
Protecting Confidential Data on Personal Computers with Storage Capsules

Kevin Borders, Eric Vander Weele, Billy Lau, and Atul Prakash
University of Michigan
Ann Arbor, MI, 48109

{kborders, ericvw, billylau, aprakash}@umich.edu

Abstract

Protecting confidential information is a major concern for organizations and individuals alike, who stand to suffer
huge losses if private data falls into the wrong hands. One of the primary threats to confidentiality is malicious soft-
ware on personal computers, which is estimated to already reside on 100 to 150 million machines. Current security
controls, such as firewalls, anti-virus software, and intrusion detection systems, are inadequate at preventing malware
infection. This paper introduces Storages Capsules, a new approach for protecting confidential files on a personal
computer. Storage Capsules are encrypted file containers that allow a compromised machine to securely view and
edit sensitive files without malware being able to steal confidential data. The system achieves this goal by taking a
checkpoint of the current system state and disabling device output before allowing access a Storage Capsule. Writes
to the Storage Capsule are then sent to a trusted module. When the user is done editing files in the Storage Capsule,
the system is restored to its original state and device output resumes normally. Finally, the trusted module declassi-
fies the Storage Capsule by re-encrypting its contents, and exports it for storage in a low-integrity environment. This
work presents the design, implementation, and evaluation of Storage Capsules, with a focus on exploring covert
channels.

1. Introduction

Traditional methods for protecting confidential informa-
tion rely on upholding system integrity. If a computer is
safe from hackers and malicious software (malware),
then so is its data. Ensuring integrity in today’s inter-
connected world, however, is exceedingly difficult.
Trusted computing platforms such as Terra [8] and
trusted boot [26] try to provide this integrity by verify-
ing software. Unfortunately, these platforms are rarely
deployed in practice and most software continues to be
unverified. More widely-applicable security tools, such
as firewalls, intrusion detection systems, and anti-virus
software, have been unable to combat malware, with
100 to 150 million infected machines running on the
Internet today according to a recent estimate [34]. Secu-
rity mechanisms for personal computers simply cannot
rely on keeping high integrity. Storage Capsules address
the need for access to confidential data from compro-
mised personal computers.

There are some existing solutions for preserving confi-
dentiality that do not rely on high integrity. One exam-
ple is mandatory access control (MAC), which is used
by Security-Enhanced Linux [23]. MAC can control the
flow of sensitive data with policies that prevent entities
that read confidential information from communicating
over the network. This policy set achieves the goal of
preventing leaks in the presence of malware. However,
defining correct policies can be difficult, and they
would prevent most useful applications from running
properly. For example, documents saved by a word

processor that has ever read secret data could not be
sent as e-mail attachments. Another embodiment of the
same principle can be seen in an “air gap” separated
network where computers are physically disconnected
from the outside world. Unplugging a compromised
computer from the Internet will stop it from leaking
information, but doing so greatly limits its utility. Both
mandatory access control with strict outbound flow
policies and air gap networks are rarely used outside of
protecting classified information due to their severe
impact on usability.

This paper introduces Storage Capsules, a new mecha-
nism for protecting sensitive information on a local
computer. The goal of Storage Capsules is to deliver the
same level of security as a mandatory access control
system for standard applications running on a commod-
ity operating system. Storage Capsules meet this re-
quirement by enforcing policies at a system-wide level
using virtual machines. The user’s system can also
downgrade from high-secrecy to low-secrecy by revert-
ing to a prior state using virtual machine snapshots.
Finally, the system can obtain updated Storage Capsules
from a declassification component after returning to low
secrecy.

Storage Capsules are analogous to encrypted file con-
tainers from the user’s perspective. When the user
opens a Storage Capsule, a snapshot is taken of the cur-
rent system state and device output is disabled. At this
point, the system is considered to be in secure mode.
When the user is finished editing files in a Storage Cap-
sule, the system is reverted to its original state – dis-

carding all changes except those made to the Storage
Capsule – and device output is re-enabled. The storage
capsule is finally re-encrypted by a trusted component.

Storage Capsules guarantee protection against a com-
promised operating system or applications. Sensitive
files are safe when they are encrypted and when being
accessed by the user in plain text. The Capsule system
prevents the OS from leaking information by erasing its
entire state after it sees sensitive data. It also stops cov-
ert communication by fixing the Storage Capsule size
and completely re-encrypting the data every time it is
accessed by the OS. Our threat model assumes that the
primary operating system can do anything at all to un-
dermine the system. The threat model also assumes that
the user, hardware, the virtual machine monitor
(VMM), and an isolated secure virtual machine are
trustworthy. The Capsule system protects against covert
channels in the primary OS and Storage Capsules, as
well as many (though not all) covert channels at lower
layers (disk, CPU, etc.). One of the contributions of
this paper is identifying and suggesting mitigation
strategies for numerous covert channels that could po-
tentially leak data from a high-secrecy VM to a low-
secrecy VM that runs after it has terminated.

We evaluated the impact that Storage Capsules have on
the user’s workflow by measuring the latency of secu-
rity level transitions and system performance during
secure mode. We found that for a primary operating
system with 512 MB of RAM, transitions to secure
mode took about 4.5 seconds, while transitions out of
secure mode took approximately 20 seconds. We also
compared the performance of the Apache build bench-
mark in secure mode to that of a native machine, a plain
virtual machine, and a virtual machine running an en-
cryption utility. Overall, Storage Capsules added 38%
overhead compared to a native machine, and only 5%
compared to a VM with encryption software. The com-
mon workload for a Storage Capsule is expected to be
much lighter than an Apache build. In many cases, it
will add only a negligible overhead.

The main contribution of this work is a system that al-
lows safe access to sensitive files from a normal operat-
ing system with standard applications. The Capsule
system is able to switch modes within one OS rather
than requiring separate operating systems or processes
for different modes. This paper also makes contribu-
tions in the understanding of covert channels in such a
system. In particular, it looks at how virtualization tech-
nology can create new covert channels and how previ-
ously explored covert channels behave differently when
the threat model is a low-security virtual machine run-
ning after a high-security virtual machine.

It is important to keep in mind that Storage Capsules do
not protect integrity. There are a number of attacks that
they cannot prevent. If malicious software stops the user
from ever entering secure mode by crashing, then the
user might be coerced into accessing sensitive files
without Storage Capsules. Furthermore, malware can
manipulate data to present false information that tricks
the user into doing something erroneously, such as plac-
ing a stock transaction. These attacks are beyond the
scope of this paper.

The remainder of this paper is laid out as follows. Sec-
tion 2 discusses related work. Section 3 gives an over-
view of the usage model, the threat model, and design
alternatives. Section 4 outlines the system architecture.
Section 5 describes the operation of Storage Capsules.
Section 6 examines the effect of covert channels on
Storage Capsules. Section 7 presents evaluation results.
Finally, section 8 concludes and discusses future work.

2. Related Work

The Terra system [8] provides multiple security levels
for virtual machines using trusted computing technol-
ogy. Terra verifies each system component at startup
using a trusted platform model (TPM) [29], similar to
trusted boot [26]. However, Terra allows unverified
code to run in low-security virtual machines. One could
imagine a configuration of Terra in which the user’s
primary OS runs inside of a low-integrity machine, just
like in the Capsule system. The user could have a sepa-
rate secure VM for decrypting, editing, and encrypting
files. Assuming that the secure VM always has high
integrity, this approach would provide comparable secu-
rity and usability benefits to Storage Capsules. How-
ever, Terra only ensures a secure VM’s integrity at
startup; it does not protect running software from ex-
ploitation. If this secure VM ever loads an encrypted
file from an untrusted location, it is exposed to attack.
All sources of sensitive data (e-mail contacts, web serv-
ers, etc.) would have to be verified and added to the
trusted computing base (TCB), bloating its size and
impacting both management overhead and security.
Furthermore, the user would be unable to safely include
data from untrusted sources, such as the internet, in sen-
sitive files. The Capsule system imposes no such head-
aches; it can include low-integrity data in protected
files, and only requires trust in local system components
to guarantee confidentiality.

