, j; // Not references. Basic types. 1 =0, J =0
1=2; // 1 =2,]=20

j=1; // 1 =2,]=2.

1= 3; // 1 =3,]J=2

System.out.println(j); // will print 2, not 3.

Dog d1, d2; // References.

dl = new Dog("Fido", "woof");

d2 = di; dl —> :
d1.setBark("huff"); d2 — et
d2.bark(); // will print "huff", not "woof" |

= name; "Fido"
bark: "huff"

}
Java convention: Types starting with small cap (e.g., int)

are primitive. Others should start with a capital letter
(e.g., String, Dog) and are object types.

Arrays of Objects

// Arrays of objects

Dog[] dogarray;// Create a reference to an array
dogarray = new Dog[3]; // Create 3 references to dogs

// Create the dogs

dogarray[@] = new Dog("Fido", "woof");
dogarray[1] = new Dog("Daisy”, "huff");
dogarray[2] = new Dog("Ginger", "woof");

ObjectReferences.java /Users/aprakash/Doc

Dog dl, dz;

dl = new Dog("Fido", "woof");

dz = di;

dl.setBark('hutf");

d2.bark(); // will print "huff", not "woof" IDo,,,I

// Assigning array references. i

int[] a;

int [] b; l] = 1 = |
a = new int[10]; 0 1 2
b = a; // reference copy. a and b refer to i

af4] = 3;

System.out.println(b[4]); // Will print 3.

// Arrays of objects
Dog[] dogarray;

(0] dogarray = new Dog[3];
dogarray[0] = new Dog('rido", "woof");
o dogartay[i] = few Dog(Dalsy ™ HIFETYE
dogarray([Z2] = new Dog(CGinger”, "wooi'); e
] M | dogarray [0]
Ref... Type |Dog [Current] v | View |Basic

Accessibility Context |ObjectReferences [Current]

Show Inaccessible Fields Sort By |Natural Order

¢ [l|id = 125 : Dog|
o [name = "Fido" : id = 378 : java.lang.String : Dog.name
o [bark = "woof" : id = 379 : java.lang.String : Dog.bark

er=NONE =-Xdebug =-Xrunjdwp:transport=dt_socket,suspend=y, s|

