
Defensive Programming
II - Loops

Atul Prakash

1

Break/continue in loops

• Loops can prematurely terminate if a break
is encountered. In that case, control
transfers to the statement after the loop.

• Loops can advance to the next iteration,
skipping rest of the loop, on a continue
statement.

2

Break/continue are
convenient, not necessary

• They can be eliminated by using additional
boolean variables

while (somecondition) {
 if (i < 10) break;
 ... do something with i;
}

boolean done = false;
while (somecondition && !done) {
 if (i < 10) done = true ;

if (!done) {
 ... do something with i;
 }
}

3

For versus while

• A for-loop can always be implemented
using a while loop

for (initializer; condition; advance) stmt;

initializer;
while (condition) {stmt; advance;}

is equivalent to

4

while -> for
• May be. Need to think about that one.

Probably true. Example: LoopEquivalence.java

• Using while is cleaner
code here.

5

Thinking about loops
What can we say about the values of sum, i, and k just

before and just after the loop?

6

Thinking about Loops

• Pre-condition: what is assumed to be true
before we enter the loop

• sum == 0 && i == 0

• Post-condition:

• sum = sum of values from 0 to k-1

• i >= k because that is the only way to
exit the loop.

7

Question

• Can we conclude that i must be equal to k
on exit? In other words, is the following a
valid post-condition?

• i == k

8

Answer

• No. If k is negative, then i would be 0 upon
exiting the loop. i == k will not hold.

• But, if k is 0 or positive, then i cannot
exceed k, since it is incremented by 1 every
time. In that case, i == k will hold.

• If pre-condition includes k >= 0, then,
Post-condition can include i == k

9

Stating pre- and post-
conditions

• Careful programmers use assert statements
to state pre- and post-conditions. That way,
if they are wrong, the code stops, rather
than doing something stupid or dangerous.

10

Example

assert (k >= 0);

assert (i == k);

11

Loop invariant
• loop invariants: a way to understand what a

loop does

• Loop invariant: property that is true:

• First time entering the loop

• At the end of each round of loop
(iteration)

• By implication, at the end of the loop
start (invariant holds); iterate (invariant holds) =>

invariant holds at exit as well
12

Example

Loop invariant examples:
(1) i is greater than or equal to 0.
(2) k does not change during the loop
(3) sum contains the sum of values from 0 to i-1

Here, on each iteration, sum goes up by i and i is
incremented. i++ is part of the iteration

13

Reasoning for i >= 0

• i >= 0 is true first time you enter the loop
because i is initialized to 0 in for statement.

• i >=0 remains true after every iteration:
executing the body of the loop and
advancing i by 1 only increments i.

• Therefore, it is a loop invariant.

Note: integer overflows are not accounted for in the above reasoning. Some careful
thinking should show that i cannot become negative even then in this code.

14

Stating Invariants
• Discovering and proving invariants can sometimes

be hard (topic in EECS 203).

• But, for code safety, use asserts to capture what
you believe to be key invariants in the code. For
example, if you believe that i == k after the loop
below, write it as an assert. If you are wrong, the
program will fail gracefully.

assert (i == k);

15

Invariants in Games

• Suppose you start out with 3n + 1 sticks,
for some integer n, e.g., 28 sticks.

• You play a game with an opponent in which
your opponent plays first. Each of you pick
1 or 2 sticks alternately. The player who
picks the last stick loses.

• Can you come up with winning strategy?

16

Basic Idea

• Player A tries to leave 3n+1 sticks at all
times. Initially, n = 9 in this example.

• If B picks 1, A picks 2. If B picks 2, A picks 1.

• # of sticks always remains of the form 3n
+1.

• Eventually, n goes to 0, leaving 1 stick for B.

• Invariant after every pair of moves:

• # of sticks = 3n+1, for some n.
17

Result

• We were able to show using invariants that
a player can always win if he can force the
number of sticks to 3n+1.

• Invariants can help you understand the
result from a sequence of repeated actions
- such as in games and loops.

18

Common Bugs in
Loops: Off-by-1 error

• Getting the termination condition wrong.

• What if i < k is changed to i == k?

• That changes what the program does.

19

Not exiting at correct
point

• Suppose, we want to add numbers from i
and up, and want to exit just before the
sum exceeds 1000.

Can you see the bug in the logic of the code?
20

Analyzing the code

The loop exits only when sum > max.
Post-condition: (sum > 1000).

Violates the specs that sum should be < 1000.

21

Fixing the code

• You can change the exit check to

• sum + i > max.

• But, that may not the best fix. The fix does
not work if i is initialized to 10, and max is
5. We want sum to be 0 in that case.

• Better to move the modified check to
before updating sum.

22

Summary

• One needs to think carefully when writing
loops. Else, subtle bugs can arise. Good to
state in comments or using assert:

• pre-conditions

• post-conditions

• loop invariants

23