There has been extensive research on controlling the
flow of sensitive information inside of a computer. In-
tra-process flow control techniques aim to verify that
individual applications do not inadvertently leak confi-
dential data [6, 22]. However, this does not stop mali-

cious software that has compromised a computer from
stealing data at the operating system or file system
level. Another approach for controlling information
flow is at the process level with a mandatory access
control (MAC) system like SELinux [23]. MAC in-
volves enforcing access control policies on high-level
objects (typically files, processes, etc.). However, defin-
ing correct policies can be quite difficult [15] even for a
fixed set of applications. MAC would have a hard time
protecting personal computers that download and install
programs from the internet. Very few computers use
mandatory access control currently, and it is not sup-
ported by Microsoft Windows, a popular operating sys-
tem for personal computers. Storage Capsules employ a
similar approach to MAC systems, but do so at a higher
level of granularity (system-wide) using virtual machine
technology. This allows Storage Capsules to provide
more practical security for commodity operating sys-
tems without requiring modification.

There are a number of security products available for
encrypting and protecting files on a local computer,
including compression utilities [25, 35] and full disk
encryption software [1, 7, 20, 31]. The goal of file en-
cryption is to facilitate file transmission over an un-
trusted medium (e.g., an e-mail attachment), or protect
against adversarial access to the storage device (e.g., a
lost or stolen laptop). File encryption software does
safeguard sensitive information while it is decrypted on
the end host. Malicious software that has control of the
end host can steal confidential data or encryption keys.
Capsule also uses file encryption to allow storage in an
untrusted location, but it maintains confidentiality while
sensitive data is decrypted on the end host.

Storage Capsules rely on the virtual machine monitor as
part of the trusted computing base. VMMs are com-
monly accepted as less complex and more secure than
standard operating systems, with the Xen VMM having
under 50,000 lines of code [36], compared to 5.7 mil-
lion lines in the Linux 2.6 kernel [5]. These numbers are
reinforced by actual vulnerability reports, with Xen 3.x
only having 9 reports up to January 2009 [27], and the
Linux 2.6.x kernel having 165 reports [28] in that same
time period. VMMs are not invulnerable, but they have
proven to be more robust than standard kernels.

Virtualization technology has many useful properties
and features that make it a well-suited platform for
Storage Capsules. Despite these advantages, Garfinkel
et al. warn that virtualization has some shortcomings,
especially when it comes to security [9]. Most impor-
tantly, have many branches and saved states makes
patching and configuration much more difficult. A user
might load an old snapshot that is vulnerable to infec-

tion by an Internet worm. The Capsule system does not
suffer from these limitations because it is designed to
have one primary VM with a fairly straight execution
path. Transitions too and from secure mode are short-
lived, and should have a minimal impact on patching
and management tasks.

3. Overview

3.1 Storage Capsules from a User’s Per-
spective

From the user’s perspective, Storage Capsules are
analogous to encrypted file containers provided by a
program like TrueCrypt [31]. Basing the Capsule sys-
tem off of an existing and popular program’s usage
model makes it easier to gain acceptance. The primary
difference between Storage Capsules and traditional
encryption software is that the system enters a secure
mode before opening the Storage Capsule’s contents. In
this secure mode, network output is disabled and any
changes that the user makes outside of the Storage Cap-
sule will be lost. The user may still edit the Storage
Capsule contents with his or her standard applications.
When the user closes the Storage Capsule and exits
secure mode, the system reverts to the state it was in
before accessing sensitive data.

One motivating example for Storage Capsules is provid-
ing a secure journal. A person, call him Bob, may want
to write a diary in which he expresses controversial po-
litical beliefs. Bob might regularly write in this journal,
possibly pasting in news stories or contributions from
others on the internet. Being a diligent user, Bob might
store this document in an encrypted file container. Un-
fortunately, Bob is still completely vulnerable to spy-
ware when he enters the decryption password and edits
the document. Storage Capsules support the same usage
model as normal encrypted file containers, but also de-
liver protection against spyware while the user is ac-
cessing sensitive data.

Storage Capsules have some limitations compared to
encrypted file containers. These limitations are neces-
sary to gain additional security. First, changes that the
user makes outside of the encrypted Storage Capsule
while it is open will not persist. This benefits security
and privacy by eliminating all traces of activity while
the container was open. Storage Capsules guarantee that
the OS does not inadvertently hold information about
sensitive files as described by Czeskis et al. for the case
of TrueCrypt [4]. Unfortunately, any work from compu-
tational or network processes that may be running in the
background will be lost. One way to remove this limita-
tion would be to fork the primary virtual machine and

allow a copy of it to run in the background. Allowing
low- and high-secrecy VMs to run at the same time,
however, reduces security by opening up the door for a
variety of covert channels.

3.2 Threat Model

Storage Capsules are designed to allow a compromised
operating system to safely edit confidential information.
However, some trusted components are necessary to
provide security. Figure 1 shows the architecture of the
Capsule system, with trusted components having solid
lines and untrusted components having dotted lines. The
user’s primary operating system runs inside of a pri-
mary VM. Neither the applications, the drivers, nor the
operating system are trusted in the primary VM; it can
behave in any arbitrary manner. A virtual machine
monitor (VMM) runs beneath the primary VM, and is
responsible for mediating access to physical devices.
The VMM is considered part of the trusted computing
base (TCB). The Capsule system also relies on a Secure
VM to save changes and re-encrypt Storage Capsules.
This secure VM has only a minimal set of applications
to service Storage Capsule requests, and has all other
services blocked off with a firewall. The secure VM is
also part of the TCB.

The user is also considered trustworthy in his or her
intent. Presumably, the user has a password to decrypt
each Storage Capsule and could do so using rogue soft-
ware without going into secure mode and leak sensitive
data. The user does not require full access to any trusted
components, however. The main user interface is the

primary VM, and the user should only interact with the
Secure VM or VMM briefly using a limited UI. This
prevents the user from inadvertently compromising a
trusted component with bad input.

The threat model assumes that malicious software may
try to communicate covertly within the primary VM.
Storage Capsules are designed to prevent a compro-
mised primary OS from saving data anywhere that will
persist through a snapshot restoration. However, Stor-
age Capsules do not guarantee that a malicious primary
VM cannot store data somewhere in a trusted compo-
nent, such as hardware or the VMM, in such a way that
it can recover information after leaving secure mode.
We discuss several of these covert channels in more
depth later in the paper.

3.3 Designs that do not Satisfy Storage
Capsule Goals

The first system design that would not meet the security
goals laid out in our threat model is conventional file
encryption software [1, 7, 20, 31]. Any information
stored in an encrypted file would be safe from malicious
software, or even a compromised operating system,
while it is encrypted. However, as soon as the user de-
crypts a file, the operating system can do whatever it
wants with the decrypted data.

Another design that would not meet the goals of Storage
Capsules is the NetTop architecture [19]. With NetTop,
a user has virtual machines with multiple security levels.
One is for accessing high-secrecy information, and an-
other for low-secrecy information, which may be con-
nected to the internet. Depending on how policies are
defined, NetTop either suffers from usability limitations
or would have security problems. First assume that the
high-secrecy VM must be able to read data from the
low-secrecy VM to load files from external locations
that are not part of the trusted computing base. Now, if
the high-secrecy VM is prevented from writing anything
back to the low-secrecy VM, then confidentiality is
maintained. However, this prevents the user from mak-
ing changes to a sensitive document, encrypting it, then
sending it back out over a low-secrecy medium. This
effectively makes everything read-only from the high-
secrecy VM to the low-secrecy VM. The other alterna-
tive – letting the high-secrecy VM encrypt and de-
classify data – opens up a major security hole. Data that
comes from the low-secrecy VM also might be mali-
cious in nature. If the high-secrecy VM reads that in-
formation, its integrity – and the integrity of its encryp-
tion operations – may be compromised.

Virtual Device
Drivers

Primary OS

Physical Device Drivers

Hardware

Primary VM

VMM

Virtual Device
Drivers

OS

Secure VM

Figure 1. In the Storage Capsule architecture, the
user’s primary operating system runs in a virtual ma-
chine. The secure VM handles encryption and declas-
sification. The dotted black line surrounding the pri-
mary VM indicates that it is not trusted. The other

system components are trusted.

