
Defensive Programming:
Part 1. Types,
Conditionals, Assertions

Atul Prakash
Reading: Chapter 2-6 Downey. Sun’s Java tutorials as

referenced in the slides

1

You should know from a previous
programming course...

• Variables have types: integer, float, boolean,
string, ...

• Operators: +, -, =, *, /, %, **, comparison
operators, etc.

• if-then-else statements

• loops, e.g., while statements

2

Some surprises
• We will show that computer programs can

behave in unexpected ways:

• x + 1 < x is possible

• (x == x) can compute to false

• (x != x) can compute to true

• x < y, x > y, x == y can all be false.

• This lecture: overview of Java, along with
discussion of nuances of types, conditional
statements, and loops

3

Java Language Fundamentals

• The language syntax is similar to C/
C++

• We will contrast Java with Python
where necessary

4

Keywords

• Keywords are reserved words
• ANSI C has around 32, Java around 50
• Keywords in the Java Language

abstract
 continue
 for
 new
 switch

assert ***
 default
 goto *
 package
 synchronized

boolean

 do
 if
 private
 this

break

 double
 implements
 protected
 throw

beyte

 else
 import
 public
 throws

case

 enum ****
 instanceof
 return
 transient

catch

 extends
 int
 short
 try

char

 final
 interface
 static
 void

class

 finally
 long
 strictfp **
 volatile

const *

 float
 native
 super
 while

* not used

** added in 1.2

*** added in 1.4

**** added in 5.0

5

• Python: you can just type
in code. Runs as you
type:

• 2 + 3

• x = "hello"

• print x

• Java: programs are
compiled. Always start
from a "main"
function in a class

Programs

// HelloWorld.java

public class HelloWorld {

 public static void main(String[] args) {

 String x = "hello";

 System.out.println(x);

 }

}

6

Variables and Types
• All variables must given

a type at start.
• Variable type cannot

change (unlike Python)

7

Common Types
• short, int, long (integers

of various max. lengths)

• float, double (floating
point values)

• char (single unicode
character)e.g., 'a', '\n'

• boolean: true/false

• String: immutable. Use
double quotes.

8

Type
Name

Type
Value

Size Range Example literals

boolean true/false 1 byte - true, false

int integer 32-bit (4-byte),
signed, two’s-
complement

-231… 231-1
-2147483648…
-2147483647

• decimals: 100, -2
•Octal: 07, 05
•Hexadecimal: 0x1, 0xA9

long integer 64-bit (8-byte),
signed, two’s-
complement

-263… 263-1
-9,223,372,036,8
54,775,808)…
9,223,372,036,8
54,775,807

•decimals: 10000L, -212L
•Octal: 07123L, 0125L
•Hexadecimal: 0x1D3L,
0xA9L

byte integer 1 byte -128…127 -

short integer 16-bit (4-byte),
signed, two’s-
complement

-215… 215-1
-32,768…
32,767

-

Data Types have limited range

9

Data Type Ranges

Type
Name

Type
Value

Size Range Example literals

double floating-
point

64-bit (8-byte),
described in
IEEE reference
754

+-1.7676931348
6231570 x 10
+308…

+-4.9406564584
1246544 x 10-324

1e1, 2., .3, 3.14, 56.3e_45d

float floating-
point

36-bit (4-byte),
described in
IEEE reference
754

-3.40282347 x
10 +38…

-1.40239846 x
10-45

1e1f, 2.f, .3f, 3.14f, 56.3e_4f

char Single char 16-bit (2-byte),
signed

0…65535 •Single char: ‘T’
•Escapes: ‘\n’, ‘\r’, ‘\t’
•Unicode escape:
‘\u0041’ (A)

10

Operators

• Operators are symbols that perform an operation
on a set of operands (one, two, three)
–Most operators require two operands - binary

operator. For example, +, -, *, /, ** (power), as in:
• z = x + y; z = x * y; z = x - y; z = x**y;

–Some unary operators:
• ++: increment operator for integers.
• Two forms: pre-increment and post-incremet

– int i = 10; int j = ++i; // increment i, then assign.
– int i = 10; int j = i++; // assign i, then increment.

–One ternary operator
• op1 ? op2 : op3, e.g., (x==y) ? x = 9 : x = 99;
• It means that if op1 is true, then the result is op2, else op3.

11

Conditions

• &&: anding: ||: oring; ! used for negation.

• == for equality check. != for non-equality

• >, >=, <, <= are additional comparison ops.

12

Maximum and Minimum
integers

• Integers:
–Integer.MAX_VALUE: largest positive integer
–Integer.MIN_VALUE: most negative integer

• Similar values for short and long:
–Short.MAX_VALUE, Long.MIN_VALUE, etc.

13

13

Integer Wraparound Problem

• int/short/long values wrap around.
– Integer.MAX_VALUE + 1 -> wraps around to

the Integer.MIN_VALUE.
–Integer.MIN_VALUE - 1 -> wraps around to the

Integer.MAX_VALUE
–Same principle for short and long

• This has some unexpected implications
–It is possible that i + 1 < i
– It is possible that i > 0 and j > 0 but i + j < 0

• Need to be aware of this possibility 14

14

Testing Overflows

• Try out the Overflow.java on Ctools

15

15

Float/Double

• They have a finite range as well.
–But, no wraparound fortunately.

• Instead, these values overflow to +infinity
or -infinity (after rounding).

