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Break/continue in loops

• Loops can prematurely terminate if a break 
is encountered. In that case, control 
transfers to the statement after the loop.

• Loops can advance to the next iteration, 
skipping rest of the loop, on a continue 
statement.
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Break/continue are 
convenient, not necessary

• They can be eliminated by using additional 
boolean variables

while (somecondition) {
   if (i < 10) break;
   ... do something with i;
}
   

boolean done = false;
while (somecondition && !done) {
   if (i < 10) done = true ;

if (!done) {
       ... do something with i;
  }
}
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For versus while

• A for-loop can always be implemented 
using a while loop

for (initializer; condition; advance) stmt;

initializer;
while (condition) {stmt; advance;}

is equivalent to
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while -> for
• May be. Need to think about that one. 

Probably true. Example: LoopEquivalence.java

• Using while is cleaner 
code here. 
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Thinking about loops
What can we say about the values of sum, i, and k just 

before and just after the loop?
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Thinking about Loops

• Pre-condition: what is assumed to be true 
before we enter the loop

• sum == 0 && i == 0

• Post-condition:

• sum = sum of values from 0 to k-1

• i >= k because that is the only way to 
exit the loop.
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Question

• Can we conclude that i must be equal to k 
on exit? In other words, is the following a 
valid post-condition?

• i == k
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Answer

• No. If k is negative, then i would be 0 upon 
exiting the loop. i == k will not hold.

• But, if k is 0 or positive, then i cannot 
exceed k, since it is incremented by 1 every 
time. In that case, i == k will hold.

• If pre-condition includes k >= 0, then, 
Post-condition can include i == k
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Stating pre- and post-
conditions

• Careful programmers use assert statements 
to state pre- and post-conditions. That way, 
if they are wrong, the code stops, rather 
than doing something stupid or dangerous.
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Example

assert (k >= 0);

assert (i == k);
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Loop invariant
• loop invariants: a way to understand what a 

loop does

• Loop invariant: property that is true:

• First time entering the loop

• At the end of each round of loop 
(iteration)

• By implication, at the end of the loop
start  (invariant holds); iterate (invariant holds) => 

invariant holds at exit as well 
12



Example

Loop invariant examples:
(1) i is greater than or equal to 0.
(2) k does not change during the loop
(3) sum contains the sum of values from 0 to i-1

Here, on each iteration, sum goes up by i and i is 
incremented. i++ is part of the iteration
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Reasoning for i >= 0

• i >= 0 is true first time you enter the loop 
because i is initialized to 0 in for statement.

• i >=0 remains true after every iteration:  
executing the body of the loop and 
advancing i by 1 only increments i.

• Therefore, it is a loop invariant.

Note: integer overflows are not accounted for in the above reasoning.  Some careful 
thinking should show that i cannot become negative even then in this code.
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Stating Invariants
• Discovering and proving invariants can sometimes 

be hard (topic in EECS 203).

• But, for code safety, use asserts to capture what 
you believe to be  key invariants in the code. For 
example, if you believe that i == k after the loop 
below, write it as an assert.  If you are wrong, the 
program will fail gracefully.

assert (i == k);
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Invariants in Games

• Suppose you start out with 3n + 1 sticks, 
for some integer n, e.g., 28 sticks.

• You play a game with an opponent in which 
your opponent plays first. Each of you pick 
1 or 2 sticks alternately. The player who 
picks the last stick loses.

• Can you come up with winning strategy?
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Basic Idea

• Player A tries to leave 3n+1 sticks at all 
times. Initially, n = 9 in this example.

• If B picks 1, A picks 2. If B picks 2, A picks 1.

• # of sticks always remains of the form 3n
+1.

• Eventually, n goes to 0, leaving 1 stick for B.

• Invariant after every pair of moves: 

• # of sticks = 3n+1, for some n.
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Result

• We were able to show using invariants that 
a player can always win if he can force the 
number of sticks to 3n+1.

• Invariants can help you understand the 
result from a sequence of repeated actions 
- such as in games and loops.
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Common Bugs in 
Loops: Off-by-1 error

• Getting the termination condition wrong.

• What if i < k is changed to i == k?

• That changes what the program does.
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Not exiting at correct 
point

• Suppose, we want to add numbers from i 
and up, and want to exit just before the 
sum exceeds 1000.

Can you see the bug in the logic of the code? 
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Analyzing the code

The loop exits only when sum > max.
Post-condition: (sum > 1000).

Violates the specs that sum should be < 1000.
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Fixing the code

• You can change the exit check to 

• sum + i > max. 

• But, that may not the best fix. The fix does 
not work if i is initialized to 10, and max is 
5. We want sum to be 0 in that case.

• Better to move the modified check to 
before updating sum.
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Summary

• One needs to think carefully when writing 
loops. Else, subtle bugs can arise. Good to 
state in comments or using assert:

• pre-conditions

• post-conditions

• loop invariants
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