4. System Architecture

The Capsule system has two primary modes of opera-
tion: normal mode and secure mode. In normal mode,
the computer behaves the same as it would without the
Capsule system. The primary operating system has ac-
cess to all devices and can communicate freely over the
network. In secure mode, the primary OS is blocked
from sending output to the external network or to de-
vices that can store data. Furthermore, the primary op-
erating system’s state is saved prior to entering secure
mode, and then restored when transitioning back to
normal mode. This prevents malicious software running
on the primary OS from leaking data from secure mode
to normal mode.

The Capsule system utilizes virtual machine technology
to isolate the primary OS in secure mode. Virtual ma-
chines also make it easy to save and restore system state
when transitioning to or from secure mode. Figure 1
illustrates the architecture of the Capsule system. The
first virtual machine, labeled Primary VM, contains the
primary operating system. This VM is the equivalent of
the user’s original computer. It contains all of the user’s
applications, settings, and documents. This virtual ma-
chine may be infected with malicious software and is
not considered trustworthy. The other virtual machine,
labeled Secure VM, is responsible for managing access
to Storage Capsules. The secure VM is trusted. The
final component of the Capsule system shown in Figure
1 is the Virtual Machine Monitor (VMM). The VMM is
responsible for translating each virtual device I/O re-
quest into a physical device request, and for governing
virtual networks. As such, it can also block device I/O
from virtual machines. The VMM has the power to
start, stop, save, and restore entire virtual machines.
Because it has full control of the computer, the VMM is
part of the trusted computing base.

The Capsule system adds three components to the
above architecture to facilitate secure access to Storage
Capsules. The first is the Capsule VMM module, which
runs as service inside of the VMM. The Capsule VMM
module performs the following basic functions:

• Saves and restores snapshots of the primary VM
• Enables and disables device access by the primary

VM
• Catches key escape sequences from the user
• Switches the UI between the primary VM and the

secure VM

The Capsule VMM module executes operations as re-
quested by the second component, the Capsule server,
which runs inside of the secure VM. The Capsule server
manages transitions between normal mode and secure

mode. During secure mode, it also acts as a disk server,
handling block-level read and write requests from the
Capsule viewer, which runs in the primary VM. The
Capsule server has dedicated interfaces for communi-
cating with the Capsule viewer and with the Capsule
VMM module. These interfaces are attached to separate
virtual networks so that the viewer and VMM module
cannot impersonate or communicate directly with each
other.

The third component, the Capsule viewer, is an applica-
tion that accesses Storage Capsules on the primary VM.
When the user first loads or creates a new Storage Cap-
sule, the viewer will import the file by sending it to the
Capsule server. The user can subsequently open the
Storage Capsule, at which point the viewer will ask the
Capsule server to transition the system to secure mode.
During secure mode, the viewer presents the contents of
the Storage Capsule to the user as a new mounted parti-
tion. Block-level read and write requests made by the
file system are forwarded by the viewer to the Capsule
server, which encrypts and saves changes to the Storage
Capsule. Finally, the Capsule viewer can retrieve the
encrypted Storage Capsule by requesting an export from
the Capsule server. The Capsule viewer is not trusted
and may cause a denial-of-service at any time. How-
ever, the Capsule system is designed to prevent even a
compromised viewer from leaking data from secure
mode to normal mode.

5. Storage Capsule Operation

5.1 Storage Capsule File Format

A Storage Capsule is actually an encrypted partition that
is mounted during secure mode. The Storage Capsule
model is based on TrueCrypt [31] – a popular encrypted
storage program. Like TrueCrypt, each new Storage
Capsule is created with a fixed size. Storage Capsules
employ XTS-AES – the same encryption scheme as
TrueCrypt – which is the IEEE standard for data en-
cryption [13]. In our implementation, the encryption
key for each file is created by taking the SHA-512 hash
of a user-supplied password. In a production system, it
would be beneficial to employ other methods, such as
hashing the password many times and adding a salt, to
make attacks more difficult. The key could also come
from a biometric reader (fingerprint reader, retina scan-
ner, etc.), or be stored on a key storage device like a
smart card. Storage Capsules operation does not depend
on a particular key source.

With XTS-AES, a different tweak value is used during
encryption for each data unit. A data unit can be one or
more AES blocks. The Storage Capsule implementation

uses a single AES block for each data unit. In accor-
dance with the IEEE 1619 standard [13], Storage Cap-
sules use a random 128-bit starting tweak value that is
incremented for each data unit. This starting tweak
value is needed for decryption, so it is stored at the be-
ginning of the file. Because knowledge of the tweak
value does not weaken the encryption [18], it is stored
in the clear.

5.2 Creating and Importing a Storage
Capsule

The first step in securing data is creating a new Storage
Capsule. The following tasks take place during the crea-
tion process:

1. The Capsule viewer solicits a Storage Capsule file
name and size from the user.

2. The viewer makes a request to the Capsule server
on the secure VM to create a new Storage Cap-
sule.

3. The viewer asks the user to enter the secure key
escape sequence that will be caught by a keyboard
filter driver in the VMM. This deters spoofing by
a compromised primary VM.

4. After receiving the escape sequence, the VMM
module will give the secure VM control of the
user interface.

a. If the escape sequence is received unexpect-
edly (i.e. when the VMM has not received a
request to wait for an escape sequence from
the Capsule server), then the VMM module
will still give control of the UI to the secure
VM, but the secure VM will display a warn-
ing message saying that the user is not at a
secure password entry page.

5. The Capsule server will ask the user to select a
password, choose a random starting tweak value
for encryption, and then format the encapsulated
partition.

6. The Capsule server asks the VMM module to
switch UI focus back to the primary VM.

After the creation process is complete, the Capsule
server will send the viewer a file ID that it can store
locally to link to the Storage Capsule on the server.

Loading a Storage Capsule from an external location
requires fewer steps than creating a new Storage Cap-
sule. If the viewer opens a Storage Capsule file that has
been created elsewhere, it imports the file by sending it
to the Capsule server. In exchange, the Capsule server
sends the viewer a file ID that it can use as a link to the
newly imported Storage Capsule. After a Storage Cap-
sule has been loaded, the link on the primary VM looks

the same regardless of whether the Capsule was created
locally or imported from an external location.

5.3 Opening a Storage Capsule in Secure
Mode

At this point, one or more Storage Capsules reside on
the Capsule server, and have links to them on the pri-
mary VM. When the user opens a link with the Capsule
viewer, it will begin the transition to secure mode,
which consists of the following steps:

1. The Capsule viewer sends the Capsule server a
message saying that the user wants to open a Stor-
age Capsule, which includes the file ID from the
link in the primary VM.

2. The Capsule viewer asks the user to enter the es-
cape sequence that will be caught by the VMM
module.

3. The VMM module receives the escape sequence
and switches the UI focus to the secure VM. This
prevents malware on the primary VM from spoof-
ing a transition and stealing the file password.

a. If the escape sequence is received unexpect-
edly, the secure VM still receives UI focus,
but displays a warning message stating the
system is not in secure mode.

4. The VMM module begins saving a snapshot of the
primary VM in the background. Execution contin-
ues, but memory and disk data is copied to the
snapshot on write.

5. The VMM module disables network and other de-
vice output.

6. The Capsule server asks the user to enter the file
password.

7. The VMM module returns UI focus to the primary
VM.

8. The Capsule server tells the viewer that the transi-
tion is complete and begins servicing disk I/O re-
quests to the Storage Capsule.

9. The Capsule viewer mounts a local partition that
uses the Capsule server for back-end disk block
storage.

The above process ensures that the primary VM gains
access to the Storage Capsule contents only after its
initial state has been saved and the VMM has blocked
device output. The exact set of devices blocked during
secure mode is discussed more in the section on covert
channels.

Depending on the source of the Storage Capsule en-
cryption key, step 6 could be eliminated entirely. If the
key was obtained from a smart card or other device,
then the primary VM would retain UI focus throughout
the entire transition, except in the case of an unexpected

escape sequence from the user. In this case, the secure
VM must always take over the screen and warn the user
that he or she is not in secure mode.

5.4 Storage Capsule Access in Secure Mode

When the Capsule system is running in secure mode, all
reads and writes to the Storage Capsule are sent to the
Capsule server. The server will encrypt and decrypt the
data for each request as it is received, without perform-
ing any caching itself. The Capsule server instead relies
on the caches within the primary VM and its own oper-
ating system to minimize unnecessary encryption and
disk I/O. The disk cache in the primary VM sits above
the driver that sends requests through to the Capsule
server. On the secure VM, disk read and write requests
from the Capsule server go through the local file system
cache before they are sent to the disk. Later, we meas-
ure Storage Capsule disk performance during secure
mode and demonstrate that is comparable to current
encryption and virtualization software.