• Special values:
• Float.MAX_VALUE: largest floating point value
• Float.MIN_VALUE: most negative float
• Float.POSITIVE_INFINITY,
Float.NEGATIVE_INFINITY

• Double.MAX_VALUE, etc. for double values16

16

Float NaN: Not-A-Number

• For floats and doubles, there is a special
value NaN, or Not-a-Number. 0.0/0.0
gives a NaN.
– Arithmetic operations on NaN give a NaN
– NaN is not ordered. All comparison operations

on NaN, except for !=, give false. Some
surprises as a result:
• NaN == NaN gives false.
• NaN != NaN gives true

– Within code, Float.NaN and Double.NaN are
the floating point and double NaN values.

17

17

NaN

• Some properties:
– NaN is the only number for which x != x. Can

serve as a test for NaN.
– Need to be careful if your computations can

give a NaN. Some non-intuitive things are
possible:
• Both x > y and y > x can give false if either x or y
is a NaN.

• Why is NaN there?
– Numerical experts deemed it necessary to

handle erroneous math, such as 0.0/0.0. 18

18

Testing Floats
• Try out TestFloat.java on Ctools

19

Type Conversions
• Generally, if you are

doing:

• a = b

• Then, a and b must of
compatible types.

20

Casting
• Conversion to more

general types generally
automatic. E.g.

• double z = 3; // works

• Conversion to a
narrower type requires a
"cast" to tell the
compiler that this is
intentional.

• int x = 3.4; // fails

• int x = (int) 3.4;
works. Value
truncated.

• But non-sensical casts
fail, as expected

21

Statements
• Functions, like main,

consist of a sequence of
statements

• Each statement
terminated by a semi-
colon

x = 3;

is same as

x =

3;

22

Conditionals
• Syntax: if (cond) stmt

• Optional: else if and else followed by a
statement

23

Compound Statements

• What if we want to do more than one
thing in an an if statement?

• Use a compound statement to treat
multiple statements as one statement:

• { stmt1 ... stmtN }

24

Example

25

Be wary of null
statement

• A semi-colon by itself is a null statement. It
does not do anything.

• The following is legal:

• if (a > b); // Note: null statement

• It means do nothing if a is greater than b

26

This code runs, but has
a bug

27

How Compiler Views
the Code

• if (x > y) execute the null statement (;)

• Since no else part, if statement is done.

• Print “x is greater than y”

• Print “Done”

28

Style Issues

• If conditions are mutually exclusive, use:

• if, followed by a sequence of else ifs,
followed by else.

• Safety: Generally, should include an else,
even if it is impossible. Can print an error
there if the case is not possible. Only omit
it if there would be a null statement.

29

Example

• Better style:

• Bad style: • Uncommon but OK

• OK, but add comment

30

Switch Statements
• More convenient for a series of equality

conditional checks than a sequence of ifs.

31

Breaks in Switch
• A case continues to next case, unless there

is a break. Following will print incorrect
output for months 1-9.

32

Style - Avoid duplicate code

33

Avoid duplicate code

34

Defensive programming
• Use either single-line if statement or use

compound statement

35

Assert statements
• Assert statements are a way to state

assumptions about the code. Code will stop
execution if assertion is false

36

Enabling Assertions

• By default, assert statements are ignored by
the compiler.

To enable them for debugging, add

"-ea" to the java command (not to javac)

In Eclipse, do Run-> Run Configurations… -
> Arguments.

Add -ea to the VM argument.

37

Asserts to express
internal invariants

 if (i % 3 == 0) {
 ...
 } else if (i % 3 == 1) {
 ...
 } else { // We know (i % 3 == 2)
 ...
 }

 if (i % 3 == 0) {
 ...
 } else if (i % 3 == 1) {
 ...
 } else { // We know (i % 3 == 2)
 assert (i % 3 == 2);
 }

Initial code Better code with assertion

Note: % is the mod operator

Example source: http://java.sun.com/j2se/1.5.0/docs/guide/language/assert.html

38

Review Sun’s Docs on
Asserts

• http://java.sun.com/j2se/1.5.0/docs/guide/
language/assert.html

• Internal invariants

• asserts in else/default

• control flow invariants

39

Another Example

switch(suit) {
 case Suit.CLUBS:
 ...
 break;

 case Suit.DIAMONDS:
 ...
 break;

 case Suit.HEARTS:
 ...
 break;

 case Suit.SPADES:
 ...
}

switch(suit) {
 case Suit.CLUBS:
 ...
 break;

 case Suit.DIAMONDS:
 ...
 break;

 case Suit.HEARTS:
 ...
 break;

 case Suit.SPADES:
 ...
 break;
 default:
 assert false;
}

Initial code Better code with default/assert

No other suit value
assumed to be possible

40

Control-flow invariant

void foo() {
 for (...) {
 if (...)
 return;
 }
 // Execution should never reach this point!!!
}

Initial code

Better code with assertion added in

void foo() {
 for (...) {
 if (...)
 return;
 }
 assert false; // Execution should never reach this point!
}

41

• Python equivalent:

for i in range(10):
 statements

For and while loops

initialize
continuing
condition

advance i after
each iteration

for (int i = 0; i < 10; i++) {
 statement1;
 ...
 statement n;
}

• Equivalent while loops:

int i = 0;
while (i < 10) {
 statement1;
 ...
 statement n;
 i++;
}

42

Following for loops are
equivalent - study them

43