During secure mode, the VMM stores all writes to the
primary VM’s virtual disk in a file. This file contains
differences with respect to the disk state at the time of
the last snapshot operation (during the transition to se-
cure mode). In the Capsule system, this difference file is
stored on a partition that resides in main memory,
commonly referred to as a RAM disk. Our implementa-
tion uses the ImDisk Virtual Disk Driver [14]. Storing
the files on a RAM disk prevents potentially sensitive
data that the primary VM writes to its virtual disk from
reaching the physical disk. Although malicious access
to the physical disk is not the focus of this paper’s threat
model, allowing confidential data to touch the disk in-
creases the overall risk of leakage and the cost of hard-
ware destruction.

The main downside to storing virtual disk modifications
in memory is that the system requires more memory in
secure mode. However, the size of primary disk modifi-
cations in secure mode should be small under normal
circumstances because they are all temporary. Under
normal circumstances, the user has no reason to store
big files in a location where they will soon be deleted. If
the change buffer does fill up due to a denial-of-service
by malware or non-standard usage, then writes to the
main virtual disk will fail until the system reverts to
normal mode. If there turns out to be a legitimate need
for large amounts of temporary storage in secure mode,
then the change buffer could be stored on the physical
disk and the VMM could use an encrypted file system
for added protection.

5.5 Reverting to Normal Mode

Transitioning the Capsule system from secure mode
back to normal mode is the most security-sensitive op-
eration. Care must be taken to prevent leaks from secure
mode back to normal mode insofar as practical for the
desired level of security. A full discussion of the chan-
nels through which information might flow during this
transition and countermeasures can be found in the next
section. The Capsule system begins reverting to normal
mode when the user enters a key escape sequence. Here,
the escape sequence is not to prevent spoofing, but in-
stead to reduce the primary VM’s ability to leak data
through a timing channel. After the user hits the escape
sequence, the following steps take place:

1. The VMM module notifies the Capsule server of
the pending transition, which in turn notifies the
Capsule viewer.

2. The Capsule server waits up to 30 seconds for the
primary VM to flush disk writes to the Storage
Capsule. In our experiments, flushing always took
less than one second, but uncommon workloads
could make it take longer. We chose 30 seconds
because it is the default maximum write-back de-
lay for linux.

3. The secure VM reboots in order to flush any state
that was affected by the primary VM. (This blocks
some covert channels that are discussed in the
next section.)

4. The VMM module halts the primary VM, and
then reverts its state to the snapshot taken before
entering secure mode and resumes execution.

5. The VMM module re-enables network and other
device output for the primary VM.

After the Capsule system has reverted to normal mode,
all changes that were made in the primary VM during
secure mode, except those to the Storage Capsule, are
lost. Also, when the Capsule viewer resumes executing
in normal mode, it queries the Capsule to see what
mode it is in (if the connection fails due to the reboot,
normal mode is assumed). This is a similar mechanism
to the return value from a fork operation. Without it, the
Capsule viewer cannot tell whether secure mode is just
beginning or the system has just reverted to normal
mode, because both modes start from the same state.

5.6 Exporting Storage Capsules

After modifying a storage capsule, the user will proba-
bly want to back it up or transfer it to another person or
computer at some point. Storage Capsules support this
use case by providing an export operation. The Capsule
viewer may request an export from the Capsule server at
any time during normal mode. When the Capsule server

exports an encrypted Storage Capsule back to the pri-
mary VM, it is essential that malicious software can
glean no information from the difference between the
Storage Capsule at export compared to its contents at
import. This should be the case even if malware has full
control of the primary VM during secure mode and can
manipulate the Storage Capsule contents in a chosen-
plaintext attack.

For the Storage Capsule encryption scheme to be se-
cure, the difference between the exported cipher-text
and the original imported cipher-text must appear com-
pletely random. If the primary VM can change specific
parts of the exported Storage Capsule, then it could leak
data from secure mode. To combat this attack, the Cap-
sule server re-encrypts the entire Storage Capsule using
a new random 128-bit starting tweak value before each
export. There is a small chance of two exports colliding.
For any two Storage Capsules, each of size 2 GB (227
encryption blocks), the chance of random 128-bit tweak
values partially colliding would be approximately 1 in 2
* 227 / 2128 or 1 in 2100. Because of the birthday paradox,
however, there will be a reasonable chance of a colli-
sion between a pair of exports after only 250 exports.
This number decreases further with the size of Storage
Capsules. Running that many exports would still take an
extremely long time (36 million years running 1 export /
second). We believe that such an attack is unlikely to be
an issue in reality, but could be mitigated if future
tweaked encryption schemes support 256-bit tweak val-
ues.

5.7 Key Escape Sequences

During all Capsule operations, the primary VM and the
Capsule viewer are not trusted. Some steps in the Cap-
sule system’s operation involve the viewer asking the
user to enter a key escape sequence. If the primary VM
becomes compromised, however, it could just skip ask-
ing the user to enter escape sequences and display a
spoofed UI that looks like what would show up if the
user did hit the escape sequence. This attack would steal
the file decryption password while the system is still in
normal mode. The defense against this attack is that the
user should be accustomed to entering the escape se-
quence and therefore hit it anyway or notice anomalous
behavior.

It is unclear how susceptible real users would be to
spoofing attack that omits asking for an escape se-
quence. The success of such an attack is likely to de-
pend on user education. Formally evaluating the usabil-
ity of escape sequences in the Capsule system is future
work. Another design alternative that may help if spoof-
ing attacks are found to be a problem is reserving a se-

cure area on the display. This area would always tell the
user whether the system is in secure mode or the secure
VM has control of the UI.

6. Covert Channel Analysis

The Storage Capsule system is designed to prevent any
direct flow of information from secure mode to normal
mode. However, there are a number of covert channels
through which information may be able to persist during
the transition from secure to normal mode. This section
tries to answer the following questions about covert
channels in the Capsule system as best as possible:

• Where can the primary virtual machine store in-
formation that it can retrieve after reverting to
normal mode?

• What defenses might fully or partially mitigate
these covert information channels?

We do not claim to expose all covert channels here, but
list many channels that we have uncovered during our
research. Likewise, the proposed mitigation strategies
are not necessarily optimal, but represent possible ap-
proaches for reducing the bandwidth of covert channels.
Measuring the maximum bandwidth of each covert
channel requires extensive analysis and is beyond the
scope of this paper. There has been a great deal of re-
search on measuring the bandwidth of covert channels
[2, 16, 21, 24, 30, 33], which could be applied to calcu-
late the severity of covert channels in the Capsule sys-
tem in future work.

The covert channels discussed in this section can be
divided into five categories:

1. Primary OS and Capsule – Specific to Storage
Capsule design

2. External Devices – Includes floppy, CD-ROM,
USB, SCSI, etc.

3. External Network – Changes during secure mode
that affect responsiveness to external connections

4. VMM – Arising from virtual machine monitor
implementation, includes memory mapping and
virtual devices

5. Core Hardware – Includes CPU and disk drives.

The Capsule system prevents most covert channels in
the first three categories. It can use the VMM to medi-
ate the primary virtual machine’s device access and
completely erase the primary VM’s state when reverting
to normal mode. The Capsule system also works to pre-
vent timing channels when switching between modes of
operation, and does respond to external network traffic
while in secure mode.

Storage Capsules do not necessarily protect against
covert channels in the last two categories. There has
been a lot of work on identifying, measuring, and miti-
gating covert channels in core hardware for traditional
MLS systems [16, 17, 21, 30]. Similar methods for
measuring and mitigating those core channels could be
applied to Storage Capsules. Covert channels arising
from virtualization technology have not received much
attention. This research hopes to highlight some of the
key mechanisms in a VMM that can facilitate covert
communication. The remainder of this section explores
covert channels in each of these categories, including
mitigation strategies and their required trade-offs.

6.1 Primary OS and Storage Capsule
Channels

In addition to covert channels that one might find in
other systems, the design of Storage Capsules creates
opportunities for covert communication. This section
focuses on the interactions between the primary VM
and the secure VM. The primary VM should not be able
to affect the secure VM’s state during secure mode in a
way that it can detect during normal mode. Here we
examine three attack vectors that a compromised pri-
mary VM might use to steal data, and corresponding
counter-measures.

Transition Timing

When the VMM restores the primary virtual machine
from a snapshot, the restored state contains the exact
same information as prior to entering secure mode. Fol-
lowing the restoration, the primary VM can obtain addi-
tional information by fetching the system time, which
tells it when the system returned to normal mode. If the
primary VM can manipulate the transition timing from
secure mode, then it can leak data.

The Capsule system prevents direct leaks through tran-
sition timing by requiring a secure key escape sequence
to switch back to normal mode. However, the primary
VM may still be able to affect transition timing depend-
ing on how long the Capsule server waits for the pri-
mary VM to flush disk writes to the Storage Capsule
upon leaving secure mode. One option that would pre-
clude manipulation of transition timing would be for the
Capsule server to wait a fixed time-period for disk
writes to complete. This would be the most secure ap-
proach. Unfortunately, this strategy would either impact
usability or threaten correctness. If the server were to
stall 30 seconds – the default write-back delay for Linux
– then the transition time would be unnecessarily long
in most cases. On the other hand, if it only waited a few
seconds, then some delayed writes might fail and cor-
rupt the Storage Capsule.

For our implementation of the Capsule system, we
chose a transition timing policy that sacrifices a few bits
of potential information leakage per transition, but is
more usable. The Capsule server will wait for the pri-
mary VM to flush Storage Capsule writes for up to 30
seconds. If the primary VM finishes the disk flush in
less than 30 seconds, the server will immediately pro-
ceed with restoration. This opens up the possibility of
the primary VM stalling a precise length of time after
flushing writes so that it can read back timing informa-
tion after returning to normal mode. The maximum
bandwidth of this timing channel is somewhat limited,
however, because the snapshot restoration adds noise to
the transition time. Depending on how much memory
the primary VM has, the amount of time between exit-
ing secure mode and resuming in normal mode can vary
by several seconds. By notifying the server at a specific
offset from the most recent half-minute, the primary
VM will only be able to communicate a few bits of data.
One possible counter-measure to this type of timing
channel would be to deliberately skew the clock during
secure mode so the primary VM cannot accurately
judge system time.

Storage Capsule Contents

The ideal place for a compromised primary VM to store
data would be in the Storage Capsule itself. It is essen-
tial that the Capsule server cut off this channel. First,
Storage Capsules must have a fixed size. This imposes a
small usability limitation, which we believe is reason-
able given that other popular systems like TrueCrypt
[31] fix the size of encrypted file containers. Enforcing
the next constraint required to cut off storage channels
is slightly more complicated. No matter what changes
the primary VM makes to the Storage Capsule in secure
mode, it must not be able to deduce what has been
changed after the Capsule server exports the Storage
Capsule. As discussed earlier, XTS-AES encryption
with a different tweak value for each export satisfies
this requirement. Whether the primary VM changes
every single byte or does not touch anything, the result-
ing exported Storage Capsule will be random with re-
spect to its original contents.

Social Engineering Attacks

If the primary virtual machine cannot find a way to leak
data directly, then it can resort to influencing user be-
havior. The most straightforward example of a social
engineering attack would be for the primary VM to
deny service to the user by crashing at a specific time,
and then measuring transition time back to normal
mode. There is a pretty good chance that the user would
respond to a crash by switching back to normal mode
immediately, especially if the system is prone to crash-

ing under normal circumstances. In this case, the user
may not even realize that an attack is taking place. An-
other attack that is higher-bandwidth, but perhaps more
suspicious, would be for the primary VM to display a
message in secure mode that asks the user to perform a
task that leaks information. For example, a message
could read “Automatic update failed, please open the
update dialog and enter last scan time ‘4:52 PM’ when
internet connectivity is restored.” Users who do not
understand covert channels could easily fall victim to
this attack. In general, social engineering is difficult to
prevent. The Capsule system currently does not include
any counter-measures to social engineering. In a real
deployment, the best method of fighting covert channels
would be to properly educate the users.

6.2 External Device Channels

Any device that is connected to a computer could poten-
tially store information. Fortunately, most devices in a
virtual machine are virtual devices, including the key-
board, mouse, network card, display, and disk. In a tra-
ditional system, two processes that have access to the
keyboard could leak data through the caps-, num-, and
scroll-lock state. The VMware VMM resets this device
state when reverting to a snapshot, so a virtual machine
cannot use it for leaking data. We did not test virtualiza-
tion software other than VMware to see how it resets
virtual device state.

Some optional devices may be available to virtual ma-
chines. These include floppy drives, CD-ROM drives,
sound adapters, parallel ports, serial ports, SCSI de-
vices, and USB devices. In general, there is no way of
stopping a VM that is allowed to access these devices
from leaking data. Even devices that appear to be read-
only, such as a CD-ROM drive, may be able to store
information. A VM could eject the drive or position the
laser lens in a particular spot right before switching
back to normal mode. While these channels would be
easy to mitigate by adding noise, the problem worsens
when considering a generic bus like USB. A USB de-
vice could store anything or be anything, including a
disk drive. One could allow access to truly read-only
devices, but each device would have to be examined on
an individual basis to uncover covert channels. The
Capsule system prevents these covert channels because
the primary VM is not given access to external devices.
If the primary VM needs access to external devices,
then they would have to be disabled during secure
mode.

6.3 External Network Channels

In addition to channels from the Primary VM in secure
mode to normal mode, it is also important to consider
channels between the Storage Capsule system and ex-
ternal machines during secure mode. If malware can
utilize so many resources that it affects how responsive
the VMM is to external queries (such as pings), then it
can leak data to a colluding external computer.

The best way to mitigate external network channels is
for the VMM to immediately drop all incoming packets
with a firewall, not even responding with reset packets
for failed connections. If the VMM does not require any
connections during secure mode, which it did not for
our implementation, then this is the easiest and most
effective approach.

6.4 Virtual Machine Monitor Channels

In a virtualization system, everything is governed by the
virtual machine monitor, including memory mapping,
device I/O, networking, and snapshot saving/restoration.
The VMM’s behavior can potentially open up new cov-
ert channels that are not present in a standard operating
system. These covert channels are implementation-
dependent and may or may not be present in different
VMMs. This section serves as a starting point for think-
ing about covert channels in virtual machine monitors.

Memory Paging

Virtual machines are presented with a virtual view of
their physical memory. From a VM’s perspective, it has
access to a contiguous “physical” memory segment with
a fixed size. When a VM references its memory, the
VMM takes care of mapping that reference to a real
physical page, which is commonly called a machine
page. There are a few different ways that a VMM can
implement this mapping. First, it could directly pin all
of the virtual machine’s physical pages to machine
pages. If the VMM uses this strategy, and it keeps the
page mapping constant during secure mode and after
restoration, then there is no way for a virtual machine to
affect physical memory layout. However, this fixed
mapping strategy is not always the most efficient way to
manage memory.

Prior research describes resource management strategies
in which the VMM may over-commit memory to virtual
machines and page some of the VM’s “physical” mem-
ory out to disk [11, 32]. If the VMM employs this strat-
egy, then a virtual machine can affect the VMM’s page
table by touching different pages within its address
space. The residual effects of page table manipulation
may be visible to a VM after a snapshot restoration,
unless the VMM first pages in all of the VM’s memory.

A snapshot restoration should page in all of a VM’s
memory in most cases. But, if it is a “background” res-
toration, then accessing a memory location that has not
been loaded from the snapshot yet and is paged out to
disk might incur two page faults instead of one, which
can be measured and may leak information.

VMware ESX server employs a number of tricks that
allow it to over-commit memory to virtual machines
[32]. Each of the mechanisms described by Wald-
spurger allow efficient server consolidation, but also
create an opportunity for covert channels. The first
mechanism he describes is ballooning. Guest virtual
machines contain balloon drivers that allocate extra
memory and then tell the VMM it can page out the cor-
responding “physical” pages. With ballooning, a misbe-
having guest OS can touch the balloon driver’s pages
and cause the VMM to load them in from disk. When
the VM is subsequently reverted to a snapshot, the
compromised OS can again touch all of the balloon
driver pages to see whether they have already been
faulted in prior to the snapshot restoration. The VMM
could mitigate this ballooning channel by restoring the
state of its page table to match the original set of bal-
looned pages when restoring a snapshot. Of course,
ballooning may be used as a covert channel between
simultaneously executing VMs in systems other than
Capsule.

There has also been research on sharing memory pages
with the same content in virtual machines [3, 32]. If the
VMM maps multiple pages to one machine page and
marks them as copy-on-write, then the virtual machine
will encounter a page fault when writing to one of them.
If a VM sets a large number of pages to have the same
value during secure mode, then a much larger number
of page faults will take place when restoring a snapshot.
However, these page faults will only be noticeable to
the VM if execution resumes in normal mode before all
of the VM’s memory pages are loaded from the snap-
shot file. In this case, the VM can measure the total
restoration time or write to pages before they have
loaded and test for page faults to recover information. If
the VM resumes execution after its memory has been
fully restored and pages have been re-scanned for du-
plication, then this covert channel will not work.

The Capsule system does not over-commit memory for
virtual machines, so the memory saving techniques
mentioned above do not take effect. Our implementa-
tion of the Capsule system does not employ any
counter-measures to covert channels based on memory
paging.

Virtual Networks

The Capsule system blocks external network access
during secure mode, but it relies on a virtual network
for communication between the secure VM and the
primary VM. While the virtual network itself is stateless
(to the best of our knowledge), anything connected to
the network could potentially be a target for relaying
information from secure mode to normal mode. The
DHCP and NAT services in the VMM are of particular
interest. A compromised virtual machine may send arbi-
trary packets to these services in an attempt to affect
their state. For example, a VM might be able to claim
several IP addresses with different spoofed MAC ad-
dresses. It could then send ARP requests to the DHCP
service following snapshot restoration to retrieve the
spoofed MAC addresses, which contain arbitrary data.
The Capsule system restarts both the DHCP and NAT
services when switching back to normal mode to avert
this covert channel.

Any system that allows both a high-security and low-
security VM to talk to a third trusted VM (the secure
VM in Capsule) exposes itself another covert channel.
Naturally, all bets are off if the primary VM can com-
promise the secure VM. Even assuming the secure VM
is not vulnerable, the primary VM may still be able to
convince it to relay data from secure mode to normal
mode. Like the DHCP service on the host, the secure
VM’s network stack stores information. For example,
the primary VM could send out TCP SYN packets with
specific source port numbers that contain several bits of
data right before reverting to normal mode. When the
primary VM resumes execution, it could see the source
ports in SYN/ACK packets from the secure VM.

It is unclear exactly how much data can be stashed in
the network stack on an unsuspecting machine and how
long that information will persist. The only way to guar-
antee that a machine will not inadvertently relay state
over the network is to reboot it. This is the approach we
take to flush the secure VM’s network stack state when
switching back to normal mode in Capsule.

Guest Additions

The VMware VMM supports additional software that
can run inside of virtual machines to enhance the virtu-
alization experience. The features of guest additions
include drag-and-drop between VMs and a shared clip-
board. These additional features would undermine the
security of any virtual machine system with multiple
confidentiality levels and are disabled in the Capsule
system.

6.5 Core Hardware Channels

Core hardware channels allow covert communication
via one of the required primary devices: CPU or disk.
Memory is a core device, but memory mapping is han-
dled by the VMM, and is discussed in the previous sec-
tion. Core hardware channels might exist in any multi-
level secure system and are not specific to Storage Cap-
sules or virtual machines. One difference between prior
research and this work is that prior research focuses on
a threat model of two processes that are executing si-
multaneously on the same hardware. In the Capsule
system, the concern is not with simultaneous processes,
but with a low-security process (normal-mode VM)
executing on the same hardware after a high-security
process (secure-mode VM) has terminated. This con-
straint rules out some traditional covert channels that
rely on resource contention, such as a CPU utilization
channel.

CPU State

Restoring a virtual machine’s state from a snapshot will
overwrite all of the CPU register values. However,
modern processors are complex and store information in
a variety of persistent locations other than architecture
registers. Many of these storage areas, such as branch
prediction tables, are not well-documented or exposed
directly to the operating system. The primary method
for extracting this state is to execute instructions that
take a variable number of clock cycles depending on the
state and measure their execution time, or exploit specu-
lative execution feedback. Prior research describes how
one can use these methods to leak information through
cache misses [24, 33].

There are a number of counter-measures to covert
communication through CPU state on modern proces-
sors. In general, the more instructions that execute in
between secure mode and normal mode, the less state
will persist. Because the internal state of a microproces-
sor is not completely documented, it is unclear exactly
how much code would need to run to eliminate all CPU
state. One guaranteed method of wiping out all CPU
state is to power off the processor. However, recent
research on cold boot attacks [12] shows that it may
take several minutes for memory to fully discharge.
This strategy would lead to an unreasonably long delay
when switching from secure mode to normal mode.

The ideal solution for eliminating covert CPU state
channels in Capsule and other virtualization systems
would be with hardware support. The latest CPUs al-
ready support hardware virtualization, which allows
them to fully emulate instruction sets for virtual ma-
chines. An additional mechanism is needed when

switching between virtual machines that not only re-
stores register and memory mappings, but also restores
all state that could affect VM execution. This operation
would load all of the cache data (L1, L2, and instruc-
tion), the branch prediction table, and any other inter-
mediate state. It would also be sufficient to provide an
instruction that would erase all of this data.

Although the Capsule system does not take counter-
measures to prevent CPU state covert channels, the
VMM restores a significant portion of the primary
VM’s original memory state before the VM can resume
execution. This restoration will likely eliminate any
residual cache lines from secure mode. It will also add a
great deal of noise to any other CPU state, such as
branch predictor tables, due to the number of instruc-
tions that execute during restoration. Computing the
maximum bandwidth of CPU state channels in the Cap-
sule system is future work.

Disk State

The caching and layout of files on disk, and in the file
system, can be used to transmit information. Another
covert channel exists in the positioning of the disk arm
[10]. If the primary VM can manipulate disk state in a
way that is readable after transitioning back to normal
mode, then it can leak data. There are a few aspects of
the Capsule system’s design that make such an attack
much more difficult. Any writes to the virtual disk dur-
ing secure mode actually go to flat difference file that
stores changes since the last snapshot operation. The
primary VM has no control over where the data goes on
disk, only how much is written, which would make ex-
ploitation of such a channel difficult. The VMM deletes
this file when transitioning back to normal mode. This
frees up any blocks that were allocated for the differ-
ence file. Finally, the VMM reads in the primary VM’s
original memory state from disk during snapshot resto-
ration. This moves the position of the disk arm and adds
considerable noise to the cache.

Despite the noise from transitioning back to normal
mode, the disk cache is the most likely candidate for a
covert channel. All writes are sent to a difference file
and deleted, but reads touch the same virtual disk file
during secure mode and normal mode. Consider the
primary VM sequentially reading every block on its
disk during secure mode to transmit a 1, or reading very
little to transmit a 0. The primary VM might be able to
tell what happened in secure mode by reading back disk
blocks and measuring if they hit the disk cache. One
would need to flush all of the disk caches to eliminate
this channel. The Capsule system does not take any
steps to mitigate disk state channels.

6.6 Mitigating VMM and Core Hardware
Covert Channels

The design of Storage Capsules centers around improv-
ing local file encryption with a minimal impact on exist-
ing behavior. The user only has to take a few additional
steps, and no new hardware is required. The current
implementation is designed to guard against many cov-
ert channels, but does not stop leakage through all of
them, such as the CPU state, through which data may
leak from secure to normal mode. If the cost of small
leaks outweighs usability and the cost of extra hard-
ware, then there is an alternative design that can provide
additional security.

One way of cutting off almost all covert channels would
be to migrate the primary VM to a new isolated com-
puter upon entering secure mode. This way, the virtual
machine would be running on different core hardware
and a different VMM while in secure mode, thus cutting
off covert channels at those layers. VMware ESX server
already supports live migration, whereby a virtual ma-
chine can switch from one physical computer to another
without stopping execution. The user would have two
computers at his or her desk, and use one for running
the primary VM in secure mode, and the other for nor-
mal mode. When the user is done accessing a Storage
Capsule, the secure mode computer would reboot and
then make the Storage Capsule available for export over
the network. This extension of the Capsule system’s
design would drastically reduce the overall threat of
covert channels, but would requires additional hardware
and could add usability impediments that would not be
suitable in many environments.

7. Performance Evaluation

There are three aspects of performance that are impor-
tant for Storage Capsules: (1) transition time to secure
mode, (2) system performance in secure mode, and (3)
transition time to normal mode. It is important for tran-
sitions to impose only minimal wait time on the user
and for performance during secure mode to be compa-
rable to that of a standard computer for common tasks.
This section evaluates Storage Capsule performance for
transitions and during secure mode. The experiments
were conducted on a personal laptop with a 2 Ghz Intel
T2500 processor, 2 GB of RAM, and a 5200 RPM hard
drive. Both the host and guest operating systems (for the
secure VM and primary VM) were Windows XP Ser-
vice Pack 3, and the VMM software was VMware
Workstation ACE Edition 6.0.4. The secure VM and the
primary VM were both configured with 512 MB of
RAM and to utilize two processors, except where indi-
cated otherwise.

The actual size of the Storage Capsule does not affect
any of the performance numbers in this section. It does,
however, influence how long it takes to run an import or
export. Both import and export operations are expected
to be relatively rare in most cases – import only occurs
when loading a Storage Capsule from an external
location, and export is required only when sending a
Storage Capsule to another user or machine. Importing
and exporting consist of a disk read, encryption (for
export only), a local network transfer, and a disk write.
On our test system, the primary VM could import a 256
MB Storage Capsule in approximately 45 seconds and
export it in approximately 65 seconds. Storage Capsules
that are imported and exported more often, such as e-
mail attachments, are likely to be much smaller and
should take only a few seconds.

0
1

2
3
4
5

6
7
8

9
10

256 512 1024

VM Memory (MB)

S
ec

o
n

d
s

0

50

100

150

200

250

300

256 512 1024

VM Memory (MB)

S
ec

o
n

d
s

Snapshot

Mount
Capsule

Disable
Netw ork

0
10

20
30
40
50

60
70
80

90
100

256 512 1024

VM Memory (MB)

S
ec

o
n

d
s

0

50

100

150

200

250

300

256 512 1024

VM Memory (MB)

S
ec

o
n

d
s Restore

Reset VM

Flush Disk

 (a) (b) (c) (d)

Figure 2. Transition times for different amounts of primary VM memory.
(a) to secure mode with background snapshot, (b) to secure mode with full snapshot

(c) to normal mode with background restore, and (d) to normal mode with full restore.

7.1 Transitioning to and from Secure
Mode

The transitions to and from secure mode consist of sev-
eral tasks. These include disabling/enabling device out-
put, mounting/dismounting the Storage Capsule, sav-
ing/restoring snapshots, waiting for an escape sequence,
and obtaining the encryption key. Fortunately, some
operations can happen in parallel. During the transition
to secure mode, the system can do other things while
waiting for user input. The evaluation does not count
this time, but it will reduce the delay experienced by the
user in a real deployment. VMware also supports both
background snapshots (copy-on-write) and background
restores (copy-on-read). This means that execution may
resume in the primary VM before memory has been
fully saved or restored from the snapshot file. The sys-
tem will run slightly slower at first due to page faults,
but will speed up as the snapshot or restore operation
nears completion. A background snapshot or restore
must complete before another snapshot or restore opera-
tion can begin. This means that even if the primary VM
is immediately usable in secure mode, the system can-
not revert to normal mode until the snapshot is finished.

Figure 2 shows the amount of time required for transi-
tioning to and from secure mode with different amounts
of RAM in the primary VM. Background snapshots and
restorations make a huge difference. Transitioning to
secure mode takes 4 to 5 seconds with a background
snapshot, and 60 to 230 seconds without. The time re-
quired for background snapshots, mounting the Storage
Capsule, and disabling network output also stays fairly
constant with respect to primary VM memory size.
However, the full snapshot time scales linearly with the
amount of memory. Note that the user must wait for the
full snapshot time before reverting to normal mode.

The experiments show that reverting to normal mode is
a more costly operation than switching to secure mode,
especially when comparing the background restore to
the background snapshot operation. This is because
VMware allows a virtual machine to resume immedi-
ately during a background snapshot, but waits until a
certain percentage of memory has been loaded in a
background restore. Presumably, memory reads are
more common than memory writes, so copy-on-read for
the restore has worse performance than copy-on-write
for the snapshot. VMware also appears to employ a
non-linear strategy for deciding what portion of a back-
ground restore must complete before the VM may re-
sume execution. It waited approximately the same
amount of time when a VM had 256 MB or 512 MB of
RAM, but delayed significantly longer for the 1 GB
case.

The total transition times to secure mode are all reason-
able. Many applications will take 4 or 5 seconds to load
a document anyway, so this wait time imposes little
burden on the user. The transition times back to normal
mode for 256 MB and 512 MB are also reasonable.
Waiting less than 20 seconds does not significantly dis-
rupt the flow of work. However, 60 seconds may be
long wait time for some users. It may be possible to
optimize snapshot restoration by using copy-on-write
memory while the primary VM is in secure mode. This
way, the original memory would stay in tact and the
VMM would only need to discard changes when transi-
tioning to normal mode. Optimizing transition times in
this manner is future work.

7.2 Performance in Secure Mode

Accessing a Storage Capsule imposes some overhead
compared to a normal disk. A Storage Capsule read or
write request traverses the file system in the primary
VM, and is then sent to the secure VM over the virtual
network. The request then travels through a layer of
encryption on the secure VM, out to its virtual disk, and
then to the physical drive. We compared the disk and
processing performance of Storage Capsules to three
other configurations. These configurations consisted of
a native operating system, a virtual machine, and a vir-
tual machine with a TrueCrypt encrypted file container.
For the evaluation, we ran an Apache build benchmark.
This benchmark involves decompressing and extracting
the Apache web server source code, building the code,
and then removing all of the files. The Apache build
benchmark probably represents the worst case scenario
for Storage Capsule usage. We expect that the primary
use of Storage Capsules will be for less disk-intensive
activities like editing documents or images, for which
the overhead should be unnoticeable.

0

50

100

150

200

250

300

350

400

450

Native VM VM + TC Capsule

Configuration

T
im

e
(s

ec
on

ds
)

Remove

Build

Unpack

Figure 3. Results from building Apache with a native
OS, a virtual machine, a virtual machine running True-
Crypt, and Capsule. Storage Capsules add only a 5%
overhead compared to a VM with TrueCrypt, 18%

slower than a plain VM, and 38% overhead compared
to a native OS.

Figure 3 shows the results of the Apache build bench-
mark. Storage Capsules performed well overall, only
running 38% slower than a native system. Compared to
a single virtual machine running similar encryption
software (TrueCrypt), Storage Capsules add an over-
head of only 5.1% in the overall benchmark and 31% in
the unpack phase. This shows that transferring reads
and writes over the virtual network to another VM has a
reasonably small performance penalty. The most sig-
nificant difference can be seen in the remove phase of
the benchmark. It executes in 1.9 seconds on a native
system, while taking 5.5 seconds on a VM, 6.5 seconds
on a VM with TrueCrypt, and 7.1 seconds with Storage
Capsules. The results from the VM and VM with True-
Crypt tests show, however, that the slowdown during
the remove phase is due primarily to disk performance
limitations in virtual machines rather than the Capsule
system itself.

8. Conclusion and Future Work

This paper introduced Storage Capsules, a new mecha-
nism for securing files on a personal computer. Storage
Capsules are similar to existing encrypted file contain-
ers, but protect sensitive data from malicious software
during decryption and editing. The Capsule system pro-
vides this protection by isolating the user’s primary
operating system in a virtual machine. The Capsule sys-
tem turns off the primary OS’s device output while it is
accessing confidential files, and reverts its state to a
snapshot taken prior to editing when it is finished. One
major benefit of Storage Capsules is that they work with
current applications running on commodity operating
systems.

Covert channels are a serious concern for Storage Cap-
sules. This research explores covert channels at the
hardware layer, at the VMM layer, in external devices,
and in the Capsule system itself. It looks at both new
and previously examined covert channels from a novel
perspective, because Storage Capsules have different
properties than side-by-side processes in a traditional
multi-level secure system. The research also suggests
ways of mitigating covert channels and highlights their
usability and performance trade-offs. Finally, we evalu-
ated the overhead of Storage Capsules compared to
both a native system and standard virtual machines. We
found that transitions to and from secure mode were
reasonably fast, taking 5 seconds and 20 seconds, re-
spectively. Storage Capsules also performed well in an
Apache build benchmark, adding 38% overhead com-
pared to a native OS, but only a 5% penalty when com-
pared to running current encryption software inside of a
virtual machine.

In the future, we plan to further explore covert channels
discussed in this work. This includes measuring their
severity and quantifying the effectiveness of mitigation
strategies. We also hope to conduct a study on usability
of keyboard escape sequences for security applications.
Storage Capsules rely on escape sequences to prevent
spoofing attacks by malicious software, and it would be
beneficial to know how many users of the Capsule sys-
tem would still be vulnerable to such attacks.

Acknowledgements

This material is based upon work supported by the Na-
tional Science Foundation under Grant No. 0705672.
Any opinions, findings, and conclusions or recommen-
dations expressed in this material are those of the au-
thor(s) and do not necessarily reflect the views of the
National Science Foundation

References

[1] M. Blaze. A Cryptographic File System for
UNIX. In Proc. of the 1st ACM Conference on
Computer and Communications Security, Nov.
1993.

[2] R. Browne. An Entropy Conservation Law for
Testing the Completeness of Covert Channel
Analysis. In Proc. of the 2nd ACM Conference on
Computer and Communication Security (CCS),
Nov. 1994.

[3] E. Bugnion, S. Devine, K. Govil, and M. Rosen-
blum. Disco: Running Commodity Operating
Systems on Scalable Multiprocessors. ACM
Transactions on Computer Systems, 15(4), Nov.
1997.

[4] A. Czeskis, D. St. Hilair, K. Koscher, S. Gribble,
and T. Kohno. Defeating Encrypted and Deni-
able File Systems: TrueCrypt v5.1a and the Case
of the Tattling OS and Applications. In Proc. of
the 3rd USENIX Workshop on Hot Topics in Se-
curity (HOTSEC '08), Aug. 2008.

[5] M. Delio. Linux: Fewer Bugs than Rivals. Wired
Magazine, http://www.wired.com/ soft-

ware/coolapps/news/2004/12/66022, Dec.
2004.

[6] D. Denning and P. Denning. Certification of
Programs for Secure Information Flow. Commu-
nications of the ACM, 20(7), Jul. 1977.

[7] C. Fruhwirth. LUKS – Linux Unified Key Setup.
http://code.google.com/p/

cryptsetup/, Jan. 2009.
[8] T. Garfinkel, B. Pfaff, J, Chow, M. Rosenblum,

D. Boneh. Terra: a Virtual Machine-based Plat-
form for Trusted Computing. In Proc. of the 19th

ACM Symposium on Operating Systems Princi-
ples (SOSP), Oct. 2003.

[9] T. Garfinkel and M. Rosenblum. When Virtual is
Harder than Real: Security Challenges in Virtual
Machine Based Computing Environments. In
Proc. of the 10th Workshop on Hot Topics in Op-
erating Systems, Jun. 2005.

[10] B. Gold, R. Linde, R. Peeler, M. Schaefer, J.
Scheid, and P. Ward. A Security Retrofit of
VM/370. In AFIPS Proc., 1979 National Com-
puter Conference, 1979.

[11] K. Govil, D. Teodosiu, Y. Huang, and M.
Rosenblum. Cellular Disco: Resource Manage-
ment Using Virtual Clusters on Shared-Memory
Multiprocessors. In Proc. of the Symposium on
Operating System Principles, Dec. 1999.

[12] J. Halderman, S. Schoen, N. Heninger, W.
Clarkson, W. Paul, J. Calandrino, A. Feldman, J.
Appelbaum, and E. Felten. Lest We Remember:
Cold Boot Attacks on Encryption Keys. In Proc.
of 17th USENIX Security Symposium, Jul. 2008.

[13] IEEE Computer Society. IEEE Standard for
Cryptographic Protection of Data on Block-
Oriented Storage Devices. IEEE Std 1619-2007,
Apr. 2008.

[14] O. Lagerkvist. ImDisk Virtual Disk Driver.
http://www.ltr-data.se/opencode.

html#ImDisk, Dec. 2008.
[15] T. Jaeger, R. Sailer, and X. Zhang. Analyzing

Integrity Protection in the SELinux Example Pol-
icy. In Proc. of the 12th USENIX Security Sym-
posium, Aug. 2003.

[16] M. Kang and I. Moskowitz. A Pump for Rapid,
Reliable, Secure Communication. In Proc. of the
1st ACM Conference on Computer and Commu-
nication Security (CCS), Nov. 1993.

[17] R. Kemmerer. An Approach to Identifying Stor-
age and Timing Channels. In ACM Transactions
on Computer Systems, 1(3), Aug. 1983.

[18] M. Liskov, R. Rivest, and D. Wagner. Tweak-
able Block Ciphers. In Advances in Cryptology –
CRYPTO ’02, 2002.

[19] R. Meushaw and D. Simard. NetTop: Commer-
cial Technology in High Assurance Applications.
http://www.vmware.com/pdf/Tech-

TrendNotes.pdf, 2000.
[20] Microsoft Corporation. BitLocker Drive Encryp-

tion: Technical Overview. http://technet.
microsoft.com/en-us/library/cc732774

.aspx, Jan. 2009.

[21] I. Moskowitz and A. Miller. Simple Timing
Channels. In Proc. of the IEEE Symposium on
Security and Privacy, May 1994.

[22] A. Myers. JFlow: Practical Mostly-Static Infor-
mation Flow Control. In Proc. of the 26th ACM
Symposium on Principles of Programming Lan-
guages (POPL), Jan. 1999.

[23] National Security Agency. Security-enhanced
Linux. http://www.nsa.gov/selinux, Jan.
2008.

[24] C. Percival. Cache Missing for Fun and Profit. In
Proc. of BSDCan 2005, May 2005.

[25] A. Roshal. WinRAR Archiver, a Powerful Tool
to Process RAR and ZIP Files.
http://www.rarlab.com/, Jan. 2009.

[26] R. Sailer, X. Zhang, T. Jaeger, and L. Van
Doorn. Design and Implementation of a TCG-
Based Integrity Measurement Architecture. In
Proc. of the 13th USENIX Security Symposium,
Aug. 2004.

[27] Secunia. Xen 3.x – Vulnerability Report.
http://secunia.com/product/

15863/?task=statistics, Jan. 2009.
[28] Secunia. Linux Kernel 2.6.x – Vulnerability Re-

port. http://secunia.com/product/2719/
?task=statistics, Jan. 2009.

[29] Trusted Computing Group. Trusted Platform
Module Main Specification. http://www.

trustedcomputinggroup.org, Ver. 1.2, Rev.
94, June 2006.

[30] J. Trostle. Multiple Trojan Horse Systems and
Covert Channel Analysis. In Proc. of Computer
Security Foundations Workshop IV, Jun. 1991.

[31] TrueCrypt Foundation. TrueCrypt – Free Open-
Source On-the-fly Encryption. www.truecrypt
.org, Jan. 2009.

[32] C. Waldspurger. Memory Resource Management
in VMware ESX Server. In Proc. of the 5th
Symposium on Operating Systems Design and
Implementation, Dec. 2002.

[33] Z. Wang and R. Lee. Covert and Side Channels
Due to Processor Architecture. In Proc. of the
22nd Annual Computer Security Applications
Conference (ACSAC), Dec. 2006.

[34] T. Weber. Criminals ‘May Overwhelm the Web’.
BBC News, http://news.bbc.co.uk/

1/hi/business/6298641.stm, Jan. 2007.
[35] WinZip International LLC. WinZip – The Zip

File Utility for Windows. http://www.winzip
.com/, Jan. 2009.

[36] XenSource, Inc. Xen Community. http://

xen.xensource.com/, Apr. 2008.

